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Abstract. Interest in psychological experimentation from the Artificial Intelligence community often takes the
form of rigorous post-hoc evaluation of completed computer models. Through an example of our own collaborative
research, we advocate a different view of how psychology and Al may be mutually relevant, and propose an
integrated approach to the study of learning in humans and machines. We begin with the problem of learning
appropriate indices for storing and retrieving information from memory. From a planning task perspective, the
most useful indices may be those that predict potential problems and access relevant plans in memory, improving
the planner’s ability to predict and avoid planning failures. This “predictive features” hypothesis is then supported
as a psychological claim, with results showing that such features offer an advantage in terms of the selectivity of
reminding because they more distinctively characterize planning situations where differing plans are appropriate.

We present a specific case-based model of plan execution, RUNNER, along with its indices for recognizing
when to select particular plans—appropriateness conditions—and how these predictive indices serve to enhance
learning. We then discuss how this predictive features claim as implemented in the RUNNER model is then tested in
a second set of psychological studies. The results show that learning appropriateness conditions results in greater
success in recognizing when a past plan is in fact relevant in current processing, and produces more reliable recall
of the related information. This form of collaboration has resulted in a unique integration of computational and
empirical efforts to create a model of case-based learning.
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1. Learning in humans and machines

In many machine models of learning, the goal seems be the mimicking of human learning
at the level of input and output behavior. However, I/O matching is problematic because
human and machine behaviors are fundamentally different in their environments and back-
ground knowledge. Even in novel domains, it is nearly impossible to achieve access to
large quantities of background knowledge (as humans do with problem-solving strategies,
analogical remindings, prior processing contexts, and episodic traces of similar events) in
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machine learners. How can humans and machines be performing the same processing given
such different knowledge bases? One possible fix to this comparison problem is to equate
background knowledge by choosing tasks where little or no knowledge is involved. This
strategy was used in the development of EPAM (Feigenbaum, 1990) as a computer model of
human verbal learning, where the input stimuli (nonsense syllables) are designed to provide
little connection to past knowledge. However, EPAM involved a part of human behavior
that is, by experimental design, far outside of the normal learning circumstances that an
individual encounters in the world. When do people learn in the absence of any knowledge?

Another alternative is to attempt to provide the machine with background knowledge for
some task comparable to that of human subjects. When the domain is very restricted (e.g.,
inflating balloons (Pazzani, 1991)), this approach may be successful. However, in most
domains (for example, in commonsense planning), there is no limited set of rules that can
be considered sufficient. Without comparable knowledge bases, a machine learning model
should be dissimilar to a human learner for the same reasons that a water plant near the Great
Lakes is unlike one at the edge of the Gobi desert: they must produce the same product
under extremely different operating circumstances. We face great difficulty in trying to
“test” machine and human learners under similar conditions of environment, experience,
and background knowledge.

Therefore, we argue for the importance of testing not I/O performance, but paradigms.
What needs “testing” is the underlying assumptions of any machine learning model—the
specific processing claims of its approach that should obtain across other tasks and learning
situations, and that distinguish the approach from other competing theories. Newell (1991)
argues for this approach, suggesting that one should first determine whether one has the
basics of the class of models that will work before worrying about exactly matching detailed
behavior. By examining the assumptions of a computational model, we can determine its
psychological plausibility while avoiding the temptation of repeatedly adjusting it in order
to exactly match human behavior in a specific test task.

In the following paper, we present an example of this approach to models of learning,
We start with a problem: how does a case-based learner find relevant information in mem-
ory? We begin with a hypothesis that the indices with predictive utility in the planning
domain are those structural features that distinctively indicate when particular plans are
appropriate. A series of studies with human learners is then presented, contributing an ex-
planation of what role predictive features play in retrieval. We then examine one case-based
learning model in particular, RUNNER, and describe the implementation of the predictive
features hypothesis for plan execution called “appropriateness conditions.” Finally, we
present experiments designed to examine whether appropriateness conditions are effective
in human learning.

2. Predictive features hypothesis: What indices are learned?

Previous research has demonstrated the utility of learning by analogy (Carbonell, 1983;
Gick & Holyoak, 1983; Gick & Holyoak, 1980; Hammond, 1989; Pirolli & Anderson,
1985; Ross, 1989). However, one must first retrieve a relevant candidate case from mem-
ory. Given that memory is full of past experiences, only a small number of which may be
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relevant, successful access requires identifying a past case with important similarities to
the current situation, while distinguishing among other cases with similar features. How
experiences are encoded into memory, and what types of cues may provide access to them,
is called the indexing problem. How to find a relevant analog in memory is a central issue
in research on analogical learning in psychology (Anderson, 1986; Gentner, 1983; Gentner
& Landers, 1985; Gick & Holyoak, 1980; Holyoak, 1985; Pirolli & Anderson, 1985; Rat-
termann & Gentner, 1987; Ross, 1987; Ross, 1989; Seifert, McKoon, Abelson, & Ratcliff,
1986). While most computational approaches have ignored the problem of retrieving past
experiences, one approach—case-based learning (Hammond, 1989; Kolodner, 1985; Ries-
beck & Schank, 1989)—has attempted to determine the type and source of features used to
index cases in episodic memory during learning.

2.1. Types of indices: Surface vs. structural

By most psychological accounts, retrieval depends on how similar the new problem is to a
target example stored in memory, given a context of other related competing cases (Ander-
son, 1986; Gentner & Landers, 1985; Tversky, 1977). However, previous psychological
research on indices has focused on a single factor in explaining when access occurs: the
abstractness of the features (Gentner, 1983; Holyoak, 1985). Specifically, features that
are more superficially (surface) related to the intended analogical meaning are contrasted
with features that involve more deep, thematic (structural) relations among pattern ele-
ments (Gentner, 1983; Ross, 1987). Gentner {Gentner & Landers, 1985; Rattermann &
Gentner, 1987) has found that surface features result in more frequent access in a memory
retrieval task, and Ross (1987) has demonstrated that different kinds of surface similarity
(story line versus object correspondence) lead to different rates of access. One possible
explanation for these results is that the ability to make use of structural features is limited
even when they are available; however, this does not appear to be the case. In these same
studies, more abstract, relational features also reliably produced access to past cases based
on structural features alone (Gentner & Landers, 1985; Rattermann & Gentner, 1987; Ross,
1987). Other studies have also shown activation of prior cases in memory based solely
on abstract, thematic cues, particularly if subjects are instructed to attend to them (Seifert
et al, 1986).

Why, then, do superficial features appear to promote better case access compared to ab-
stract features? Surface features may be more readily available (require less inference)
than structural features, playing a role in memory access before any abstract features are
even available (Hammond & Seifert, 1992). Surface features may also serve to identify
prior examples when individual cases are unique in content within the memory set (as in
Rattermann and Gentner, 1987, where there was only one base “squirrel” story in mem-
ory). Unfortunately, in many real-world domains, there is substantial overlap of surface
features between cases, so that abstract features are particularly important. For example,
access based on structural features alone may be necessary when learning in a new do-
main, where past experiences won’t share many surface features with new problems. In
these cross-contextual remindings (Schank, 1982), abstract strategies from one domain are
applied in another, such as taking the “fork” strategy from chess and developing it as the
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“option” play in football (Collins, 1987). Access to past information based on abstract
features is particularly important when the common features are incomplete or ambiguous
(Seifert, 1992).

The capacity to learn a general principle in one setting and transfer it to other, non-
superficially related settings, is the essence of intelligent behavior. Even if people are only
rarely able to make use of structural features, it is critical that we determine when such
transfer does occur, and how we might accomplish this process in machine learners.

2.2. Useful indices: Causal vs. correlated

Our research on planning suggests that structural indices—those representing the abstract
relationships among goals and plans—serve to constrain plan choices in a given situation
(Hammond, 1989; Hammond & Seifert, 1992). Because this causal information serves to
distinctly identify types of planning problems, the types of solution strategies that can be
applied, and potential failures to avoid, it also provides useful indices to past plans. Thus,
our claim is that among all possible features in a planning situation, only a limited set of
these features—those that are relevant to the way in which the current causal interaction of
goals and plans can be changed—are predictive of planning constraints, and therefore most
useful as indices.

Two examples illustrate features most useful in predicting when plan knowledge is ap-
propriate:

Flight of the Phoenix

X was working late on a project that was due in a matter of days. As he saw the
deadline approach, he considered the following two plans: either continue to work
straight through the night (and the next day) or get a good night’s sleep and come
back to the office refreshed. The first plan allows the use of all of the time for work
on the project. The second provides less time, but the time it does provide is of a
better quality.

While thinking about his problem, X was reminded of a scene from the movie
“Flight of the Phoenix” in which a character played by Jimmy Stewart had to start a
damaged plane in the desert. The plane’s ignition needed explosive cartridges, and
Stewart had only seven left. The plane’s exhaust tubes were also filled with sand,
which had to be blasted out using the same explosive cartridges. Stewart’s character
was faced with a choice: either try to start the plane using all the cartridges directly,
or use some of them to clear the exhaust tubes to enhance the overall utility of the
other cartridges. Stewart decided to use some of the cartridges to clear the lines,
thus optimizing the likelihood of success for the remaining cartridges in starting
the engine.

This situation involves a specific type of resource conflict, and the reminding carries with
it information about how to make the decision. In the next example, the reminding is much
more concretely related to the task at hand:
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Missed Exit

Y was driving along an expressway in the left lane, because traffic was moving
faster there. He spotted the exit where he wanted to get off. Unfortunately, by the
time he worked his way into the right-hand lane, he had missed the exit.

The next time Y was driving on the same expressway in the left lane, intending to
get off at the same exit, he again remembered the exit too late to make the exit, but
noticed it had been preceded by a large billboard advertising “Webber’s Inn.”

The third time, Y noticed the billboard, remembered the exit, and got into the right
lane in time to make the exit.

In the Flight of the Phoenix example, the movie situation shares no surface features with
the write-or-sleep decision, but on the structural level the two situations match exactly:
Each protagonist has a goal and a limited resource and must decide between two plans for
using the resource; one plan uses the resource directly in service of the goal, while the
other splits the resource between an optimization step and a direct-use step. These features
suggest the solution of focusing attention on the question of whether sleeping would leave
enough time to complete the project.

In the Missed Exit example, the features used in indexing are much more concretely related
to the task at hand. Rather than predicting a causal relationship, the billboard simply serves
as a correlated feature that is easier to notice. Structurally, the problem is to optimize over
two goals: drive fast (hence drive in the left lane), and get off at the right place; however,
a structure-level “solution” would look like “Move into the right-hand lane only when you
need to,” which does not provide detectable features. By recalling the earlier failures, Y
is able to modify the features used to retrieve the exit goal from memory so as to make
optimal use of observable surface features that are correlated with the presence of the exit.
Through experience, non-causally related features that predict the desired choice point can
also be learned.

These two examples represent opposite ends of the causal spectrum—in one, the features
are predictive because they are causally related; in the other, the features are predictive
because they happen to be correlated with the desired event. Thus, predictiveness is not an
inherent feature of the indices themselves, such as “surface” or “‘structural” properties, but of
the relative role played in characterizing episodes within a domain (Seifert, 1988). In some
situations, surface features alone may be sufficient to predict what past knowledge should
be accessed. For example, in learning several rules of statistics, retrieving past examples
based on surface features like “the smaller set being mapped onto the larger one” may be
sufficient for the learner’s purposes (Ross, 1989). In other situations, structural features
may be the only constants available across a variety of planning situations. Together, these
examples present challenges that any model of learning must be capable of answering.

The point of these examples is that indexing of information will occur based on any
and all predictive features within the task context. Structural feature remindings may be
more likely to carry information needed to solve complex problems, while surface-level
remindings may be more likely to help us react quickly to our environment. In both cases,
the indexing features can be expected to consist of those that reliably predict the utility of
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the retrieved information. This suggests that indexing should be based on any features that
are apparent to the planner at the time when retrieval would be useful.

3. Predictive features in human learning

In human learning, is memory access possible through a subset of structural features that help
to select plans? From a functional perspective, prior cases must be indexed using features
that will be readily apparent to the processor at the time when retrieval is desired. In planning
situations, this point may be defined as when conditions and constraints are known, but a
decision has not yet been made. That way, the retrieved plan can suggest possible solutions
or warn of potential dangers while the situation outcome is yet undetermined. Features
that predict when prior cases might be useful could be better retrieval cues because they
more specifically describe relevant planning constraints in the current processing context. If
human memory is indeed operating under the predictive features hypothesis, features related
to when plans are relevant should lead to better access to past experiences in memory than
other, equally associated features.
For example, consider this story:

A chemist was trying to create a new compound designed to allow preservation of
dairy products stored at room temperature. The chemist was so confident that his
experiments would succeed that he went ahead and ordered several truckloads of
fresh dairy products to be delivered to demonstrate the utility of the new compound.

This story contains features with predictive utility; that is, the features present in the
story allow the retrieval of past experience and predict a possible planning failure before
the complete structural analog (namely, counting your chickens before they're hatched) is
even available.

In order to examine the issue of predictive features in indexing, we conducted several
experiments (as reported in Johnson & Seifert, 1992) comparing the retrieval of prior
cases based on structural cues. The critical question is, are some subsets (cues predictive of
planning failures) better than other (equally similar) cue subsets in retrieving prior cases? A
set of common structural features was determined within narrative stories based on common
cultural adages such as “closing the barn door after the horse is gone” (Seifert, McKoon,
Abelson, & Ratcliff, 1986). These themes are based on knowledge about problems in
planning that can occur, and how to avoid or solve them (Lehnert, 1980; Dyer, 1983), and
so are also likely to be familiar patterns to subjects.

According to the predictive features hypothesis, structural features involving planning
errors should form a privileged subset that leads to more successful case access than would
be attained using other sets of features. Other shared structural features should be less
useful as indices. To test this claim, we used a reminding paradigm based on Gentner and
Landers (1985). Previous studies established that this retrieval task paradigm produces
results similar to problem-solving tasks (Ross, 1989). In the current experiments, retrieval
alone served as the dependent measure, but the stories all involved planning content. In a
single experimental session, subjects were given a set of base stories to read. After a ten
minute distractor task, subjects were given a set of cue stories and asked to write down any
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Table 1. Example feature sets for the Chemist story.

Theme: Counting your chickens before they’re hatched.
Base story elements:

1) X desires A.

2) X assumes A.

3) X does not act to ensure A,

4) X invests resources based on A.
5) A does not occur.

6) X has wasted resources.

Story elements contained in each cue story type:
Complete: 1-6
Predictive: 1-3
Outcome; 4-6

base stories that came to mind. The cues used in the experiments were of three types: a
complete-theme cue, a predict-theme cue, and an outcome-theme cue. Table 1 shows the
abstract features for one of the themes used, and which of those features each cue story
type contained.

The critical decision point precedes the action of going ahead and investing resources
based on anticipated success. It is before taking this action that one can make a choice
of pursuing a different plan. Once made, one has commtitted to “counting the chickens,”
whether or not they hatch as planned. Therefore, the failure itself is not considered a
predictive feature, since its presence already determines the set of outcomes. The predictive
features set contained thematically-matching information up to the point of a planning
decision; the other, conclusion features set included the thematically matching information
from the point of decision through the outcome of the story. Examples of the stories used
in the experiments are given in Table 2.

Each of the cue stories was followed by instructions taken from Gentner and Landers
(1985): “If this story reminds you of a story from the first part of the experiment, please write
out the matching story as completely as you can. Try to include the names of characters, their
motives, and what happened.” The responses were scored based on whether they matched
the intended base story, matched a different study story, matched no study stories, or was left
blank. The rate of remindings was compared to chance estimates, one of which measured
the probability of access given demonstrated availability in free recall for each subject.

The results showed that, while both subsets of cues resulted in reliable retrieval of study
stories, the cue set that included features predictive of a planning decision proved to contain
better cues than the set including the planning decisions themselves and their outcomes. The
main findings were that there were no differences in the number of matches for predictive and
outcome cues. However, only predictive cues were matched at a higher-than-chance level
because the predict-theme cues led to significantly fewer responses involving mismatched
stories than did outcome features. Therefore, the stories containing predictive features led
to more reliable access to matching stories in memory.

In follow-up experiments, we asked subjects to directly compare each type of partial cue
to the base stories used in the experiments to determine whether the cues were differentially
distinguishing the base stories, based on a) an overall similarity judgment not biased towards
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Table 2. Example Study and Cue Stories in the Experiments.

Sample study story:

Judy was overjoyed about the fact that she was pregnant. She looked forward to having a baby boy, and wanted
one so badly she felt absolutely certain it would be male. As a result, she bought all kinds of toy cars, trucks,
miniature army soldiers, and even arranged an extravagant “It’s a boy” party. Finally, the big moment came,
and she was rushed to the hospital. Everything went smoothly in the delivery room, and at last she knew.
Judy’s lively bouncing baby was actually a girl.

Complete-theme test cue:

Harrison disliked his small apartment and shabby furniture. His rich aunt Agatha was near death, and although
he hadn’t seen or spoken to her in 15 years, he felt assured of inheriting a great fortune very shortly because
he was her only living relative. He had already thought of plenty of ways to spend a lot of money fixing his
place up. Confident of his inheritance, Harrison began charging everything from color televisions to cars to
gourmet groceries. When Aunt Agatha finally died and her will was read, she had left all her millions to the
butler and now Harrison was in debt.

Predict-theme test cue:

Harrison disliked his small apartment and shabby furniture. His rich aunt Agatha was near death, and although
he hadn’t seen or spoken to her in 15 years, he felt assured of inheriting a great fortune very shortly because
he was her only living relative. He had already thought of plenty of ways to spend a lot of money fixing his
place up.

Outcome-theme test cue:

Confident of his inheritance, Harrison began charging everything from color televisions to cars to gourmet
groceries. When Aunt Agatha finally died and her will was read, she had left all her millions to the butler and
now Harrison was in debt.

themes and b) thematic similarity (using thematic similarity instructions for the rating task
from Gentner and Landers (1985)). The results showed that subjects rated the sets of
pre-decision (predictive) cues and the sets of decision and post-decision (outcome) cues
as equally similar to the base stories, whether using just thematic or overall similarity as
a standard; thus, the reminding results are not due to any differences in length of cue or
amount of information in the two types of cues.

In a final experiment, we asked subjects to match pre-decision stories and post-decision
stories to the base stories, as in the second experiment, except that the subjects directly
compared the stories rather than using the partial cue stories to retrieve base stories from
memory. The results showed that the pre-decision cues produced more reliable matches than
the decision and post-decision cues. Predictive features thus appear to more distinctively
characterize relevant planning situations, leading to remindings appropriately specific to the
planning decision, and few other remindings. The predictive features better characterize
individual themes as distinct from other themes. While both the predict-theme and the
theme-outcome cues were found to provide reliable access to matching cases, the predictive
features showed an advantage in terms of the selectivity of reminding. This indicates that
the elements in the predict-theme stories distinguished the themes more clearly, and thus
subjects tended either to find the right story or to retrieve nothing. The theme-outcomes,
however, tended to evoke a wider range of intrusion responses, indicating that the features
available in them were also shared by other potentially retrievable episodes. Causal features
involving goal and plan interactions will, when encoded, distinguish among situations where
different plans will be appropriately applied.
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4. Predictive features in case-based models

Inthe following section, we describe current research on a specific model of indexing in case-
based learning, RUNNER, which incorporates this notion of the predictive features needed
for successful indexing. Like other case-based systems (Alterman, 1985; Hammond, 1989;
Kolodner, 1985; Kolodner & Simpson, 1989; Simpson, 1985; Riesbeck & Schank, 1989),
RUNNER makes the following basic claims:

e New solutions are built from old solutions.

o Intelligent learning arises from anticipation of difficulties and optimizations based on
prior experience.

e Prior experiences are selected from memory through matching indices.

e Useful indices in the planning domain involve features of goals, features associated
with past successes, and features predicting problems to avoid.

A distinctive thrust of this case-based approach to learning (as opposed to other types of
Al systems) is the incorporation of “lessons learned” into memory so that past errors can be
retrieved and avoided appropriately. Case-based learners accomplish this through a specific
strategy: anticipate and avoid problems. To do this, case-based learners keep track of the
features in their domains that are predictive of particular problems, so those problems can
be anticipated in future situations where they are likely to arise. As a result, the use of
predictive features in indexing allows a case-based learner to find relevant past experiences
in memory, thereby providing the chance to bootstrap from experience. Thus, learning is
supported by the ability to store and access actual past problems, rather than attempting to
anticipate through all possible ones (as in search models such as SOAR (Newell, 1991)).

In case-based learning, experiences encoded into the memory base reflect the structure of
a domain (e.g., more examples of the goals that tend to arise in conjunction, the interactions
between steps that tend to occur, and successful solutions) and are built up incrementally
through learning. This approach involves the study of the actual content of features used
in the organization of memory. In particular, we are interested in the type of features that
may be predictive within a particular knowledge domain and task. A processor would
benefit from retrieving related past cases at any time that they can provide information that
is helpful in the current situation.

4.1. Predictive features in planning: Appropriateness conditions

Our argument has been that it is not possible to characterize the utility of indices on the
basis of inherent type (e.g. surface vs. structural). Rather, the types of indices that turn
out to be predictive depend strongly on the domain, the task, and the type of processing
normally performed for the task.

The RUNNER project focuses on questions of retrieval in the context of routine plan
execution. In this task, predictive features are those indices that signal that a particular plan
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may be used with success, and should be attempted. The problem of plan use is somewhat
different than the more general problem of planning—in particular, retrieval of standard
plans in routine situations can often be more directly tied to perceptually available features,
and this is advantageous if it can increase the efficiency of a frequently-used plan.

It might seem that the indices appropriate for plan retrieval are simply the preconditions
of the plan, since a plan can be executed when its preconditions are satisfied, and not
otherwise. However, some preconditions are not at all predictive of plan relevance; for
example, “having money” is a precondition for many plans, yet having this precondition
met does not necessarily predict a prime occasion for executing any of these plans. Instead, it
would be useful to learn those features that should be explicitly considered when deciding
whether to embark on a given plan. These appropriateness conditions provide memory
access to the plan itself when circumstances are favorable to plan execution.

The plan then serves both as a memory organization point for annotations about the
current progress and problems of the use of the plan, and as a hook on which to hang past
experiences of its use. Its appropriateness conditions determine whether it is relevant to
selecting current actions to be executed.

4.2. Appropriateness conditions in RUNNER

Learning in many domains can be characterized as the acquisition and refinement of a
library of plans. “Plan” refers to the collection of explicitly represented knowledge that is
specifically relevant to repeated satisfaction of a given set of goals, and which influences
action only when a decision has been made to use it. The plans in the library that are used
will be incrementally debugged and optimized for the sets of conjunctive goals that typically
recur (Hammond, 1989). The RUNNER project centers around plan use in a commonsense
domain. By examining case-based learning within a planning task, we have uncovered a
specific indexing vocabulary related to the control of action in the world.

The representational system for RUNNER’s memory, as well as the bulk of the algorithm for
marker-passing and activation, is based on Charles Martin’s work on the DM AP parser (see
(Martin, 1990). The memory of RUNNER’s agent is encoded in semantic nets representing
its plans, goals, and current beliefs. Each node in RUNNER’s plan net has associated with
it a (disjunctive) set of concept sequences, which are a (conjunctive) listing of states that
should be detected before that plan node can be suggested.

In the plan network, this amounts to a nonlinear hierarchical plan net, where the acti-
vation of plan steps (that are not ordered with respect to each other) can be dependent on
environmental cues that indicate a particularly good time to perform that step.

Nodes in the plan net become activated in the following ways:

o “Top-level” (the basic level instantiating different action sequences) plans become ac-
tivated when the goal they serve is activated, and a concept sequence indicating appro-
priate conditions is completed.

o Specializations of plans are activated by receiving a permission marker from the abstract
plan, in addition to the activation of a concept sequence.
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o Parts (or steps) of plans are also activated by completion of a concept sequence, and by
receiving a permission marker from their parent.

Once activated, many plans have early explicit verification steps which check if other
conditions necessary for success are fulfilled, and abort the plan if not. Passing of per-
mission markers is not recursive, so that the state information indicating an opportunity to
perform a sub-plan must be recognized for execution to proceed further. This means that
individual sub-plans must have associated with them concept sequences that indicate op-
portunities to be performed. (For a more complete explication, see (Hammond, Converse,
& Martin, 1990)).

As an example, RUNNERs plan for making coffee involves a number of steps, many of
which are independent in terms of ordering. Among these is a step for taking a filter from a
box of filters and installing it in the coffeemaker. When the coffee plan becomes active, this
step and others receive permission markers from the plan, which means that they can now
be activated if they “see” one of their concept sequences completed. One of the sequences
for the filter-installing step is simply the conjunction of seeing the filter box and being close
to it. This activates the plan to install the filter. After doing one perceptual check (that there
are indeed filters in the box), the step is performed. This style of sub-plan activation has
the advantage that opportunities to perform steps can be taken without having explicitly
planned the opportunity.

Appropriateness conditions in RUNNER, then, are the union of the concept sequences of
plan nodes and any initial verification steps required. Recognizing situations under which
it is appropriate to invoke a plan is handled by testing the set of preconditions for the
plan. Under assumptions of perfect knowledge and a closed world, there is little divergence
between preconditions and the appropriateness conditions. When these assumptions are
relaxed, however, there are several different ways in which the divergence can become
important in plan execution and reuse:

e A precondition can effectively be “always true”. This means that the plan may depend
upon it for correctness, but an executor will never run into trouble by not worrying
about its truth value. This sort of fact should not be an “appropriateness condition”
since consideration of it cannot help in the decision whether to use the plan.

e A precondition may be almost always true, and it may be difficuit to know or check in
advance. If the consequences of an abortive attempt at performing the plan are not too
severe, then this sort of fact should not be an appropriateness condition since the utility
of knowing its truth is outweighed by the cost of acquiring the knowledge.

e A precondition may be intermittently true, but may be easily “subgoaled on” in execu-
tion, and achieved if false. (This of course depends strongly on representation of plans,
and how flexible the execution is.) To the extent this can be handled in “execution”, the
condition should not be an appropriateness condition since whether or not the condition
holds, the plan is likely to succeed.

e A particular condition may not be a precondition per se, but may be evidence that the
plan will be particularly easy to perform, or will produce results that are preferable to the
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usual default plan for the relevant goals. This should be an appropriateness condition,
even though it is not a precondition.

The power of appropriateness conditions is that they help to select the set of features that
an agent should consider before deciding on a given plan.! This predictive features set is
interestingly different from both the (possibly infinite) set of facts that need to be true for
the plan to work, and also the set of facts explicitly used in the plan’s construction. Even if
an agent is assumed to have immutable plans in memory that will determine its competence,
there is still room for learning the particular appropriateness conditions that govern when to
invoke particular plans. The set of predictive features for indexing in RUNNER, then, is the
set of appropriateness conditions needed to identify when a potential plan may be relevant.

4.3. The predictive utility of appropriateness conditions

Predictive yet only probabilistic conditions are included as appropriateness conditions even
though they are not true preconditions because they are a concern of the agent in deciding
on the viability of a plan. Here, as with the indexing of plans and repairs (Hammond, 1991),
actions need to be indexed by the conditions that favor their applicability. As new conditions
are learned and others are found to be unreliable, this set of predictive features changes.

Part of the process of refining appropriateness conditions can be taken care of by rela-
tively simple “recategorization” of various conditions in the taxonomy sketched above, in
response to both failure and unexpected success. Here are some ways in which this sort of
recategorization can be applied:

e Drop appropriateness conditions that turn out to be always true. At its simplest, this is
merely a matter of keeping statistics on verification steps at the beginning of plans.

e If a plan fails because some sub-plan of it fails, and that sub-plan failed because some
appropriateness condition didn’t hold, then promote that condition to the status of an
appropriateness condition for the superordinate plan. That is, make the use of the larger
plan contingent on finding the condition to be true.

o Ifaplanis frequently found to have false appropriateness conditions in situations where
the plan is needed, and the conditions are under the agent’s control, consider including
the conditions in an enforcement plan that maintains them, so that the conditions can
then be assumed true for that plan.

At present, the RUNNER program reliably handles the first two types of learning listed
above, and both of them are entirely empirical. That is, RUNNER starts to omit particular
sensory verification steps when they turn out to be always true, and, when possible, RUNNER
verifies conditions that have turned out to determine failure of a plan before undertaking
the body of the plan. Continuing research on the problem of recognizing opportunities for
enforcing conditions will focus on prioritizing learning for goals considered most important.

A major part of learning to plan effectively, then, is the development of a library of
conjunctive goal plans, and the simultaneous tuning of the plans, their appropriateness
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conditions, and the environment itself to maximize the effectiveness of the plans. This
approach requires:

1. having a plan library with optimized plans for the different sets of goals that typically
recur;

2. for each plan, using indices consisting of appropriateness conditions, which are easily
detectable and indicate the conditions under which the plan is appropriate;

3. enforcing standard preconditions so that they can be assumed true.

Thus, in RUNNER, predictive features are determined by separating preconditions that
define the plan structure from the conditions that signal appropriate use of the plans. This
separation allows tuning the conditions under which an agent will consider a given plan
independent of its defined structure. This learning process improves the match between an
environment and use and reuse of a library of plans in memory. Vocabularies for indexing
(the appropriateness conditions in RUNNER) are thus designed to index actions in terms of
the circumstances that favor their utility.

This type of utility assessment is distinguished from the type of consideration done in
systems such as PRODIGY (Minton, 1988) in two ways. First, the assessement done in
RUNNER concerns the utility of the features used to control the access of plans rather than
the utility of the plans themselves. This allows RUNNER to actually store and reuse plans
that might not be useful in general but are highly applicable in specific situations. Second,
RUNNER's assessement is incremental and does not depend on the existence of a complete
domain model. As such, it also allows the system to both remove and promote features to
appropriateness status.

5. Indexing plans in human learning

Predictive features were found to show an advantage in terms of the selectivity of reminding,
producing more reliable recall of related information. This predictive features hypothesis
was then implemented in the case-based model RUNNER. These “appropriateness condi-
tions” identified structural planning features that indicate when a relevant plan should be
selected. Because of the variation in surface content in planning problems, the features one
must recognize to access past plans will often be ones that relate to the causal structure of
the planning situation. These appropriateness conditions should include the same features
a planner needs to detect and monitor anyway during the planning process.

Two experiments were conducted to explore the effect of explicitly teaching the appro-
priateness conditions for two plans within a complex lesson (see Vanderstoep & Seifert,
1992). Rather than using specific examples from the RUNNER project, which require a lot
of interaction with the environment during planning, we chose stimuli that had the same
critical properties: a variety of features could be used to index the plans in memory; a
set of structural features are present; and a subset of these features could be identified as
“appropriateness conditions” that predict when a particular plan is appropriate for execu-
tion. Our domain involved elementary probability theory, which has been shown to produce
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Table 3. Examples of the two similar probability problems.

Permutations problem: An art contest has 10 artists who have entered a painting. Two awards will be given:
one to the first-place artist and one to the second-place artist. How many different ways can the artists win the
awards?

Combinations problem: An art contest gives away three awards each year for “Outstanding Young Artist.”
All of the awards are identical—a $100 cash prize. There are 15 artists who are eligible for this award. How
many different ways can the eligible artists win the three awards?

learning of a variety of indexing features to retrieve relevant probability principles (Ross,
1989). These prior studies demonstrated that human learners can and do attend to both
structural features and surface features in order to select a relevant principle. However, the
paradigm also provides a testbed for the role of appropriateness conditions in plan selec-
tion: Will the presence of structural features predicting when a plan may be used facilitate
human learning?

In these experiments, subjects studied either a similar pair of principles (combinations and
permutations) or a dissimilar pair of principles (combinations and conditional probability)
through example problems and formulas. Examples of the similar principles are given in
Table 3.

The primary manipulation was whether or not learners received information regarding
the appropriateness conditions that indicate when to apply each principle. For these plans,
the appropriateness conditions were defined as whether the order of the set is considered
when counting the number of possibilities. Half of the subjects received appropriateness
conditions information that identified what aspects of the problem (whether the order of the
objects in the sets being counted was important) determined when each of the principles
should be used. The other half of the subjects received no instructions on appropriateness
conditions, but were asked to review the study information for an equal time interval. It is
hypothesized that when people are learning principles that are very similar to each other
(i.e., easily confused), knowledge of the appropriateness conditions of the principles will
be very important for learning to apply the principles. Will instructing learners about the
appropriateness conditions of these problem-solving principles improve later performance?

The answers to the test problems were scored for correctness using a system similar to
Ross (1989). The two groups showed no differences in the number of problems completed
accurately. However, subjects instructed about the appropriateness conditions made fewer
confusion errors than subjects in the review-only condition whenever a similar problem pair
was used; however, this instructional manipulation had no effect when a dissimilar problem
pair was used.

Why did the appropriateness conditions group make fewer errors than the review-only
group? Consider that performance on this problem-solving task is a function of 1) recog-
nizing the appropriate principle, and 2) remembering the specific content of the procedure
(e.g., in a mathematical problem-solving task, the particular variables and how they are
arranged in the formula), and 3) using the principle correctly in the new problem. Because
the appropriateness conditions subjects made fewer errors, but they did not solve more prob-
lems correctly, the instructions may have improved just the ability to identify when to apply
a procedure, but may not improve memory for the formula, or the ability to implement it,
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A second experiment examined this notion by testing subjects’ selection of a principle for
a new problem separate from their ability to execute the plan correctly. Subjects learned two
of three principles of probability theory using the same materials as in the first experiment.
However, instead of asking subjects to solve the test problems (as in Experiment 1), in this
experiment they were told simply to select the formula (by name) among four response
choices: the names of the two principles the subjects studied, along with the formulas,
“neither formula” and “don’t know (can’t remember).” Finally, they were asked to provide
an explanation for their answer.

The subjects informed about the appropriateness conditions did in fact perform better at the
more specific task of selecting when to use each formula. No difference was found between
the appropriateness conditions group and the review-only condition for low-similarity prob-
lems. However, subjects informed about appropriateness conditions did better than subjects
in the review-only condition at selecting the correct planning principle to use. The results
also suggest that subjects informed about the appropriateness conditions provided signifi-
cantly better explanations for their answers than subjects in the review-only condition. In
both the high-similarity and low-similarity pairs, no differences were found between the
review-only and the appropriateness conditions groups for memory of any of the formulas.

These studies support the notion that instructions on appropriateness conditions facilitate
the selection of appropriate solution procedures in solving probability problems. With the
appropriateness conditions instructions, subjects received information about the importance
of the order of the objects, how to identify when order is or is not important, and when
each principle should be applied. When learners were provided with this information,
they were more likely to correctly detect situations when each formula should be used.
These experiments show that when plans are similar, providing appropriateness conditions
instructions does improve selection performance while not affecting memory for the formula
or the ability to instantiate the formula correctly in a target problem.

Although it may seem intuitively obvious that teaching appropriateness conditions would
be helpful, instruction is not often designed like this. Consider how these same principles
might be presented in a probability textbook. Permutations might be taught in one section,
followed by combinations taught in the next section. Students could become proficient at
solving each of the two different types of problems; however, without explicit instruction
on what makes a certain problem a permutations problem and what makes another problem
a combinations problem, learners may have inadequate knowledge of when each formula
should be applied.

These results confirm the predictive features hypothesis, and illustrate the need for appro-
priateness conditions when learning in a domain with similar plans. Much of the previous
work on memory retrieval of analogies and cases has focused on the features that deter-
mine similarity; however, these results suggest distinctiveness, as well as similarity, is very
important for recognizing when to apply prior knowledge.

6. Implications for indexing in learning models

Our computational and empirical results have shown that plans are indexed in memory based
on the features that predict their applicability. These results confirm the predictive features
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hypothesis as developed in the RUNNER model, and serve as strong verification of the
case-based learning approach as a psychological model. When indexing cases in memory,
appropriateness conditions—indices related to when to consider a particular plan—are
more useful than equally related information that is not helpful in distinguishing among
plan options. Thus, from a functional perspective, the most useful features would be those
that let one predict and access potential problems and solutions whenever they are relevant
to current processing. This definition of predictive features constrains the set of indices
one might propose for a computational model using past experiences, and also serves as a
hypothesis for the features expected to be evident in human learning.

Past approaches have suggested that the level of abstraction of indexing features, in
terms of the surface versus structural dichotomy, predicts what features will be helpful in
learning by analogy (Gentner & Landers, 1985; Rattermann & Gentner, 1987; Ross, 1987).
However, the evidence from the experiments using structural features presented here, and
from the performance based on structural features in RUNNER, suggests that all structural
features are not the same; instead, the distinctiveness—the ability to select among related
plans—of a subset of structural features, and not the overall similarity or abstractness,
determines valuable indices in memory.

Specifying predictive features in a task domain requires establishing the causality inherent
in the domain for characterizing plan examples, and identifying both surface and structural
features that are predictive of important decisions within the task context. By using a causal
analysis of the goal interactions as indices for storing planning information in memory, it
is possible to access plan strategies applicable to the problem (Hammond & Seifert, 1992).
These strategies provide the planner with alteration techniques and information as to what
parts of the initial causal configuration are appropriate targets of change, leading to specific
plans for the current situation. This type of causal feature vocabulary has been incorporated
into models that design tools for programs (Birnbaum & Collins, 1988), plan in the cooking
domain (Hammond, 1989; Kolodner, 1987), plan radiation treatments (Berger & Hammond,
1991), schedule deliveries (Hammond, Marks, & Converse, 1988), run errands (Hammond,
Converse, & Martin, 1990), and learn geometry (McDougal & Hammond, 1992).

In some domains, knowledge of the causal factors in goal and plan interactions will be
needed in order to characterize when to use particular plans. For example, natural categories
reflect learning the features “animate” and “inanimate” as critical concepts (Smith & Medin,
1981; Mandler, 1991). This is not simply because it is possible to divide the natural world
into living and nonliving things; certainly, many other such criteria are possible (such as,
external versus internal gestation) and are correlated with desirable information. Rather,
recognizing the class of objects that are animate, and therefore capable of self-initiation,
allows one to make plans that take into account possible actions on the part of those objects.
The “animate” feature serves to activate expectations about how these actions may affect
one’s own goals. Thus, itis an important predictive feature in the natural world when making
decisions about how to deal with objects in the environment. Within planning domains,
then, we propose that the commonalities in the features that serve as useful indices are likely
to be based on those features that predict successful pursuit of one’s goals.

Other, equally related surface and structural features may be present in a domain, such
as preconditions necessary for plan execution. However, unless these features are capable
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of distinguishing one goal pursuit situation from another, learning them is in a sense “aca-
demic”: only distinctive features, whether surface or structural, provide predictive indices.
A purely correlational learner such as Anderson’s rational analysis model (Anderson, 1991)
could find some predictive features, if the world is kind enough to isolate them in different
types of causal problems. For example, correlated features may be used to signal prob-
lem types (as “incline plane” problems in physics) (Chi, 1988). While this approach is
often successful, it will be unable to learn the types of non-observable structural features
predictive of goal satisfaction in RUNNER. Unless these causal features are computed and
encoded into memory, a model will be unable to learn the important features needed to
distinguish appropriate plans across problem contexts. Of course, correlational models
could be adapted to incorporate this ability to attend to structural and predictive features;
however, exactly how to accomplish this, and a theory of what those features are likely to
be in the planning domain, is what our predictive features model provides.

7. Conclusion

Our approach to learning predictive features not only describes what people do learn, it
also suggests what people should learn in a functional sense, and therefore what knowledge
learning programs must be capable of acquiring. In this collaborative enterprise, the psy-
chological experiments confirm that human memory access to prior cases can be facilitated
by cues that contain particular predictive structural features. This evidence lends support to
case-based models as potential models of human reasoning and memory; more specifically,
our results have shown that human behavior is consistent with the case-based learning tenant
that cases are indexed by the features that predict their applicability. The empirical studies
in this collaboration confirm the ideas behind our computational models, rather than the
specific behaviors of a particular implementation.
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Notes

1. One alternative approach is to design the agent so that it considers only relevant conditions, either by hand-
crafting the decision procedure, or by a mixture of hand-crafting and clever compilation of declarative speci-
fications (Rosenschein, 1986).
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