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Abstract. A linear model for the genotypic covariance between relatives under 
assortative mating comprising the "classical linear model" and the model of 
"selective assortative mating" is proposed. The general conditions on the 
genetical and developmental mechanisms of quantitative characters, as well as 
on selection and the mating system, on which the model is based, are explicitly 
stated and discussed. A classification of different relationships is presented and 
it is shown that these conditions are sufficient to obtain the genotypic 
covariance between relatives only if the relationship is a combination of 
descendant-ancestor, full sib, Type 1 and Nth uncle-niece relationships. All the 
"traditional" relationships, i.e., those for which the covariances of the relatives 
have been obtained in the literature, fall into this category. These conditions 
also ensure that the regression of the individual's genotypic value on the 
genotypic value or phenotype of any of its ancestors is always linear. 
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The problem of covariances between relatives is one of the oldest problems in 
population genetics. Particularly interesting was and still remains the question of 
how these covariances caused by hereditary mechanisms of quantitative characters 
are affected by assortative mating based on a quantitative character. Starting from 
the work by R. A. Fisher (Fisher, 1918; see also Moran and Smith, 1966), this 
question has been investigated by many authors within the framework of what now 
is referred to as the "classical linear model". Some of the authors employed 
correlation analysis (Wright, 1921a and b; Crow and Felsenstein, 1968; Feldman 
and Cavalli-Sforza, 1977, 1979; Goldberger, 1978; Nagylaki, 1978), others made 
use of the path analysis (Morton, 1974; Rao and Morton, 1978; Rice et al., 1978; 
Cloninger et al., 1979). 
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The classical linear model is based on a number of assumptions, sometimes 
explicitly stated (Nagylaki, 1978; Cloninger et al., 1979), more often implied and, 
according to a remark by Karlin (1979c), "the discussion of their relevance and 
limitations is hardly ever done". One of the most controversial assumption of the 
classical model is that the correlation between mating individuals (marital 
correlation) remains the same in any generation of assortative mating. 

A different model of "selective assortative mating" appeared in works by 
Wilson (1973) and Wagener (1976), and has been rigorously investigated by Karlin 
(1979a, b, c). Changes of the population structure in this model are governed by the 
"selection mating function" which actually is a complete analog of fertility selection 
operating on parental pairs in a randomly mating population. The marital 
correlation arises as a result of such selection and, therefore, does not remain 
constant but changes along with the changes in population structure. In spite of this 
attractive feature, the model has an important disadvantage. It is applicable to only 
those populations where the assortment is weak. Indeed, any assortment of 
individuals into mating pairs is accompanied in this model by selection. The 
stronger assortment, the stronger must be the selection and the higher is the "cost" 
the population has to bear. It can be shown that the average fitness, Wk of a 
population undergoing selective assortative mating in any generation k satisfies the 
following inequality: 

where p~ is the marital correlation in generation k. According to reports on the 
marital correlation of I.Q. in human populations (Vanderberg, 1972), its value is 
close to 0.5. The corresponding average fitness following from the selective 
assortative mating model must be less than 0.58, i.e., the "cost" of such assortment 
must be at least as high as 42~. Even for the assortment of spouses by their hights, 
in which case the marital correlation is only 0.3 (Vanderberg, 1972), the 
corresponding "cost" must be at least 27%. It is highly improbable that a human 
population bears such cost for assortative mating. 

It is most likely that the reality is better reflected not by any one of the models 
but by a combination of them. An attempt is made in this paper to introduce a 
general linear model encompassing both the "classical linear" and the "selective 
assortative" models. The main reason for the introduction of the model, as well as 
the purpose of this paper, was not as much in deriving expressions for covariances 
between relatives or in providing a method for their derivation, since almost all of 
these expressions have already been obtained in the literature by different and 
sometimes more elegant methods, but rather in finding and analyzing the 
conditions for applicability of these expressions and methods. For this reason, in 
order to make the analysis simpler, only genotypic covariances are considered. An 
inclusion into consideration of phenotypic covariances does not affect results of the 
analysis, and phenotypic covariances between relatives can be easily computed if 
the genotypic covariances are known. 

The model is based on a set of general conditions imposed on hereditary and 
developmental mechanisms of quantitative characters as well as on selection and 
the mating system which are explicitly stated and discussed. A classification of 
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different relationships into three types is made and it is shown that for all 
"traditional" relationships, i.e., for those that are mainly discussed in the literature, 
this set of conditions makes it possible to express the covariances between relatives 
in terms of variances and marital correlations. 

It is assumed that in every generation the population goes through two distinct 
phases. The first phase represents the juvenile individuals, and the second phase is 
the subpopulation of the reproducing individuals assorted into mating pairs. The 
transition from the juvenile phase to the reproducing is due to selection and mating 
assortment. The transition from the reproducing phase of one generation to the 
juvenile phase of the next generation is due to the hereditary and developmental 
mechanisms. 

A quantitative character of an individual, as usual, is assumed to be a sum of 
two components: a hereditary component, commonly called the genotypic value of 
the character, and a nonhereditary or environmental component. An individual will 
be described by a pair (x, X), where x stands for the genotypic value and Xfor  the 
individual's phenotype (quantitative character). Capital letters will be used for the 
phenotypes whereas small letters are reserved for the genotypic values. 

It is assumed for convenience that the quantitative character in question is 
measured on individuals while they are in the juvenile phase. The same general 
model is applied to other cases as well, although the resulting formulas may be 
slightly different. 

The following is a list of notations for distributions important in further 
discussion. 

P~ 

pO(~) 

P~(X) 

pk(x) 

Pg(X~IXj, (i , j ))  

p~(xilxj, (i , j ) )  
Pk(X~, Xj[(i , j ))  

pk(x,, xjl(i *j)) 

Obviously, 

the distribution of the character among the juvenile individuals in 
generation k. Its variance is V ~ 
the same as the previous, but for the genotypic values. Its variance 
is v ~ k" 
the distribution of the character among the reproducing in- 
dividuals in generation k. Its variance is Vk. 
the same as the previous, but for the genotypic values. Its variance 
is Vk. 
the distribution of the character among the mates of the individuals 
with the character Xj. ( ( i , j )  denotes the condition: individual i 
mates with individual j). 
the same as the previous, but for the genotypic values. 
the joint distribution of the characters in mating pairs in generation 
k. 
the same as the previous, but for the genotypic values. 

Pk(Xi, Xjl(i *j)) = Pk(Xj)Pk(X~[Xj, (i *j)), 

pk(xi, xjl(i *j)) = pk(xj)Pk(XilXj, (i *j)). 

All other distributions appearing in this paper are denoted as Pr[ ], and it 
should not be difficult to figure out their meaning in each case. Summation symbols 
suggesting discrete distributions are used only for convenience; all results remain 
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without changes for continuous distributions in which case the summations may be 
simply replaced with integrations. It will also be assumed for convenience and 
without loss of generality that the mean value of the character among juvenile as 
well as reproducing individuals is zero in any generation. 

Let us now formulate the conditions on hereditary and developmental 
mechanisms, the mating system and selection which will be assumed throughout the 
paper. 

Condition A.  The mean genotypic value among the offspring of a mating pair is 
determined completely by the parental genotypic values as 

~( i + x j ) ,  ( I )  E(z[gl, 9j) = E(zlxi,  xj)  = 1 x 

where 91 and gj are parental genotypes. The actually important condition for the 
model presented in this paper is the bilinearity of the offspring-on-parent 
regression: 

E(zlgi, g j) = ~x~ +/~xj .  

However, the formulae are very cumbersome when coefficients ~ and /~ are 
arbitrary, although they look much simpler in the case of ~ =/? = ~. Assumption 
(1) is satisfied, of course, for all additive characters with Mendelian segregation of 
the genes. Also, at least as a good approximation, it may hold for nonadditive 
characters as well, if dominant and epistatic effects in different loci act to 
counterbalance each other (J. F. Crow, personal communication). 

Condition B. For juvenile individuals, the regression of the individual's phenotype 
on the genotypic value and of its genotypic value on the phenotype are linear as 

E(X[x)  = x,  (2a) 

E(x IX)  = b~  (2b) 

where b ~ is, of course, the heritability h~ of the character among the juvenile 
individuals in generation k: 

vo 
b o = h 2 - ( 3 )  

k Vk o" 

These assumptions are customary in quantitative genetics. 

Condition C. For reproducing individuals, the regression of the individual's 
phenotype on the genotypic value and of its genotypic value on the phenotype are 
linear: 

E(XIx )  = akx, (4a) 

E(x IX)  = bkX. (4b) 

It can be shown (see Appendix) that in this case 

Vk bk 
- ( 4 c )  

V k a k " 

Since it has been assumed that the quantitative character in question is measured 
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always on individuals in the juvenile phase, both (4a) and (4b) follow from (2a) and 
(2b) with ak = 1 and bk = b~ =hk2 in the absence of selection. If selection is present, 
then (4b) still follows from (2b) for any form of phenotypic selection. Assumption 
(4a), on the other hand, does not follow necessarily from (2a) even for a phenotypic 
selection, and, therefore, this assumption imposes restrictions on the types of 
selection admissible in the frame of the linear model presented in this paper. It 
holds, for example, in the case of selection implied by the selective assortative 
mating in the models of Wilson (1973), Wagener (1976) and Karlin (1979c) with the 
selection mating function 

{ I ( X Z - 2 r X I X i +  X2)t  (46) exp - 2c 

in which case the regression coefficient ak in (4a) is 

& 

ak (1 2 - hk ) Vg + Sk 

with 

c(c + vk) & -  
c + (1 - rZ)Vk " 

Condition D. The environmental component of a juvenile individual is independent 
of the parental genotypic values: 

Pr[Zlz, xi, xj] = Pr[Zlz]. (5) 

This is another customary assumption of quantitative genetics. 

Condition E. For any two reproducing individuals i and j, 

Pr[(i ,j)lXi, Xj, ~] = Pr[(i ,j)[X~, Xj], (6) 

where (2 stands for any set of conditions. This assumption asserts that the mating in 
the population is phenotypic assortative, i.e., based exclusively on the phenotypic 
resemblance of the individuals. It also implies what Karlin (1979c) called the 
conditional independence assumption, according to which the choice by an 
individual of its mating partner is not affected by a previous mating experience 
either of its own or of any of its relatives. 

Condition F. The regression of the phenotype of a mating individual on the 
phenotype of its mate is linear: 

E(X~IXj, (i , j ))  = pkXj, (7) 

where Pk is the "marital correlation" or the correlation coefficient between the 
characters of mating individuals in generation k. This assumption has been widely 
used in practically all existing models of phenotypic assortative mating. In classic 
linear models the marital correlation was assumed to remain the same in any 
generation, whereas in the selective assortative mating models it changes from 
generation to generation. In the case of the selection function in the form (4d), for 
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example, the marital correlation can be computed in any generation as 

rVk 
Pk -- c + Vk" 

Corollaries. The followin 9 corollaries can be inferred (see Appendix)from the above 
Conditions A - F. 

Pr[x~lXi, X~, xj, (i , j ) ]  = erExilXd, (8) 

E(x, lYj, (i , j ) )  = bkpkXj, (9a) 

E(Xilxj, (i , j ) )  = akPkXj, (9b) 

E(xi]xj, (i * j ) )  = akbkPkXj. (9C) 

Notice, that Conditions A -  F are not very restrictive. A model based on these 
conditions can be applied to a great variety of quantitative characters in 
populations with quite different hereditary and developmental mechanisms and 
assorting processes. An exception is assumption (4a) which calls for caution when 
the model is applied to populations with selection. Linearity of the regressions for 
genotypic values of any relatives is not assumed. Moreover, as will be shown, the 
linearity of the descendant-on-ancestor regression follows from Conditions A -  F, 
whereas the question of hereditary mechanisms that PrOvide a linearity of 
regressions for other relatives remains open. 

We now proceed to investigate different relationships. 

Descendant - Ancestor 

First of all let us demonstrate that under Conditions A - F the offspring-on-parent 
regression E(z]xl) (Fig. 1) is linear. According to Condition A, 

g(zlxl)  = ~ zerEzlxl]  = ~ E( z l x l , yOp , ( y l l x l ,  (xl  * YO). 
z Y l  

From this expression, by making use of (1) and (%), we obtain 

x , ~  
\ 

\ \  ~) YM 
\ / 

-.. / 
\ / 

\ / 

XNxN_l ~/yN 

(n-L+1) 

(n-M+1) 

(n-N+1) 

(n-N+2) 

X 2 

X 1 

z 

Yl 

(n- l )  

(n) 

(n+l) Fig. 1. Descendant-ancestor relationship (gen- 
eration numbers are indicated in parentheses) 
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E(z[xl) =/31x1, (10) 

where 

/31 = �89 + a,b,p,). (11) 

Let us now have a look at the regression E(zlxN) of the individual's genotypic 
value on the genotypic value of its Nth ancestor (Fig. 1). 

E(zlxu) = Z z Pr [zlxN] = • ~, z Pr[zlxl, xN] Pr Ix I IxN]. (12) 
z x 1 g 

Under the conditional independence assumption (Condition E), given that the 
parental genotypic value is known, the knowledge of any other ancestor's genotypic 
value does not provide additional information about the distribution of the 
genotypic values among the offspring, i.e., 

Pr[zlxl, xN] = Pr[z[xl]. 

into (12) and reference to (10) yields for the one-step Substitution of this 
"unfolded" pedigree 

E(zlxN) =/31 ~ xl Pr[_xllxNl. 
Xl 

Continuing to "unfold" the pedigree to Nth ancestor, we shall end up with the 
following expression" 

E(zlxN) =/3Nx , (13) 

where 

N 

fin = I~ fl(,i). (14) 
i = 1  

Coefficients fl(1 i) are the coefficients of ( i -  1)th offspring on ith parent regression 
from (11): 

/31 ~ 1 =5(  l + a . - i + I b ,  i+lP,-~+l). (15) 

Thus, the regression of the individual's genotypic value on the genotypic value of 
any of its ancestors is linear under Conditions A - F  for any assortative mating. 
This has also been noticed by T. Nagylaki (personal communication). 

Let us define an "ancestral pair" of an individual as a pair of the ancestors 
whose mating in some previous generation originates a path in the individual's 
pedigree, and let us have a look at the regression E(zlxN, yN) of the individual's 
genotypic value on the genotypic values of its Nth ancestral pair (Fig. 1): 

E(zlxN, YN) = 2 E(zlxN_ 1) Pr[XN_l IXN, YN] 
XN'- 1 

= /3N-1 2 X N - I P r [ X N  I[XN'YN] 
XN 1 

= ~flu-I(XN + YN). (16) 
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(It has been assumed here that /?o = 1, and for N > 1 coefficient 3N-~ is the 
regression coefficient determined by (14).) 

Hence, this regression is always bilinear under Conditions A -  F. As far as the 
regression of the individual's genotypic value on the genotypic values of an 
arbitrary pair of its ancestors is concerned, the bilinearity cannot be ensured any 
more. Indeed, for E(zlxL, yM ) we have (Fig. 1): 

E(zlXL, YM) = ~ Y', E(zIxN, YN) Pr[xN, yNIXL, YM] 
XN ylV 

= ~fl~,_ ~(E(xNIxL, YM) + E(yNIxL, YM)). 

If mating in generation n - N is nonrandom, then the expected values of xN and YN 
are functions of both XL and YM. Conditions A - F  are not sufficient to assure 
linearity of these functions and they may be nonlinear. If, however, the mating in 
this generation is random, then 

E(XNIXL, yM) = E(XNIXD = 3L-NXL, 

E(yNIXL, yU) = E(yNlYM) = flM-NYM, 

and (16) is reduced to 

E(ZlXL, yM) -- 1 - gflN- I(flL-NXL + flM-NYM). (17) 

Finally, the following may be concluded. Conditions A - F  ensure that the 
regression of the individual's genotypic value on the genotypic value of any of its 
ancestors is always linear. These conditions are also sufficient for the regression of 
the individual's genotypic value on the genotypic values of any of its ancestral pairs 
to be bilinear. They are not sufficient, however, for the regression on the genotypic 
values of two arbitrary ancestors to be bilinear, except for the case of random 
mating when this regression is also bilinear. 

After having obtained the expression for the descendant-on-ancestor re- 
gression, it is not difficult to compute the covariance. For the genotypic value 
covariance of offspring in the juvenile phase and of an ancestor in the reproducing 
phase, it follows from (13) that 

cov(o DA) = ~ xNE(zIxN)p,- N + a(XN) 
XN 

= f l N l ) n _ N + l ,  (18) 

where v._ N + 1 is the genotypic value variance in generation n - N + 1, and we may 
write referring to (14) and (11 ) the following expression for the descendant-ancestor 
genotypic covariance: 

COV~~ = p[ (I + a._i+lbn_i+lp._~+Ov._N+l.  (19) 
i = l  

The substitution into this of N = 1 yields the formula for the offspring-parent 
genotypic covariance: 

Cov~OFFSPR.PARENT) 1 b n = ~(1 + a ,b ,p , ) - -  1,1.. (20) 
an 
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For  N = 2 from (19) follows the formula for the offspring-grandparent genotypic 
covariance: 

(OFFSPR-GR PARENT) 1 bn- 1 covg ' = - (1  + a,b,p,)(1 + a,_lb,_~p,_~) 
4 a,_ 1 

Vn-~. (21) 

Step Offspring - Step Parent (Fig. 2) 

In a population with random mating, correlations of the genotypic values occur 
only for "b lood"  relatives because of their connections through common ancestors. 
Under assortative mating, however, correlations of genotypic values may also 
occur for "nonblood"  relatives due to the "step" connections through intermatings 
within their pedigree. Step offspring - step parent is an example of relatives with 
no "blood" connections, although they are connected due to the mating between 
the natural and step parents. The regression E(z[x3) of the step offspring genotypic 
value on that of its step parent can be determined as follows. 

E(zlx3) = ~, z Pr[zix3, (2 �9 3)3 
z 

= Z ~E(Z[Xl, x2) Pr[xl ,  Xz[X3, (1 �9 2), (2 �9 3)] 
Xl  x 2  

= ~  XlPr[xl lX3,( l*2),(2*3)] +E(xElx3,(2*3)) . (22) 
x1  

Taking into consideration Condition E, the first term in the parentheses may be 
rewritten as 

E(xllx3, (1 �9 2), (2 �9 3)) = ~ ~ x l  Pr[xllXz, (1 �9 2)] Pr[Xzlx3, (2 �9 3)] 
X 2  x i  

= b,,p.E(Xalx3, (2 �9 3)). (23) 

By substituting (23) into (22) and referring to (9b) and (9c), we obtain 

E(zlx3) = fl]x3, (24) 

where 

ills = 21(1 + p,)a,b,p.. (25) 

Thus, the regression of the step offspring's genotypic value on the genotypic 
value of its step parent is always linear under Conditions A - F for any assortative 
mating. It is also not difficult to demonstrate by following the same steps as in the 
previous section that the regression of the individual's genotypic value on the 
genotypic value of any of its step ancestors is always linear under Conditions A - F. 
Notice, however, that although the regression E(z[xl,x2) of the offspring's 
genotypic value on the genotypic values of both of its natural parents has been 
assumed to be bilinear (Condition A), the regressions E(zlxa, x3) and E(z[x:, x3) are 
not necessarily bilinear. 

Given the expression for the regression E(z[x3), the expression for the step 
offspring-step parent genotypic covariance is straightforward: 

= b 2 cov~ s~ �89 + p,) ,p,V,.  (26) 
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f , ~  2 (n) 

Z" (n+ 1 ) Fig. 2. Step parent-offspring 3 Fig. 3. Full sibs 

Full Sibs (Fig. 3) 

According to Condition A, we have for the genotypic covariance of full sibs: 

COV~ SIB) = ~ Z Z ' Z "  Pr[-z', z"ISIB ] 
z' z H 

= ~ ~', E(z'lga, gz)E(z"lgl, g2) Pr[ gl, g2l(1 * 2)3 
g l  g2 

= ~ ZE(z'IxI, x2)E(g"lxl, XZ)pn(Xl, XZI(1 * 2)) 
~1 2r 

1 
= -~Z Z(x~ + x2)ZP,(X~,X2]( 1 * 2)). (27) 

x1 x2 

Reference to (4c) and (9c) yields 

1 
COV~ SIB) = ~ (1 + a,b,p,) b" V,. (28) 

an 

Relationships other than descendant-ancestor or full sibs may be depicted as in 
Fig. 4, where Z'  stands for the phenotype of one of the relatives and Z"  for the 
phenotype of the other. The relatives need not belong to the same generation, and 
n' + 1 denotes the generation of the first of them and n" + 1 of the second. 
Individuals 1 and 2 represent the parental pair of the first relative and individuals 3 
and 4 are the parents of the second. Pedigree refers to all connections either "blood" 
or "step" existing between individuals 1,2, 3, 4 except for the connections due to the 
matings between 1 and 2 and between 3 and 4. Thus, for example, in the case of step 
sibs (Fig. 8) the connection between individuals 2 and 3 due to their mating is 
regarded as belonging to the Pedigree, whereas connections 1 - 2  and 3 -  4 do not 
belong to the Pedigree. 

Three types of relatives may be distinguished depending on the connections 
through the Pedigree. 

I PEDIGREE [ [ PEDIGREE I 

(n') 1~/2 3~Z,,4 (n") (n')1Q 72 ~Z,,4 (n") 
(n'+l) Z 'U  (n"+l) (n'+l) Z'tlJ (n"+l) 

4 

Fig. 4. Relationship of a general type 
5 

Fig. 5. Type 1 relationship 
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Type 1 relatives are those that are connected through only one of their parents, 
as shown in Fig. 5. Half sibs, step sibs and first cousins are examples of this type. 

Relatives are of Type 2 if both parents of one of them are connected to only one 
of the parents of the other, as shown in Fig. 6. An example of this type is the uncle- 
niece relationship. 

Type 3 relatives are those connected through both of their parents. This type is 
well represented by Fig. 4, and double first cousins provide the best familiar 
example. 

This classification of relatives into three types is similar to the classification by 
Cotterman (1960) into unilineal and bilineal relatives. Noninbred, "blood" 
relatives have been termed bilineal if they are connected by two or more completely 
separate (link-disjoint) pedigree paths. Otherwise they are unilineal. Certainly, 
unilineal relatives are always of either Type 1 or Type 2, and bilineal are always of 
Type 3. Notice, however, that the Cotterman's classification refers to only 
noninbred, "blood" relatives, whereas for our classification it is irrelevant whether 
the relatives are inbred or not and whether they are "blood" or "step" relatives. 

Let us now bring into consideration the following covariances: the covariance 
of the genotypic values of individuals i and j, 

air = ~ ~xixjPr[xi, x~IPED, (1,2), (3 * 4)], (29) 
xi xj  

and the partial covariances between individuals i and j due strictly to their 
connections through the Pedigree, 

qj = ~ ~ x~xj Pr[x~, xjIPED], (30a) 
Xi Xj  

clo) = Z Z xiXi Pr[xi, XjIPED], (30b) 
xi Xj  

c(,j) = ~ ~. X, Xj Pr[Xz, XjIPED]. (30c) 
Xi Xj  

Notice that the above covariances are defined for the individuals in the 
reproducing phase. In a population with selection they may differ from the 
covariances for the same individuals when they are in the juvenile phase. 

The genotypic covariance of relatives, COV~ REL) is the covariance of the joint 
distribution Pr[z', z"IREL], and the following expression is straightforward: 

Cov(REL) = E E(z'lxl, x2)E(z"lx3, x4) Pr[xl, x2, X 3, x41(1 * 2), (3 * 4), PED], (31) g 
{x} 

PEDIGREE l 

(n') 1 Z , ~  3~Z,,4 (n") 
(n'+l) (n"+l) 

6 

Fig. 6. Type 2 relationship 

~ O  O Z "  (n+l) 
T 

Fig. 7. Half sibs 
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({x} denotes the set {x~, X2, X3, X4} ). According to Condition A, from (31) follows 

C~.,(REL) = �88  3 + a23 + a l  4 + a24)" (32) U V  o 

The problem now is to express the covariances aij in (32) through the covariances 
cij, c~(j) or e(ij). It is clear that Conditions A - F are not sufficient to enable us to do it 
for any arbitrary relationship. Let us therefore proceed to investigate relatives of 
different types. 

Type 1 (Fig. 5) 

Using (9a), covariances alj for relatives of this type are obtained as follows: 

a23 = c23, (33a) 

a13 = Z Z Zxax3  Pr[xllX2, (1 �9 2)] PrEX2, x31PED] 
X2 3cl X3 

= b,,p,,ct2)3, (33b) 

a24 = Z E 2 X2X4 Pr[x41X3, (3 �9 4)3 Pr[x2, X3 IPED] 
X3 X2 3s 

= b.,,pn,,C2(3), (33c) 

al .  = E E E ~ xlx4 VrEx~lX2, (1 * 2)3 Pr[x4lX3, (3 �9 4)] Pr[X2, X31PED] 
X2 X3 Xl  X4 

= b,,p,,b,-p,,,c(23). (33d) 

Substituting these expressions into (32), we shall obtain an expression for the 
genotypic covariance of different Type 1 relatives in terms of the partial covariances 
of individuals 2 and 3 due to the Pedigree. 

Half  Sibs (Fig. 7) 

In this case, since 2 and 3 actually represent the same individual, 

n' = n" = n, 

C(23) = Vn, 

b. 
C23 = /)n = - -  Vn~ 

an 

C2(3) = C(2)3 = b,V., 

and for the genotypic covariance of half sibs we have, using (33) and (32), 

= b z b,V,. cov~ rLsn3) -4 + 2b.p. + ,p. (34) 

Step Sibs (Fig. 8) 

In the case of step sibs, 

/'/' = n "  = 1"/, 
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C(23) ~- Dn V n ,  

c23 = b2, ct23) = bZp, V,, 

c2(3) = c(2)3 = b,ct23) = b .p ,V , .  

The genotypic covariance of step sibs is therefore 

~2b2 [,( (35) cov (S'SIB) = �88 + p,) , p ,  .. 
g 

It is easy to see that for all Type 1 relationships, other than half sibs or step sibs, 
in which individuals 2 and 3 do not have a descendant-ancestor relationship, 

C2(3) ~ an , ,C23  , 

C(2)3 : a n , C 2 3  , 

C(23 ) = a n , a n , , C 2 3  ...{_ COVe2, 3), 

where cov~ z' 3)is the environmental covariance of individuals 2 and 3. Therefore, for 
the genotypic covariance of the relatives we have 

Cov(Type 1) : �88 + a,,b,,p.,)(1 + an,,b,,,p.,,)c23 
9 

+ �88 COV(e 2' 3). (36) 

It is important to remember that c23 and cov~ 2, 3) are defined as the covariances 
between individuals 2 and 3 in the reproducing phase. When there is no selection in 
the population, they, of  course, are the same as the covariances between these 
individuals in the juvenile phase. When, however, there is selection, they may differ. 
If (as a result of previous computations, for example) the covariances are 
determined in the juvenile phase, they need to be transformed into the covariances 
in the reproducing phase. There is not a unique transformation for any arbitrary 
selection. The transformation will depend, of course, on the form of the 
distributions and the form of selection. Feldman and Cavalli-Sforza (1977) have 
computed c23 for some relationships in the case of normalizing selection. 

As an example, let us apply formula (36) to the first cousin relationship (Fig. 9). 

First Cousins (Fig. 9) 

For  this relationship, 

H f = FI tl = H, 

,\/-,\74 
Z ' i l  ~ Z "  

8 

Fig. 8. Step sibs 

(n) 

(n+l) 

9 

Fig. 9. First cousins 

(n- l )  

(n) 

(n+l) 



222 A. Gimelfarb 

1 
C23 = COV~ SIB) = ~(1 + an_:bn_lpn_l) b"-I V . - b  

an- 1 

cove2.3} = COVe~Sm). (37) 

From (36) then follows 

co~st~ 1 bn-: _I 
COV~ F' = ~ (1 + anb.p.)2(1 + a._ lb , -  ~p.- 1 ) - -  Vn-~ + 4 b~p~" c~ 

an- 1 
(38) 

Let us now turn to Type 2 relationships. 

Type 2 (Fig. 6) 

Not too much can be made out of expression (32) for the covariance of relatives of  
this type, unless some additional assumptions are made. Let us assume that only 
"blood" connections exist between individuals 1 and 3 as well as between 2 and 3. In 
this case 

at4 = ~' Y:XlX4 Pr[Xl, x4IPED, (1 �9 2), (3 �9 4)] 
3r X4 

= ~ ~ ~ x : x 4  Pr[xl, x3IPED, (1 �9 2)] Pr[x4lx3, (3 �9 4)] 
;r X1 X4 

= an,,b,,,pn,,az3. (39a) 

Analogously, 

a2• = a,,,b,,,p.,,a23. (39b) 

Therefore, in this case of Type 2 relatives we have 

C o v ( T y p e  2) = �88 3 + a23)(1 + a.,,b,,,p.,,). (40) 
O 

For (a13 -1- a23 ) we may write the following expression 

a13 + a23 = ~ Y, (xl + x2)~,x3 Pr[x3lxl, x2, PED] Pr[xl, x2IPED, (1 �9 2)]. 
xl  ~2 Jr 

(41) 

Now everything depends on the regression of x3 on xl and x2 due to their 
connections through the Pedigree. If  this regression is nonlinear, then again not too 
much can be concluded about the covariance of the relatives, except that it will 
depend on higher than the second moments of the distribution pn,(x:, x21(1 * 2)), 
i.e., the covariance of relatives cannot be obtained in terms of only variances and 
marital correlations. If, however the regression of x3 on x: and x2 is bilinear: 

X 3 Pr[x3[xx, x2, PED] = ~alxl + ~ 3 2 2 2 ,  (42) 
X3 

then the expression f o r  COV~ Type 2) is readily derived" 

Coy(Type 2) = �88 + a,,b,,p,,)(1 + a,,,b,,,p,,.)(~31 + c~32)v,,. (43) 
g 

There is only one kind of a relationship for which Conditions A - F ensure that the 
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(n-N) 

(n-N+1) 

(n-N+2) 

Fig. 10. N-th uncle-niece 

3' / 4  (n) 

Z"~ (n+l) 

regression (42) is bilinear. This is when individuals 1 and 2 form an Nth ancestral 
pair of individual 3. The relatives in this case are an individual and a descendant of 
its sib. The relationship (Fig. 10) may be named "Nth uncle-niece". This 
relationship has been considered and a formula for the correlation between the 
relatives has been given in Cloninger et al. (1979). It follows from (15) that in this 
case 

~31 ~ ~32 = f i N - l ,  

where fiN-1 is the descendant-on-ancestor regression coefficient (14). The geno- 
typic covariance of the relatives is expressed then as 

COV~Nth UNCLE-NIECE) = �88 + a,b,pn)(1 + a,-Nb,-Np,-N)fls-lVn-N. (44) 

An expression for the uncle-niece genotypic covariance follows from (44) when 
N = I :  

Cov~UNCLE.NIECE) 1 b,_ 1 =~(1  +a,_,b,_~p,_~)(1 +a ,bnp , ) - -V ,_~ .  (45) 
an- 1 

For Type 2 relatives other than Nth uncle-niece, Conditions A -  F do not ensure 
bilinearity of the regression of x3 on x~ and x2 and, therefore, they are not sufficient 
to compute the covariance to relatives. It is obvious, that these conditions are also 
not sufficient to compute the covariance of Type 3 relatives. 

Conclusion 

It may be concluded that for any relationship between two individuals which is a 
combination of descendant-ancestor, full sib, Type 1 and Nth uncle-niece 
relationships, Conditions A -  F are sufficient to obtain the genotypic covariance of 
the relatives in terms of marital correlations and variances. (Notice that all the 
"traditional" relationships, i.e., those for which the covariances of the relatives 
have been obtained in the literature, fall into this category). These conditions also 
ensure that the regression of the individual's genotypic value on the genotypic value 
of any of its ancestors (either "blood" or "step") is always linear. This is in 
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accordance  with a resul t  o f  Bulmer (1976), who has demons t r a t ed  tha t  in the case of  
addi t ive  polygenic  charac ters  con t ro l led  by a large number  of  loci, the j o in t  
d i s t r ibu t ion  o f  the paren t -of f spr ing  genotypic  values is a b ivar ia te  normal .  
L inear i ty  o f  the ind iv idua l ' s  genotypic  value regression on the genotypic  value o f  
any  o ther  of  its relat ives is no t  ensured by  Cond i t ions  A -  F.  However ,  when the 
covar iance  between relat ives can be ob ta ined  under  these Condi t ions ,  it  is i r re levant  
whether  this regression is l inear  or  nonl inear .  F o r  a re la t ionship  which is no t  a 
combina t i on  o f  those l isted above,  Cond i t ions  A -  F are no t  sufficient to ob ta in  the 
covar iance  between the relat ives in terms o f  only  var iances  and mar i t a l  corre la t ions .  

Appendix 

Lemma. For any three events A, B, C 

Pr[AIB]Pr[CIA, B] 
Pr[AIB, C] - (AI) 

Pr[CIB] 

This may be easily verified by multiplying both the numerator and denominator by Pr[B]. 

Corollary 8. 

Pr[xdXi, Xj, x j, (i , j )]  = PrEx~lJ(,]. (A2) 

According to the Lemma, 

Pr [Xj, xj, (i *j)[xl, Xi] 
Pr[xilXi, Xj, x~, ( i . j )]  = Pr[xilXi] ~ ~ , 

or, using an obvious transformation, 

Pr[(i *j)[Xi, Xj, Xi, Xj] Pr[Xj, xr Xi] 
= vr[x,IX,3 ~ ~ i ]  Pr[Xj, xjlXi3 (a3) 

The second factor in (A3) cancels because its numerator and denominator are the same according to 
Condition E. The numerator of the third factor represents the pr6bability of an individual having 
phenotype Xj and genotypic value x j, given that some other individual without any connections to the 
first one has phenotype Xi and the genotypic value x~. Obviously, 

Pr[Xj, x~lx. Xd = Pr[Xj, xj]. 

For the same reason, for the denominator of the third factor in (A3) we have 

Pr[Xj, xjlX,] = Pr[Xj, xj]. 

Hence, the third factor in (A3) also cancels, and (A3) is reduced to (A2). 

Corollary 9. As an example, let us consider relation (9c), since the proofs of(9a) and (9b) follow along the 
same path. 

E(x~lxj, (i . j)) = akbkpkxj. (A4) 

The left side of this can be expanded as 

E(x,txj, (i . j ) )  = ~, ~,, Z x, Pr[x,lX,, Xj, xj, (i . j )]  Pr[X, X~lxj, (i . j)] .  
Xi Xj  xl 
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From (A2) follows 

E(x~lxj, (i . j ) )  = ~ ~ ~, xi Pr[x~IX,] Pr[X,, Xjlxj, (i . j ) ] ,  
Xi X j  xi 

or, according to Condition C, (4b), 

= bk ~ ~ X, Pr[X.  Xjlxj, (i . j ) ] ,  
Xi X j  

which can be transformed as 

= bk ~ ~, X~ Pr [X~IX J, x j, (i *j)] Pr [Xjlxj, (i *j)]. (A5) 
Xi X j  

According to the Lemma, the first distribution in (A5) can be represented as 

Pr[xjlXi Xj, ( i . j ) ]  
Pr[XilXj ( i*j) ]  -L--j . . . . . .  s, ,- .~ (A6) 

' Pr[xj[Xj, ( i . j ) ]  " 

It follows from (A2) that the numerator  and denominator  in (A6) are the same, and, therefore, 

Pr[XIIXj, xj, (i . j ) ]  = Pr[XiIXj, (i . j ) ] .  (A7) 

Considering the second distribution in (A5), notice that the information that an individual in the 
reproducing phase has an unspecified mate, does not affect the probability for the individual to have a 
particular phenotype, given its genotypic value, i.e., 

Pr[X~lxj, ( i , j ) ]  = Pr[Xjlxj]. (A8) 

The substitution of (A7) and (A8) into (A5) yields 

E(x~lxj, (i , j))  = bk ~ ~, X f  ~(XilXj, (i * j)) Pr[-Xjlxj]. 
x i x j  

References to (4a) and (7) conclude the proof  of (A4). 

Proof of (4c). 

Vk bk 

Vk ak 

Consider the expectation of the product xX: 

e (xX)  = • E x X P r [ x ,  X]. 
x X 

This can be written as 

or as 

Using (4b), from (A10) follows 

E(xX) = ~ ~ xXPr[x]X]Pk(X), 
x X 

E(xX) = ~ ~ xXPr[X[x]p~(x). 
x X 

E(xX) = bk Vk. 

At the same time, using (4a), from (A11) follows 

E(xX) = akvk. 

Then, (A9) follows directly from (A12) and (A13). 

(A9) 

(AIO) 

(A l l )  

(A12) 

(A13) 
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