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Abstract. A model for surface irrigation is developed that 
allows the determination of the vertical structure of the ve- 
locity profile in the vicinity of the wave front. The pres- 
sure is not assumed to be hydrostatically distributed and 
no assumptions are made regarding the shape of the free- 
surface profile. The turbulent kinetic energy and rate of 
dissipation are computed by a two-equation model and ac- 
curate determination of the bottom shear makes possible 
the analysis of particle suspension. The model is based on 
a two-dimensional finite element model in the vertical 
plane and uses the kinematic condition for determining the 
position of the free surface. It also incorporates a numeri- 
cal technique for describing surface penetration and wave 
breaking by combining a Lagrangian approach that allows 
the computational nodes to move individually and then au- 
tomatically reshapes the element grid. The potential value 
of the model lies in its ability to provide information on 
vertical mixing, settling and suspension of contaminated 
solids commonly found in irrigation applications. 

Successful models of surface irrigation hydraulics have 
been developed by physical approximations based on the 
postulation that small influences in the description of free- 
surface flows can be neglected. Three-dimensional prob- 
lems have been re-formulated by averaging in directions 
transverse to the main propagation direction, leading to 
one-dimensional models of overland flow. Energy dissipa- 
tion is presumed to originate solely from the interface 
between the fluid and the channel bed, surface tension is 
ignored and gravitation is the only body force considered. 
Infiltration is treated as a volumetric abstraction with only 
small dynamic effects on the flow. In particular, the influ- 
ence of bed suction on the shape of the surge front is ig- 
nored although it is understood that infiltration rates achieve 
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their maximum values in the vicinity of the wave front. 
The mathematical implementation of this approach, com- 
monly known as shallow-water theory, has yielded mod- 
els for border and furrow flow that duplicate accurately la- 
boratory and field measurements (Sakkas and Strelkoff 
1974, Katopodes and Strelkoff 1977). In most cases, the 
inertia of the flow is also negligible, allowing further sim- 
plification of the model (Strelkoff and Katopodes 1977). 

A few additional assumptions need to be made for the 
dynamics of the region near the wave front, where the flow 
depth becomes very small and finally goes to zero at the 
tip of the wave. The approximate expressions for bed re- 
sistance and seepage become singular if the depth vanishes, 
resulting in infinite intensities for bed shear and infiltra- 
tion. The wave front is commonly treated as a region of 
uniform flow (Whitham 1954, Tinney and Bassett 1961), 
with its propagation speed determined by global conserva- 
tion of volume and momentum or equilibrium forces in the 
case of noninertial flow. The predictive ability of the shal- 
low-water and zero-inertia models has been confirmed in 
numerous studies and there is little doubt that these mod- 
els describe correctly the physics of the problem. Recently, 
however, increased attention has been focused on the trans- 
port of chemicals by surface irrigation as opposed to the 
optimum distribution of soil moisture, which has been the 
typical goal of modeling over the last twenty years. The 
transport problem consists of two phases, first, the intro- 
duction of fertilizers and pesticides in irrigation water dur- 
ing what is now known as chemigation, and second, the 
uptake of these chemicals from the soil's surface by the ir- 
rigation wave. Both phases represent overland flow prob- 
lems coupled with subsurface flow, but more importantly, 
require knowledge of the vertical structure of the flow in 
the surface domain. For suspension of particulate matter, 
dissolution and turbulent mixing are mechanisms that are 
not present in the shallow-water theory. 

The removal of the fundamental hypothesis of shallow- 
water theory requires that the problem be solved in at least 
two space dimensions, namely the vertical plane. The re- 
suiting problem is difficult to formulate, is computation- 
ally intensive, and requires a new set of assumptions to be 
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made regarding its internal structure and certain singular- 
ities that arise in the new formulation (Huh and Scriven 
1971, Kistler and Scriven 1983). A model that computes 
the location of the free surface, on the other hand, is not 
subject to any of the limitations of vertically integrated 
equations. The numerical computation can be made in- 
creasingly accurate near the tip of the wave front by grad- 
ual grid refinement. Bed resistance and infiltration can be 
represented by processes and parameters that are related 
to the actual roughness characteristics of the bed and 
permeability of the soil, as opposed to the semi-empirical 
parameters commonly used by vertically averaged mod- 
els. 

This paper describes the development of a numerical 
model for the simulation of free-surface flow on an initially 
dry, porous bed. This is accomplished by numerical solu- 
tion of the Navier-Stokes equations by means of the finite- 
element method. For large scale applications, the two-di- 
mensional computation is restricted to the region of the 
wave front since a short distance upstream a fully devel- 
oped vertical structure is encountered. The model simply 
converts automatically to shallow-water or zero-inertia 
theory beyond that section. This results in significant re- 
duction in computational effort without loss of important 
information. 

For turbulent flow, a widely accepted two-equation clo- 
sure model is employed together with certain approxima- 
tions near the bed and free-surface boundaries. The turbu- 
lence model has a limited accuracy, but the requirements 
of the flow problem considered in this work are well within 
the model's applicability range. At high Reynolds num- 
bers, an upwind formulation known as the Petrov-Galer- 
kin method of weighted residuals is introduced for the sup- 
pression of nonlinear instabilities. The main difficulty en- 
countered in the simulation concerns the propagation of 
the wave front and the associated deformation of the com- 
putational grid. Two different techniques are presented for 
the resolution of this difficulty, and their relative advan- 
tages are examined. 

Bed permeability resulting in seepage through the chan- 
nel bed needs to be computed by simultaneous solution of 
the associated unsaturated flow problem in the sub-surface 
domain. Although this is necessary for the complete for- 
mulation of the flow and transport problem of contami- 
nants in irrigation water, in this paper bed seepage is in- 
troduced as a boundary condition. The rate of infiltration 
is considered independent of the surface depth and veloc- 
ity and is computed by means of Kostiakov's empirical 
equation. This results in clarity of the surace model pres- 
entation and significant reduction of computational effort, 
without limiting the generality of the results of the surge 
front model. 

Governing equations 

The equations that describe the motion of a water wave 
propagating on a dry, porous bed in the vertical plane cor- 

respond to the laws of conservation of mass and momen- 
tum applied to the longitudinal x 1 and vertical x 2 direc- 
tions. These are known as the Navier-Stokes equations of 
motion and the continuity equation that can be written as 
follows (Schlichting 1979) 

3Ui=o  i = 1 , 2  (1) 
~X i 

Pt a, 
i=1 ,2 ;  j = l ,  2 

where u i are the velocity components in the x I and x 2 di- 
rections, respectively; p is the water mass density, p is the 
pressure intensity and gi are the components of the gravi- 
tational vector. In Eqs. (1) and (2) the index summation 
notation is implied, i.e., a repeated index within the same 
term implies summation over all possible values of the in- 
dex. Assuming that the density is constant, the variables u i 
and p can be decomposed in terms of a mean and a fluctu- 
ating quantity (Rodi 1988), as follows: 

ui=Ui+lg t p = P + p "  (3) 

with 
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where U i, P are time-averaged quantities, and u~, p '  are 
fluctuating velocity components and pressure, respec- 
tively. The averaging time T is considered large compared 
to the time scale of the turbulent fluctuations, but signifi- 
cantly smaller than the temporal variation of the mean flow. 

Substitution of Eq. (3) in Eqs. (1) and (2) and averag- 
ing over a time period T, leads to the following expressions 
for continuity and momentum of the mean flow 

~Ui = 0 (6) 
~X i 

( bUi . OUi ) (7) 

. a [ (av ,  aus 
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where 
to +T 

1 .;.5 = f . ; . 5  dr. (8) 
t0 

The stress terms (p u~ u~ ), appearing in the momentum 
equation are known as the Reynolds stresses. In general, 
additional equations are necessary for the solution of the 
system of Eqs. (6) and (7). An approximate closure model 
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can be formulated by means of two additional equations 
that describe the fate and transport of the turbulence ki- 
netic energy k and rate of dissipation e defined by 

k-U;U~ e=vOU~ OU~ (9) 
2 Oxj Oxj" 

The turbulence stresses can thus be expressed in a man- 
ner analogous to viscous stresses, as follows 

U' gt. 2 r OU i O U j  
= -- y t - - + - -  i J 7 ~iJ k ~OXj OXi ) (10) 

where (~ij is the kronecker delta and vt is the kinematic eddy 
viscosity defined by 

k 2 
v t = C ~ -  (11) 

where C u is an empirical coefficient. 
The well-known k - e  model (Rodi 1988) is obtained by 

writing transport equations for k and e, as follows 

U Ok vt Ok 
Ot J~xj o -  "~-kk 

2--[ Ox Z Ox Z ~. a T Ox~. ) C le ~ D - C2e -s (13) 

where 

r i OUj'~ OU i (14) 
0 x  , �9 

C l e  , C2e , a k ,  a e are  a l so  empirical c o n s t a n t s .  T h e  c o m -  
m o n l y  recommended values (Rodi 1988) are as follows: 
Cu=0.09, Cle= 1.44, C2e= 1.92, ok= 1.0, and ae= 1.3. 

Although in principle the k - e  model is straightforward, 
difficulties are encountered in practical applications 
(Chapman and Kuo 1985). In particular, in the course of 
the iterative solution, k and eoccasionally are assigned neg- 
ative values, which is unacceptable. There is no clear ex- 
planation of the source of this problem and, in this work, 
both k and e are considered as strictly positive functions 
and are not allowed to become negative. Positivity is also 
enforced on the source term D -  ein Eq. (l  2). This prevents 
unrealistic values of the dependent variables and improves 
the convergence of the iterations. In addition, the empiri- 
cal modification of Gibson and Rodi (1989) adding a prox- 
imity weight to the free surface as well as the bottom is 
used. This was found to have beneficial effects on conver- 
gence, especially at the very shallow depths near the wave 
front. 

Boundary conditions 

A set of initial and boundary conditions that is compatible 
with the general equations is required for a unique solu- 
tion of the system of Eqs. (6) and (7) and (12) and (13) to 
exist. Any flow field that satisfies continuity can be used 

as the initial condition, so for convenience an arbitrary 
wave is fabricated at the upstream end of the border, based 
on conservation of volume alone. It is shown that the ef- 
fects of this arbitrary initial condition disappear after a few 
time steps, so no further consideration is given to the struc- 
ture of the initial condition. Boundary conditions are 
needed at the channel bottom, inflow and outflow sections 
and at the free surface. 

Ordinarily, for viscous flow near solid boundaries the 
no-slip condition is imposed, but this requires very accu- 
rate description of the laminar sub-layer and the region of 
logarithmic growth of the velocity profile near the bound- 
ary. Instead, a slip velocity boundary condition can be used 
by specifying a semi-empirical expression for the velocity 
distribution near the porous channel bed (Schlichting 1979, 
p. 647) 

U1 l lnX2+c+ if ( l l n X @ + c l  2 - ( 1 5 )  
u. tr x~ 4u. X 2 ] 

where U1 =fluid velocity parallel to the channel bed, u .=  
shear velocity at the bottom, ~r Karman's universal 
constant, if= the infiltration rate, x2 = vertical distance from 
the bottom, x~ = distance from the bottom at which the log- 
arithmic velocity distribution sets the velocity equal to 
zero, which for rough boundaries is equal to 0.033 k s , 
where k s =the equivalent roughness height, and c=adjust- 
able constant whose value is related to bottom slope and 
roughness. 

The vertical velocity component is simply identified 
with the infiltration rate, i.e., 

U2=i f . (16) 

Furthermore, the following wall boundary conditions 
for k and e are obtained by assuming that the flow is under 
local equilibrium near the bottom region (Alfrink and van 
Rijn 1983) 

k - )0.5 (17) 

I.,I 
e -  k S (18) 

where 6 is the thickness of the inertial sublayer, set ar- 
bitrarily equal to one half of the vertical dimension of the 
computational element nearest to the bottom. Numerical 
tests indicate that the value of ~has only a small influence 
on the velocity distribution in the vertical. For a given ele- 
ment size, best results are obtained by the aforementioned 
choice, attributed to the presence of the mid-side nodes 
used for quadratic interpolation. The overall solution im- 
proves as more elements are used to resolve the vertical 
profile although this also increases the computational ef- 
fort required. The present model for surface irrigation re- 
quires also specification of the dependent variables at the 
upstream end of the field. Initially, a hypothetical inflow 
section is created to facilitate the application of boundary 
conditions. It is assumed that a segment of fully developed 
uniform flow exists, in which the position of the free sur- 
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face is known and no infiltration takes place. The flow is 
then allowed to develop spatially in this region before it 
enters the real channel. At the inflow section, the mean 
flow components are given by (Alfrink and van Rijn 1983) 

Ul = u .  In x-z2 (19) 
K .  X~ 

U2=O (20) 

k6 k H )  

where H=the  total depth of flow at the inflow section. The 
upstream boundary condition also serves as the link with 
the fully developed flow away from the front at later stages 
of the computation. As mentioned earlier, that part of the, 
flow is computed by a standard shallow-water model that 
accepts a downstream depth specification supplied by the 
Navier-Stokes model. H is now the depth at the section 
where the two models are joined and the inflow rate for the 
front region is computed by the shallow-water model at its 
last computational node. In this fashion, the extent of the 
two-dimensional model remains approximately constant, 
as fully developed flow sections at its upstream end are re- 
moved and new ones are added at the front, as the wave 
propagates down the field. 

Once the stream has reached the end of the field, down- 
stream boundary conditions are specified either as a solid 
boundary or as free outflow, corresponding to ponding or 
runoff, respectively. The latter is easily accomplished by 
assuming uniform efflux conditions and setting all spatial 
derivatives to zero. This is particularly easy in the finite 
element implementation, since traction terms appear in the 
boundary integrals resulting from application of Green's 
theorem. Thus, elimination of these integrals automatically 
implies a traction-free outflow. 

When a free surface is present, two more conditions 
need to be applied on the associated portion of the bound- 
ary. First, assuming that the atmosphere exerts no shear 
and has no inertia, equality of forces on the two sides of 
the interface leads to 

1 
nj Tij - rr ~ ni = 0 (23) 

where R represents the radius of curvature of the free sur- 
face, 6 is the surface tension, nj is the unit normal to the 
surface and the stress tensor Tij is obtained by 

r ~Uj ~ (24) p "''u; 

In addition, since a fluid particle on the surface will re- 
main there, and provided that there is no mass transfer 
through the air-water interface, the following kinematic 
condition is obtained 

3h • r ~h 
57T  = v21 x2 :h (25) 

where h (Xl, t) is the free surface elevation from the chan- 
nel bottom. This condition is limited to free surface con- 
figurations in which fluid particle penetration from within 
the fluid is not possible. In addition, breaking of the free 
surface by steepening is not allowed. For these cases dif- 
ferent formulations are needed, as shown in a later section. 
In the present model, Eq. (25) is used as an additional equa- 
tion and is solved simultaneously with Eqs. (6) and (7) and 
(12) and (13), while the dynamic surface condition, Eq. 
(23), is enforced as a boundary condition. The additional 
unknown, h, is then used to locate the height of the free 
surface above the bottom, so by an iterative process the 
correct location of the boundary at which the normal force 
vanishes is determined. 

Numerical solution 

The numerical solution of the governing equations is ob- 
tained in two separate steps corresponding to the mean and 
turbulent flow quantities. The turbulent transport equations 
are relatively simple to solve once the mean flow field is 
available. The kinetic energy and dissipation rate of turbu- 
lence may be treated similarly to matter in solution being 
advected, diffused, generated and destroyed. The mean 
flow is affected by the local values of k and e, but the 
coupling process may be implemented sequentially rather 
than simultaneously (Schamber 1979). During each time 
step, the equations of continuity, momentum and the kin- 
ematic condition at the free surface are solved simultane- 
ously. This yields a tentative flow field and position of the 
free surface. Next, the turbulent transport equations are 
solved to obtain the distribution of k and e. The mean flow 
calculations are then repeated until the iteration converges. 
The main difficulty lies in the mean flow calculation due 
to the unknown location of the free surface and its strong 
nonlinear coupling with the mean flow. The use of two sep- 
arate iterative process with results transferring from the 
one to the other appears initially to be less efficient than a 
single typical gradient method like Newton-Raphson. In 
reality, however, the difference in the scale of the variables 
involved makes the separation of the processes preferable. 
Further improvement is obtained by solving for the square 
roots of k and e instead of their actual values (Finnie and 
Jeppson 1991). 

The equations of momentum and continuity, together 
with the turbulence transport model, i.e., Eqs. (12) and 
(13), and the kinematic free-surface condition, Eq. (25) are 
discretized on a deforming finite element grid. A nine-node 
element is used for the approximation of the velocity com- 
ponents and turbulence kinetic energy and dissipation rate. 
This is coupled with a four node element for the pressure 
computation. Mixed interpolation is needed to suppress 
spurious modes of the numerical solution (Hood and Tay- 
lor 1974). A three node, one dimensional element is used 
to interpolate the free-surface elevation h appearing in the 
kinematic free surface condition. Thus, over a single ele- 
ment the variables Ui, P, h, k and e are approximated as 



105 

follows 

U i = 0 i = Nj Uij Ij = 1,9 

e~k=Mj ej Ij=l,4 

h ---/~= NjfShj Ij =1,3 

Fe, k=I  N(Ok_ F. Ok ~ "] ONi Iv t  Ok ~ d~" 2 
(26) ~ i~.~)- uj=---/)+e/+=-- j oxj )] 

:o (28) - Ni OXj On )ds" (34) 

k•;=gjkjli=l, 9 (29) 

E=emNj Ej Ij =1, 9 (30) 

where Nj are biquadratic basis functions, Mj are bilinear 
basis functions and N fs are one-dimensional, quadratic ba- 
sis functions. Uq, Pj, hi, kj and ej are the discrete nodal val- 
ues in the approximate representation and U,.,/3,/~,/~ and 

are the element-based, approximate values of the contin- 
uous variables U/, P, h, k and e. 

Substitution of these approximate values in Eqs. (6) and 
(7), (12) and (13) and (25) results in residual quantities, 
which at the element level are defined by R e'M, R e'C, R e'fs, 
R e'k and R e'e. These represent the residuals of the momen- 
tum, continuity, free-surface, turbulent kinetic energy and 
dissipation rate equations at the element-level, respec- 
tively. 

Since the interpolated variables are an approximation 
to the true solution, the residuals R e are generally differ- 
ent than zero. Galerkin's method forces these errors to be- 
come minimum in some average sense overthe element by 
adopting weighting functions over the element that are 
identical to the basis functions used for interpolation. For 
high values of the Reynolds number, a modified weight- 
ing function is needed because of the dominant advective 
terms in the transport equations for mean flow momentum 
and turbulent quantities. The method of Hughes and 
Brooks (1982) is used without modification in this work. 
The weighting functions appearing in the following equa- 
tions are assumed to be generalized forms of the interpo- 
lation functions, so the residual equations are written for 
simplicity in the standard Galerkin form. It is implied that 
the basis functions include a perturbation form that induces 
upwinding when the advective component of the flow be- 
comes dominant. This is quite simple in incompressible 
flow, as is the present case, and no modification of the ele- 
ment stiffness matrix is required. Then the weak form of 
the governing equations reads (Leone and Gresho 1979) 

Fe'M= I Nip + U J ~ x j - g i  +~xj llj dO 
g2 

- I N i T i J ~ n  as (31) 
Ol2 

Fe , c=- IMi  O~Ji d.Q 
Oxi s (32) 

F e'fs= fNei Oh U21x:h)ds (33) 

Fe'e = I Ni[  Ot : ~jxj - Cle (35) 
I2 

:o l, / + ~ j  ~ee~xj)J -- Ni as ere Oxj On 

The quantities F e'M, F e'c, F e'fs, F e'k and F e'e are approxi- 
mation errors to be minimized, 0s indicates the boundary 
interfaces of the element s n is the unit outward vector 
normal to the boundary 0s and ds is an infinitesimal seg- 
ment on the boundary curve. On the bottom and inflow 
boundaries, Dirichlet boundary conditions are specified, 
therefore the boundary integrals are dropped. On the free 
surface, Neumann conditions are imposed, but all asso- 
ciated normal fluxes are identically zero, so the boundary 
integrals in Eqs. (31), (34) and (35) vanish in this case as 
well. This implies that the dynamic boundary condition, 
Eq. (23), is automatically enforced and that the normal de- 
rivatives of k and e are zero at the free surface. 

The free surface changes its position over the course of 
time as a result of the propagation of the wave front on the 
initially dry border and dynamic adjustment of the depth 
of flow. As a consequence, the nodes in the computational 
domain need to move for the computational grid to main- 
tain its integrity and computational effectiveness. The only 
nodes that move directly as a result of dynamic changes in 
the flow equations are those on the free surface. The rest 
of the nodes are then relocated suitably with the objective 
to minimize element distortion. Therefore, the nodal ve- 
locities are not physically related to the fluid velocity, and 
need to be independently computed by a simple difference 
scheme based on the distance traveled over a time step. In 
addition, a modification must be made to the time deriva- 
tives to account for node translation (Lynch and Gray 1980; 
Ramaswamy and Kawahara 1987). Since the nodes are 
moving, the basis functions N i, which were polynomials 
of the independent space variables x only, now become 
implicit functions of time, as the following relation indi- 
cates 

Ni-Ni(x, X (t))=Ni(x, t) (36) 

where X (t) are the global moving coordinates of the nodes 
which depend explicitly on time. 

The approximate vector of time dependent variables U g, 
Pi, h/, k i and e / can be expressed 

u = ( U  i, Pi, h i, k i, Ei) T . (37) 

Since the basis functions are now time-dependent as well, 
the local acceleration terms read 
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�9 3 N  i 
~11 _ d u  i N i + t l '  . ( 3 8 )  
~t dt ~t 

The first term on the right hand side of.Eq. (38) is the 
time derivative of the nodal value of u, with the partial de- 
rivative of u i with respect to time replaced by an ordinary 
derivative, since u is a function of time only. The second 
term is due to the deforming boundary and the implied de- 
pendence of N on time. 

Equation (38) indicates that the partial derivatives of 
the basis functions with respect to time must be evaluated 
throughout the domain. This can be avoided if the time de- 
rivatives are expressed in terms of the fixed isoparametric 
coordinates (Lynch and Gray 1980). In this case, the local 
elemental coordinates do not deform with time and the ba- 
sis functions at any point (~o, r/o) will not be a function of 
time either. Equation (38) can then be written as follows 

~t l  _ d l l i  N i ( ~, d ~  U i 
~t dt r l ) - d t  V N i  (~' rl) (39) 

where dYc/dt are the nodal velocities described earlier. The 
last term on the right hand side of Eq. (39) could be viewed 
as a correction term to account for nodal movement due to 
the deformation of the free boundary in an unsteady flow 
situation. 

A special case arises for the time derivative of the free 
surface elevation h. In fixed isoparametric terms, the quan- 
tity h can be interpreted as the isoparametric coordinate 77, 
which is constant along the free boundary. Thus, the rate 
of change of h in the isoparametric space is zero, since 77 
does not depend on time. It follows, that the local deriva- 
tive of h with respect to time becomes 

~h _ d~.  Vr/ (40) 
~t dt 

in isoparametric coordinates and Vr/is normal to the free 
boundary. 

The time derivatives of u are approximated by a differ- 
ence scheme, as follows 

un 0 u" + ( 1 - 0 )  tl n-1 0 u.-I  (41) =AZ 

where superscript n denotes that the variable is evaluated 
n rt n l at time t , A t = t  - t  , fa represents the derivatives with 

n 1 n t respect to time and u - ,  u - are known from the solution 
of the previous time step. It is obvious now that when 
0= 1, Eq. (41) reduces to a backward difference approxi- 
mation and that when 0=2, the scheme is identical to the 
trapezoidal rule, which is exclusively used in the present 
model, thus maintaining second-order accuracy with re- 
spect to the time increment of integration. 

Each value of the indices appearing in Eqs. (31) to (35) 
represents the contribution of the non-linear equations to 
the element stiffness matrix. The local matrices are assem- 
bled to yield the global system of equations for the nodal 
unknowns, which can be represented as 

N E  N B  

F = Y~ F~emain -- ~ Fl~eundary (42) 
k = l  k = l  

in which NE is the total number of elements in the com- 
putational domain and NB is the total number of elements 
having a boundary segment on 3/2. 

The resulting system of algebraic equations is nonlin- 
ear, and an iterative procedure needs to be employed for 
its solution. Convergence of the iteration is not guaranteed 
unless the procedure is initiated within the radius of con- 
vergence, which is not in general known apriori. For steady 
flow problems, this is a very difficult problem (Schamber 
1979), but in the present model, the process is much sim- 
pler. Due to the small time increments used in the compu- 
tation, a good initial guess for the iterative solution is avail- 
able from the last computational step. Newton's method 
converges in 3 - 5  iterations with the iteration tolerance set 
equal to 10 -4 for the primitive variables. Defining the vec- 
tor of the unknown expansion coefficients at the nodal 
points as 

R=(U  T, v T, pT, h T, k T, ET) (43) 

the Newton iteration process finds the updated coefficient 
R n+l from the last computed set R" by solving the linear 
system of the equations 

J N "  (R n+ 1 _ R" ) = - F  (R") (44) 

where J N  n = (OF~OR) ~ are the elements of the Jacobian ma- 
trix. These have been presented in detail by Schamber 
(1979), Kistler and Scriven (1983) and Tsaras (1986). 

Simulation of the surge front 

The main difficulty in the mathematical modeling of the 
irrigation wave in the vertical plane is associated with the 
computation of the free surface. Initially the channel bed 
is dry and the wave is introduced at the upstream end of 
the field. A surge is immediately formed due to the inter- 
play of intertial, frictional and gravitational forces. The 
basic mechanism for the propagation of the wave depends 
on the underlying assumptions for the dynamics of the 
flow. For shallow-water flow, a satisfactory model is ob- 
tained if the velocity near the front is assumed uniform 
(Whitham 1954). For vertically structured flow, the mech- 
anism for propagation is more complicated. The model pro- 

Fig. 1 Schematic of wave front movement 



Fig. 2 a, b Finite element 
scheme for border flow with 
continuous free surface, a Fi- 
nite element mesh. b Velocity 
vector field 
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Fig. 3a, b Computation of wave front movement, a Migration of 
frontal nodes, b Reshaped finite elements 

posed in this paper suggests a rolling movement of water 
particles near the front resulting from the velocity profile 
in the vertical direction. Near the bed, fluid particles are 
retarded because of bed resistance. Streamlines are also de- 
flected because of infiltration, especially near the wave 
front. Away from the bed, fluid particles move faster and 
then roll over the slow moving particles until they them- 
selves become part of the bed zone where they are in turn 
resisted by bed friction. Figure 1 shows a schematic of this 
motion with the wave front undergoing a finite shape de- 
formation. In reality this movement is continuous, so the 
front maintains an almost constant shape once the driving 
forces achieve equilibrium. The kinematic free-surface 
condition has been successfully used in problems asso- 
ciated with oscillatory free-surface flow in an open chan- 
nel and in the configuration of surface shapes associated 

with laminar flows (Khesghi and Scriven 1981). For low 
values of the Reynolds number, the method proposed for 
steady flow by Tsaras (1986) has been successfully ex- 
tended to unsteady flow. A uniform flow section is placed 
at the upstream end of the flow domain to facilitate the de- 
velopment of the deforming grid. The depth at the entrance 
is arbitrary, but taken equal to normal depth for conven- 
ience. A fully developed velocity profile is imposed at the 
first section. The grid is refined near the end of the fully 
developed flow and the top row of nodes is fixed, that is, 
a rigid-lid boundary condition is imposed on that segment 
of the flow. In the front segment, the free surface is given 
an arbitrary configuration and then adjusted in the course 
of the numerical solution. More nodes are concentrated 
near the wave tip, and nodal movement is restricted so that 
sections perpendicular to the bed are maintained. Fig- 
ure 2a shows the finite element computational mesh asso- 
ciated with this technique. Figure 2b shows the corre- 
sponding velocity field. Unfortunately, its use in turbulent 
flows has proved to be insufficient. The reasons are more 
of numerical than theoretical origin. Large deformations 
of the free surface near the wave front result in distorted 
shapes of the finite elements and eventually abortion of the 
computation. To avoid these problems, Tang (1991) used 
the Marker-and-Cell method proposed by Harlow and 
Welch (1965) and showed that in the numerical computa- 
tion fluid particles penetrate the free surface from within 
the fluid domain, thus rendering the kinematic free surface 
condition invalid. There seems to be a continuous break- 
ing of the wave front in turbulent flow, which, although 
maintaining approximately a fixed shape, cannot be 
tracked by postulating that fluid particles maintain their 
position on the free surface. Tang (1991) modified the 
Marker-and-Cell method to use irregular cells near the 
channel bed by use of finite element interpolation func- 
tions, which formed the basis for the method used in this 
paper. To avoid the difficulty with the boundary conditions 
of finite-difference methods and to reduce the number of 
markers required to locate the free surface, the present fi- 
nite element model treats the nodal points near the front as 
markers, in a manner similar to the finite-difference tech- 



108 

Fig. 4 Computed velocity pro- 
files of rolling wave front 
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nique used by Miyata (1986) to account for wave break- 
ing in coastal zones. Figure 3 shows the basic approach 
used in the computation. At the end of each time step, the 
nodal points near the wave front are moved with the fluid 
velocity computed by the finite element solution. As shown 
in Fig. 3 a, a Lagrangian envelope is thus traced around the 
new position of the nodes, and this is adopted as the new 
position of the wave front. The computational grid is re- 
constructed based on the boundary points and therefore the 
shape of the elements remains regular at all times, as shown 
in Fig. 3 b. Figure 4 shows the computed velocity fields re- 
suiting from the model, in which the rolling action of the 
wave front is obvious. 

Discussion of computational results 

The k -  emodel in the form employed in this paper has been 
verified for steady, uniform channel flow by Schamber 
(1979), and Tang (1991). Comparisons with experimental 
measurements (Alfrink and van Rijn 1983) indicate good 
agreement of computed and observed turbulent quantities. 
The applications of the present model concern surface ir- 
rigation waves, which differ only in the determination of 
the wave front position, as discussed above. For demon- 
stration purposes, a well-known border irrigation experi- 
ment was analyzed with the following input data specifi- 
cations (Katopodes and Strelk0ff 1977). The inflow rate is 
3.28 1/s/m, the bottom slope is 0.00101, the Manning co- 
efficient of roughness is 0.014 and Kostiakov's infiltration 

constants are 1.85 cm/min and 0.24, respectively. The oniy 
modification of input data for the Navier-Stokes model is 
the use of an equivalent roughness height, ks, of 2.58 mm 
and an upper limit on the maximum infiltration rate, which 
is arbitrarily set equal to 50% of the maximum inflow ve- 
locity. Both the success of the iteration scheme and the rate 
of convergence were found to be strongly influenced by 
the very high values of infiltration near the wave front. Al- 
though the problem needs further investigation, the upper 
limit adopted in this paper was chosen to facilitate conver- 
gence. For the element sizes present in the computations, 
larger values of infiltration are encountered only at the tip 
node of the wave front. Thus the upper limit imposed re- 
suits in an error of volume conservation, but not necessar- 
ily in the shape of the profile. 

At the channel entrance, a fully developed velocity pro- 
file is specified, according to Eq (19). The shear velocity 
u. is set equal to an average value of 0.0473 m/s, computed 
from numerical tests in uniform channel flow. The water 
depth at the arbitrary inflow section is equal to 2 cm and 
von-Karman's constant Ir is equal to 0.4. The boundary 
conditions for the turbulent quantities are based on the as- 
sumption that the normal derivatives of tr and e vanish 
across the flow boundaries. In addition, the surface prox- 
imity function proposed by Gibson and Rodi (1989) is used 
to modify the vertical turbulent fluctuations near the free 
surface. 

At the channel bed, the boundary conditions for k and 
e are specified based on Eqs. (17) and (18). At the free sur- 
face, normal derivatives of all turbulent variables are re- 
quired to vanish, so the transport equations may conserve 
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Fig. 6 Computed free-surface 
profiles 
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the kinetic energy and its rate of dissipation. The shear ve- 
locity at the bottom is initially given the same value as in 
the inflow section. Once, however, a tentative velocity pro- 
file is computed, the shear velocity is re-computed based 
on the actual near-bed velocity gradient. The process is re- 
peated until convergence is obtained, which is achieved in 
five to six iterations during the first time step. Using pre- 
viously computed values as a first guess results in signif- 
icantly faster convergence during subsequent time steps. 

The computations start by constructing a suitable but 
arbitrary initial condition for the problem. An initial wave 
form is developed by assuming that the front has propa- 
gated an arbitrary distance on a bed with a time-indepen- 
dent infiltration rate. The initial computational grid is as- 
sumed to correspond to an arrested wave front and is given 
a rectangular shape. Solution of the governing equations 
in steady form yields a tentative stationary position for the 
free surface, which satisfies continuity and all boundary 
conditions. The infiltration rate is corrected in the follow- 
ing time steps, thus reducing the infiltrating volume. The 
excess surface water then produces a transient front with 
a finite propagation velocity. 

The rate of wave front advance was found to depend 
strongly on the infiltration capacity and equivalent rough- 
ness height. Numerous tests (Tang 1991) have shown that 
if the wave is allowed to reach a uniform outflow section, 
normal depth is eventually achieved. This uniquely deter- 
mines the field characteristics based on standard resistance 
and infiltration formulas. The rate of advance, however, 
also depends on the numerical mechanism used to produce 
the rolling motion of the front by constructing the La-  

grangian envelope of moving nodal points. Comparison 
with shallow-water models indicate that the present 
scheme underestimates the rate of advance by 15-  20%. 
Figure 5 shows a comparison of the computed advance tra- 
jectory with that of the well-known Zero-Inertia model 
(Strelkoff and Katopodes 1977). The results are made di- 
mensionless by a characteristic depth equal to 2 cm, a 
length equal to 19.8 m and a time equal to 120.7 s, based 
on normal depth considerations. The profiles shown in 
Fig. 6 are for dimensionless time t= 12. The Navier-Stokes 
profile is pinned at h = 1 at the upstream end, since the fully 
developed flow is assumed to be uniform. The Zero-Iner- 
tia model on the other hand, computes the upstream depth 
dynamically and has not yet reached normal conditions. 
The Navier-Stokes profile increases in depth a short dis- 
tance downstream, but then falls short compared to Zero- 
Inertia. The kinematic free-surface condition is a hyper- 
bolic type equation and requires an upstream boundary 
condition, so there is little choice at the inflow boundary. 
The Navier-Stokes profile occupies also a somewhat 
smaller volume, but that is easily attributed to higher in- 
filtration rates achieved near the wave front, since the tip 
node has a vertical velocity boundary condition, in con- 
trast to Zero Inertia, which used a rigid body front, whose 
shape is not affected by infiltration. 

Since the Zero-Inertia model agrees well with experi- 
mental measurements, the discrepancy in the two models 
is attributed to inaccuracies in the present model's propa- 
gation scheme. This can be improved by fine-tuning the 
rolling scheme of the front. In the present routine, for ex- 
ample, the front surface is forced to touch the channel bed 
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Fig. 7 a, b Effects of increased a 
wave speed on free-surface 
shape, a Standard front rolling 
action, b Accelerated front roll- 
ing action 
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once the distance between the bed and the nearest node be- 
comes smaller than a certain value. By increasing the nu- 
merical value of this arbitrary constant, the rolling motion 
is expedited resulting in a faster rate of advance. Unfortu- 
nately, this also alters the shape of the entire wave, as 
shown in Figs. 7 a and 7 b. The effect of the enhanced roll- 
ing action on the velocity field is to elongate the entire 
wave shape. Mass conservation obviously forces the faster 
waves to assume shallower depths that may not correspond 
to the true wave shape. This indicates the need for a more 
robust and perhaps physically correct approach for han- 
dling the advance process, although it may be difficult to 
exactly duplicate results of shallow-water models due to 
the significant differences in boundary conditions and pa- 
rameters. Over small distances, the discrepancy between 
the two models is not great, so the procedure adopted in 
this paper is to terminate the two-dimensional computa- 
tions a short distance away from the front. If  the inflow 
rate at a section near the front is supplied by a shallow-wa- 
ter model at all times, the Navier-Stokes model can be used 
to compute the vertical structure of the front only. The tech- 
nique gives excellent advance results for lengths corre- 
sponding to real borders and at the same time results in sig- 
nificant reduction in computational effort. 

In summary, the present model presents a first attempt 
to model surface irrigation with a model based on the tur- 
bulent Navier-Stokes equations. In doing so, it provides in- 
formation, previously unavailable from shallow-water 
models, that can be used for tracing the path of chemicals 
placed in irrigation water or introduced in the surface flow 
by suspension of contaminated soil particles. Several novel 
features have been introduced by combining the experi- 
ence obtained from a steady flow finite element model and 
that from a transient marker-and-cell finite-difference 
method. The scheme introduced for the wave front advance 
on a dry bed is satisfactory, but requires further develop- 
ment. The present model is not suggested as a model to an- 
alyze or design border irrigation flow. In fact, it cannot com- 
pete with any of the state-of-the-art models available. In- 
stead, it addresses a problem of greater dimension and im- 
portance, that of non-point source contamination from i t -  

rigation runoff. Since resistance, infiltration, turbulence 
and suspension of particles are intensified in the front re- 
gion, the model is most effective when used in combina- 
tion with a shallow-water model for the fully developed 
flow away from the front. There a suitable vertical veloc- 
ity distribution may be used for vertical mixing purposes, 
since the pressure does not deviate from hydrostatic. 
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