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Abstract. The set of conditions on the genetical and developmental mechanisms 
of quantitative characters as well as on selection and mating system presented in 
(Gimelfarb, 1981) is expanded, thus enabling one to obtain the genotypic 
covariances between relatives for a larger variety of relationships. It is also 
demonstrated that the frequency of a relationship in a population under 
assortative mating may in general be different from the frequency of this 
relationship in the population under random mating. A subpopulation of 
relatives is not necessarily a representative sample of the whole population with 
respect to the quantitative character distribution. However, for any relationship 
which is a combination of descendant-ancestor, full sib, Type 1 and Nth uncle- 
niece relationships, its frequency in a population under assortative mating is the 
same as in the population under random mating, and the subpopulation of such 
relatives is a representative sample of the whole population. 
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When one looks at the types of relationships that have been dealt with in the 
literature in connection with the problem of covariances between relatives, it is 
interesting to notice that their number is quite limited. Almost all authors, even 
those who were interested in the problem from a purely theoretical point of view, 
worked with the list of relationships which comes almost unchanged from Fisher's 
(1918) original work and includes such relationships as descendant-ancestor, full 
sibs, half sibs, first cousins and uncle-niece. An attempt to analyze a relationship 
outside of those "traditional" ones belongs to Fisher himself, who produced an 
expression for the double first cousin correlation, although without a rigorous 
proof of it (Fisher, 1918). 

A set of conditions on hereditary and developmental mechanisms of quanti- 
tative characters as well as on selection and mating system has been established in 
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the previous paper (Gimelfarb, 1981). Under these conditions, the covariances 
between any "traditional" relatives can be expressed in terms of quantitative 
character variance and marital correlations. They are not sufficient, however, for 
covariances between any relatives (double first cousins is one example) to be 
expressed in the same terms. In this paper, the previous conditions are sup- 
plemented with several additional ones, thus making a new set of conditions that 
enables the expression ofcovariances between relatives in terms of the variance and 
marital correlation for a larger variety of relationships. Some problems pertaining 
to relationships of different types following from this set of conditions are also 
discussed. 

It will be assumed that the population in every generation goes through two 
phases: juvenile individuals and reproducing individuals assorted into mating 
pairs. A quantitative character of an individual is considered to be a sum of two 
components: hereditary (genotypic value) and nonhereditary (environmental 
component). Small letters will be used for genotypic values and capital letters will 
denote phenotypes. The following notations will be used for some distributions. 

P~ the distribution of the character among the jfivenile individuals 
in generation k. Its variance is V ~ k" 

p~ the same as the previous, but for the genotypic values. Its 
o variance is v k. 

pk(X) the distribution of the genotypic values among the reproducing 
individuals in generation k. Its variance is Vg. 

Pk(X~,Xjl(i*j)) the joint distribution of the characters in mating pairs in 
generation k. ( i . j )  stands for the event: individuals i and j 
mate. 
the same as the previous but for the genotypic values. 
the distribution of the character in the generation k among the 
juvenile individuals with the genotypic values z. 

Hk(Z[X~X~) the distribution of the genotypic values among the offspring of 
the individuals with the genotypic values x~ and xj. 

Assuming that the genotypic value is a continuous variable, it is easy to see that 

pk(Xi) = [ pk(Xi, Xj[(i*j)) dx~, 
. )  x j  

and that the distribution of the genotypic values among the juvenile individuals in 
the next generation is expressed as 

pk+l(Z) = f f pk(Xi, X d(i*j))Hk(Z[Xi, X,)dxidx,. (1) 
xi x j  

All other distributions appearing in this paper will be denoted as Pr[ ]. It will also 
be assumed for simplicity without loss of generality that the mean genotypic value 
among either juvenile or reproducing individuals in the population is zero in any 
generation. 

The following is a set of conditions on hereditary and developmental 
mechanisms, mating system and selection that has been introduced and discussed in 
the previous paper (Gimelfarb, 1981). 

pg(xi, x~ I(i *J)) 
F~ 
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Condition A. The mean genotypic value among the offspring of a mating pair is 
determined completely by the parental genotypic values as 

E(zlgi, gj) = E(zlxi, x j )  = 1 2(xi + x j), (2) 

where 9~ and gj are the parental genotypes. 

Condition B. For juvenile individuals, the regressions of the individual's phenotype 
on the genotypic value and of the individual's genotypic value on the phenotype are 
linear: 

E(ZIz) = z, (3a) 

E(zIZ) = h~Z, (3b) 

where h 2 is the heritability: 
k 

0 
v~ = 2 (3c) vo hk" 

Condition C. For reproducing individuals, the regressions of the individual's 
phenotype on the genotypic value and of the individual's genotypic value on the 
phenotype are linear: 

with 

E(Xix)  = akx, (4a) 

E(xIX) = bkX, (4b) 

bk Uk 
- -  = - - .  ( 4 c )  

ak Vk 

(It will be assumed further for simplicity that ak = 1 and bk -- h2.) 

Condition D. The environmental component of a juvenile individual is independent 
of the parental genotypic values: 

Pr[Z[z, xi, xj] = F~ (5) 

Condition E. For any two reproducing individuals i and j, 

Pr[(i *j)IX~, Jfj, f23 = Pr[(i *j)lXi, Xj], (6) 

where s stands for any set of conditions. 

Condition F. The regression of the phenotype of a mating individual on the 
phenotype of its mate is linear: 

E(~IXj, (i , j ) )  = pkXj, (7) 

where Pk is the "marital correlation". 

The set of Conditions A - F  turned out to be sufficient for the covariances 
between relatives whose relationship is a combination of descendant-ancestor, full 
sib, Type 1 and Nth uncle-niece relationships to be expressed in terms of the 
quantitative character variance and marital correlation (Gimelfarb, 1981). These 
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] ~ ~f 3~ ~fPEDIGREE I ~ (n-l) 

(n'+l) ZV VZ" (nO~ Z' ~1 ~ ~1~ Z" (n+l) 
2 

Fig. 1. A relationship of general type. (Generation Fig. 2. Double first cousins 
numbers are indicated in parentheses) 

conditions are not sufficient, however, for the genotypic covariances of other 
relatives to be expressed in the same terms. 

Any relationship other than descendant-ancestor may be depicted as in Fig. 1, 
where Z' is the phenotype of one of the relatives and Z" is the phenotype of the 
other. Individuals 1 and 2 are the parents of one of the relatives, and individuals 3 
and 4 are the parents of the other, n' is the generation of the parental pair 1 and 2, 
and n" is that of the parental pair 3, 4. Pedigree refers to the pedigree of individuals 
1,2, 3, 4 and includes all connections (either "blood" or "step") existing between 
these individuals, except for the connections due to matings of individuals 1 and 2, 
and of individuals 3 and 4. Thus, in the case of"double step sibs" (Fig. 3), Pedigree 
refers to the matings (1 �9 3) and (2 �9 4) but not to the matings (1 �9 2) and (3 �9 4). 

Let us now formulate three conditions in addition to A - F .  

Condition G. The distribution of the genotypic values among mating pairs, i.e., 
pk(x~, xjl(i *j)) is a bivariate normal. 

This is not a very restrictive condition, since many quantitative characters in 
biological populations are known to have close to normal distributions. 

Condition H. The probability for individuals 1,2, 3, 4, given their genotypic values, 
to come from a particular Pedigree is unaffected by the matings (1 �9 2) and (3 �9 4): 

Pr[PED[xl, X2, X3, X4, (1 * 2), (3 * 4)] = Pr[PED[xl, X2, X3, X4]. (8) 

In the case of double-first cousins (Fig. 2), for example, where individuals 1 and 
3 as well as 2 and 4 are sibs, this will imply that the environmental components of 
sibs are independent. Not for every relationship, however, this condition may be 
readily assumed. It can never hold under assortative mating for a relationship 
where some of the individuals 1,2, 3, 4 are ancestors of the others, or for double step 
sibs (Fig. 3), in which case 

Pr[PEDlxl; X2, X3, X4- ] ~--- Pr[(l �9 3), (2 * 4)[Xl, x2, x3, x4] 

Pr[-(1 �9 3), (2 * 4)1xl, x2, x3, x4, (1 �9 2), (3 * 4)-]. 

Condition L The distribution Pr[xl,  x2, x3, xglPED-] is a tetravariate normal. 

This condition imposes strong restrictions on types of hereditary mechanism 
models of the quantitative characters, since besides the normality of the genotypic 
value distributions among the individuals connected by the Pedigree, it also implies 
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1 Z , ~ 2  ~ Z , , 4  1 4 (n) 

' (n+l) 
3 4 
Fig. 3. Double step sibs Fig. 4. A relationship with one inbred relative 

that all their pairwise regressions are linear and homoscedastic. This is hardly 
justifiable in classical genetic models of quantitative inheritance, especially with 
nonrandom mating (Bulmer, 1976). However, in the models of  quantitative 
inheritance introduced by Slatkin (1970) or Cavalli-Sforza and Feldman (1976) (see 
also Feldman and Cavalli-Sforza, 1977, 1979; Karlin, 1979), this condition is 
satisfied. 

Under Condition A, the genotypic covariance of relatives may be expressed as 

Cov(REL) = l (a13 + a23 + a14 + a24), (9) O 

where a u are the covariances of the distribution 

Pr[Xl, x2, x3, x4[PED, (1 �9 2), (3 �9 4)]. (10) 

Before proceeding further, let us bring into consideration the following lemma 
introduced in the previous paper (Gimelfarb, 1981). 

Lemma. For any three events A, B, and C, 

Pr[AJB] Pr[C[A, B] 
Pr[AIB, C] = (11) 

Pr[C]B] 

This is easily verified by multiplying both the numerator and denominator by 
Pr[B]. 

According to the lemma, the distribution (10) can be represented as 

Pr[xl,  x2, X3, x4]PED, (1 * 2), (3 �9 4)3 

= Pr[x, ,  x2, x3, x4l(1 * 2), (3 * 4)] 

Given Condition H, 

Pr[PEDlxl,  x2, x3, x4, (1 �9 2), (3 �9 4)3 

Pr[PEDr(1 �9 2), (3 �9 4)3 
(12) 

Pr[PEDIxl, X2, X3, X4, (1 * 2), (3 * 4)3 = Pr[PEDIx 1, X2, X3, X43 

Pr[xl,  x2, x3, x4IPED] Pr[PED] 
= ( 1 3 )  

Pr [xl, x2, x3, x4] 

The distribution in the denominator of (13) is just the joint distribution of the 
genotypic values among four arbitrary individuals, two of whom are from 
generation n' and the other two are from generation n". Obviously, 

Pr[xl,  x2, x3, x4] = p,,(xl)p,,(xz)p,-(x3)p,,,(x4). (14) 
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Since 

Pr[Xl, x2, x3, x4l(1 * 2), (3 �9 4)] = pn,(Xl, x2l(1 �9 2))p.,,(x3, x~l(3 * 4)), (15) 

combining (12), (13), (14) and (15) we obtain 

Pr[Xl, x2, x3, x4IPED, (1 �9 2), (3 �9 4)] 

1 Pr[xl,  x2, x3, x 4 I P E D ] p . , ( x l ,  xzl(1 * 2))p.,,(x3, x4](3 * 4)) 
Q p. , (Xl)p, , (Xz)p. , , (x3)p. , , (x4)  , (16) 

where 

Pr[PEDI(1 �9 2), (3 �9 4)] Pr[PED, (1 �9 2), (3 �9 4)] 

Q = Pr[PED] = Pr[PED] Pr[(1 �9 2), (3 �9 4)] (17) 

is a normalizing term. 
According to Conditions G and I, all the distributions in (16) are normal, i.e., 

are exponential functions of second degree polynomials. Since a product of 
exponential functions of second degree polynomials is always an exponential 
function of a second degree polynomial, it follows from (16) that the distribution 
(10) is a tetravariate normal. If A denotes the variance-covariance matrix of this 
distribution, then aij in (9) are elements of this matrix, for which the following 
expression emerges from (16) (see Kendall and Stuart, 1969): 

A = -1 C-1 -1 (CpED -~- MATE -- V 1) (18) 

ape D is the variance-covariance matrix of the distribution Pr[Xl, x2, x3, x4IPED], 

( /)1C12 C13 C14.N~ 
apED = C12 /)2 C23 C241  , 

1213 (223 /)3 C34 I (19) 

C14 C24 C34 /)4- / 

where vi is the genotypic variance for individual i, given the Pedigree, and cij is the 
genotypic covariance of individuals i and j, given the Pedigree. CMATE is the matrix 

c* 
CMATE = 

where v.,, v,,, are the genotypic variances 
of mating individuals in generations n' and n' ,  

C, 2 ~, = h ,p.,v.,, 

c*,. = hZ,,p.,,v.,,. 

V is the matrix of the variances v., and v.,,, 

//)., 0 0 A 
V =  ~ 0 v.. 0 

\ 0 0 v.,, 
0 0 0 

c,o) 
v., 0 (20) 
0 v.,, c.*,, ' 
0 c.*,, v.,, 

; and c.*., c*,, are the genotypic covariances 

(21a) 

(21b) 

0 

(22) 
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The covariances of relatives can be obtained by computing (18) and (9), given, 
of course, that the elements of the matrix CVEO are known. It is important to realize 
that elements of this matrix are defined as variances and covariances for individuals 
1, 2, 3, 4 in the reproducing phase. If there is selection in the population, they may 
differ from the variances and covariances for the same individuals in the juvenile 
phase. Usually (as a result of previous computations) the matrix CpEO is known for 
the juvenile phase. In order to be able to use (18), it is necessary to have it 
transformed into the matrix for the reproducing phase. The transformation will 
depend, of course, on the form of selection. It can be performed analytically in the 
case of normalizing selection (Feldman and Cavalli-Sforza, 1977), whereas for 
other forms of selection an analytical solution may not be possible. 

Even if the matrix Cp~D for the reproducing phase is known, to obtain the 
elements of the matrix A from (18) analytically is not always an easy task, and 
numerical computations must be used instead. Analytical solutions can be found, 
however, in the cases of double first cousins and of the relationship in Fig. 4. 

Double  First Cousins  (Fig.  2) 

The elements of matrices CpED, CMATE and V for this relationship are 

1)1 ~- V2 ~ V3 z I) 4 ~ Un, ~ Un,, ~ Un ' 

C 1 2  ~--- C 1 4  ~ C 23  ~-  C 3 4  = 0 ,  

C 13  ~ (724 ~ FsibVn~ 

c *  = c * ,  = r , v , ,  (23) n' n 

where v, is the genotypic variance in the population in generation n; rsi b is the 
correlation coefficient of genotypic values of sibs; r, is the correlation coefficient of 
genotypic values of mating individuals in generation n. The elements of matrix A 
computed from (18) are 

(1 + 4i 4)1)~ 
al l  = a 2 2  = a 3 3  = a44 - 1 - r 2 r e ' (24a) 

slb n 

(1 q- r2ib)r .1) .  
a12 = a34 -- , (24b) 1 - r 2 r 2 

s ib  n 

rsib(l + rZ~)v, 

a 1 3  = a 2 4  - -  1 - -  r 2 r z ' (24c) 
sib n 

2rs ibrnVn 
(24d) 

a 1 4  = a 2 3  - -  1 - -  r 2 r 2 ' 
s ib n 

An expression for rsi b can be easily obtained from formula (28) in (Gimelfarb, 1981) 

1 h2 , v ._  1 (25) 
r s i b = ~ (  1 + n - l P n  1) 

1) n 

By combining (25), (24c), (24d) and (9), the expression for the double first cousin 
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genotypic covariance is obtained: 

1 
C~,,(D.F.C.) ~ _ 

UVy 4 

1 - - - -  

(1 + r,_ 1)(1 + rn)2Vn_ 1 

1 . , 2 . 2 ( ~  
4(1 + , , - 1 ,  , , \  v-~-J 

(26) 

where r._ 1 is the genotypic correlation of mating individuals in generation n - 1, 

r._ 1 = hZ,- lPn- 1" (27) 

At equilibrium, when r,_ 1 = r, = r and v,_ 1 = v, = v, the expression for the 
double first cousin genotypic covariance is reduced to 

I (I + r) 3 
cov (o'F'c') = - v. (28) 

o 4 1 - �88 + r)Zr 2 

Notice that the factor in front of v in this expression is not the genotypic correlation 
of double first cousins. In order to obtain this correlation, (28) ought to be divided 
by vD.v.c., the genotypic variance of double first cousins. As we shall see, this 
variance is not the same as v, the genotypic variance in the whole population. 
Assuming, however, that the assortative mating is not strong, i.e., It[ << 1 and that 
V = VD.V.C. (which may indeed be approximately true if assortative mating is weak), 
an approximate formula for the genotypic correlation emerges: 

r (o'v'c') ~ �88 + 3r). (29) 
g 

This agrees with the formula given by Fisher (1918) for the double first cousin 
genotypic correlation in the case of additive characters. Notice also that the 
expression (28) does not agree with the formula for the double first cousin 
covariance presented by Bulmer (1980). 

As another example of the application of  expression (18), let us consider the 
relationship depicted in Fig. 4. This is an example of Type 2 relatives (Gimelfarb, 
(1981) for which Conditions A - F  alone were not sufficient to obtain their 
covariance. This relationship is particularly interesting because one of the relatives 
is inbred. Whether relatives are inbred or not becomes irrelevant, however, as long 
as it is assumed that Conditions G, H and I hold. Therefore, the same procedure as 
in the case of double first cousins may be employed in order to obtain the 
covariance. For the elements of matrices CpED, CMATE and V we have in this case 

I) 1 = V 2 ~ V 3 ~ I.) 4 ~ -  I.) n,  .~- l )n , ,  ~ Un,  

(214 ~--- C24 ~ C34 ~--- 0 ,  

C12 = C13 = C23 ~ rh.sibl)n,  

c* = c*, = r,v,, (30) n n' 

where v, and r, are the same as previously, and rh.si b is the genotypic correlation of 
half sibs, for which the following expression can be derived from formula (34) in 
(Gimelfarb, 1981): 

1 v . -  1 

= - n - lP , - a )  Vn rla.sib 5(  1 + 2h, 2 1P,-1 + h2 2 (31) 
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Computing the elements of matrix A from (18) and making use of (9) we obtain the 
expression for the genotypic covariance of the relatives. 

1 rh.sib(1 + r.) 
- v . .  ( 3 2 )  Cov~REL) 2 1 - -  /'h.sibrn 

The following questions may be asked about a relationship: (1) Is the frequency 
of the relationship in the population (i.e., the probability that two arbitrary chosen 
individuals have the given relationship) the same under assortative mating as it is 
under random mating? (2) Is the subpopulation of the relatives a representative 
sample of the whole population with respect to the quantitative character 
distribution, i.e., does the fact that an individual has a relative of the given type 
affect the probability for an individual to have a particular character? 

Answers to these questions are trivial in the cases of descendant-ancestor and 
full sib relationships. Of course, the frequency of descendant-ancestor pairs or of 
full sib pairs is always the same under assortative mating as it is under random 
mating. Of course, the distribution of the character in a subpopulation of 
individuals having an ancestor or a descendant or a full sib is the same as in the 
whole population. In spite of the triviality of the answers in the cases of descendant- 
ancestor and full sib relationships, they are not always trivial for other re- 
lationships, as we shall see. 

Let us have a look at the normalizing term Q in (16) for which the following 
expression has been obtained: 

Pr[PED, (1 �9 2), (3 �9 4)] 

Q = Pr[PED] Pr[(1 �9 2), (3 �9 4)]" (33) 

Being a normalizing term, Q is computed by integrating the right side of (16) over all 
{x} and making the result equal to 1. However, besides being a normalizing term, Q 
has an interesting meaning. 

Notice, that the probabilities in the denominator of (33) remain the same 
whether the matings in generations n' and n" are random or not. Indeed, the first 
probability, Pr[PED] has nothing to do at all with these matings, whereas 
Pr[(1,2) ,  (3 ,4)]  is the probability of matings between some unspecified in- 
dividuals in the reproducing phase, which is, of course, the same for any mating 
system. 

If  matings in generations n' and n" were random, the integration of (16) would 
have yielded Q = 1. Therefore, 

Pr~r"nd~ (1 �9 2), (3 �9 4)] = Pr[PED] Pr[(1 �9 2), (3 * 4)], (34) 

and (33) may be rewritten as 

pr ( ..... t)[PED, (1 * 2), (3 �9 4)] 
Q = Pr<rand~ ( l ,  2), (3 �9 4)] '  (35) 

where "assort" and "random" refer only to the matings exercised in generations n' 
and n". If  Pr[REL] denotes the frequency of the relatives in the population, i.e., the 
probability that two arbitrary individuals from generations n' + 1 and n" + 1 have 
the relationship specified as REL, then obviously 

Pr[REL] = Pr[PED, (1 �9 2), (3 �9 4)]. (36) 
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Hence, 
pr ( ..... t)[REL ] 

Q = pr(ranaom)[REL], (37) 

and Q has the following meaning. It is the ratio of the frequency of a specific 
relationship in the population with assortative matings in generations n' and n" to 
the frequency with which this relationship would have occurred if matings in these 
generations were random. 

Under Conditions G and I, all distributions in (16) are normal. Therefore, 
integration of (16) over all {x} yields the following expression for Q (Kendall and 
Stuart, 1969): 

(detpE3 detMATE~ 1/2 
Q = \  det~det~ i J ' (38) 

where det stands for the determinant of the corresponding matrix. It is not difficult 
to see from (38) that under assortative mating, Q is not necessarily equal to 1. 

Let us now have a look at Pr[z'IREL], the distribution of the genotypic values in 
the subpopulation of the relatives in the juvenile phase. This distribution can be 
represented as 

Pr[z'[REL] = f f Pr[xl,xzlPED,(l*Z),(3*4)lH,,(z'lxl,xz)dxldx2. (39) 
XJ. X2 

By the same arguments that led to expression (16), it can be shown that 

Pr[z'IREL] = 1 [" 1" Pr[xx,xzlPED]p,,(Xl,X2l(1 * 2)) H,,(z'lxl,xz) dxl dx2. 
Q .)xl . ) x 2  P,'(xt)P,'(x2) 

(4o) 
Comparing this expression with expression (1) for the distribution of the genotypic 
values among the juvenile individuals in the whole population, we see that they are 
different. The same is true, of course, for Pr[z"IREL]. Therefore, in general a 
subpopulation of relatives is not necessarily a representative sample of the whole 
population with respect to the character distribution. 

Three types of relatives have been introduced in the previous paper (Gimelfarb, 
1981) depending on the connections through the Pedigree. Type 1 relatives are 
those that are connected through only one of their parents. Relatives are of Type 2 if 
both parents of one of them are connected to only one of the parents of the other. 
Type 3 relatives are those connected through both of their parents. It has been 
shown that all "traditional" relationships are either of Type 1 or of a special case of 
Type 2, that is "Nth uncle-niece." 

It is easy to see that for a Type 1 relationship, 

Pr[Xl, x2, x3, x4IPED] = pn,(Xl)Pn,,(X4.) Pr[xz, x3]PED]. (41) 

Substitution of (41) into (16) will yield after obvious cancellations and 
transformations 

Pr[xl, xz, x3, xg[PED, (1 �9 2), (3 �9 4)] 

= Pr[x2, x3[PED']p,,(xl]x2, (1 �9 2))p,,,(XalX4, (3 * 4)). (42) 
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That Q = 1 in this case is easily verified by observing that integration of the right 
side of (42) over all {x} gives 1. Hence, the frequency of a Type 1 relationship is the 
same under assortative matings in generations n' and n" as it is under random 
mating in these generations. In order to answer the question whether a sub- 
population of Type 1 relatives is a representative sample of the whole population 
with respect to the quantitative character distribution, let us compare the 
distributions of the genotypic values in the parental pairs of the relatives: 
Pr[xl,  x2IPED, (1 �9 2), (3 �9 4)] and PrEx3, x~IPED, (1 �9 2), (3 �9 4)] with the distri- 
butions of the genotypic values in the parental pairs in the whole population: 
p,,(xl, x2l(1 * 2)) and pn,,(X3, x4](3 * 4)). From Fig. 5 follows 

Pr[xl,  x2rPED, (1 * 2), (3 �9 4)] = Pr[x2fPED]p,,(xllx2, (1 �9 2)), 

Pr[x3, x4IPED, (1 �9 2), (3 �9 4)] = Pr[x3lPED]p,-(x4lx3, (3 �9 4)). (43) 

If Pr[x2[PED] =p,,(x2) and Pr[x3IPED] =p,,(x3), then the genotypic value 
distributions in the parental pairs of the relatives are the same as the distributions in 
the parental pairs in the whole population. The conclusion, therefore, is that in the 
cases when the Pedigree does not affect the genotypic value distributions, a 
subpopulation of Type 1 relatives is a representative sample of the whole 
population with respect to the character distribution. 

For a Type 2 relationship (Fig. 6), 

PrExl, X2, X3, x4IPED] = Pr[xl,  X2, x3fPED]p,,,(x4). (44) 

From this, according to (16) follows 

Pr[Xl, x2, x3, x4IPED, (1 �9 2), (3 �9 4)] 

1 Pr[xl, x2, xaJPED]p,,(x~, x2J(1 * 2))p,,(x41x3 ' (3 4)). (45) 
Q p,,(xOp.,(x2) 

Integrating this expression over all {x} we obtain 

f fPrEXl'x2lPED]p"'(x~'x2'(l*2))dxldx2. (46) 
Q = p,,(xl)p.,,(x2) X l  2 

It is seen that Q here is not necessarily equal to 1. Therefore, the frequency of a Type 
2 relationship in a population with assortative mating may differ from the 
frequency of this relationship in the population with random mating. Let us 

I PEDIGREE I PEDIGREE ] 

(n'+l) (n"+l) (n'+l) (n"+l) 

6 5 

Fig. 5. Type 1 relationship Fig. 6. Type 2 relationship 
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assume, however, that 

and 

Pr[xa, x2IPED] = p . , ( x l ) p , , , ( x 2 ) ,  (47) 

Pr[x3 [PED] = p.,,(x3). (48) 
I.e., we assume that individuals 1 and 2 have no connections through the Pedigree, 
and that the genotypic value distributions for individuals 1, 2, 3 are not affected by 
the Pedigree. Notice, that there is only one case of Type 2 relationships for which 
both assumptions hold. This is when individuals 1 and 2 form an Nth ancestral pair 
with respect to individual 3, in which case the relationship may be called "Nth 
uncle-niece". Given (47), it immediately follows from (46) that Q = 1. Moreover, 
since in this case 

Pr[Xl, x2IPED, (1 �9 2), (3 �9 4)] = p , , ( x , ,  Xzl(1 * 2)), 

it follows also that 

Pr [z'lNth uncle-niece] = p,, + 1 (z'). (49) 

And from (48) follows that 

Pr[z"[Nth uncle-niece] = p,,, +, (z"). (50) 

Thus, although in general the frequency of a Type 2 relationship in a population 
under assortative mating may differ from the frequency of this relationship under 
random mating, in the case of Nth uncle-niece these frequencies are the same. Also, 
although in general a subpopulation of Type 2 relatives is not a representative 
sample of the whole population with respect to the character distribution, in the 
case of Nth uncle-niece it is a representative sample. 

In general, in order to determine the value of Q in cases when Conditions G -  I 
are assumed to hold, expression (38) may be used. Let us consider, for example, the 
case of double first cousins. For this relationship, (38) gives 

Q(D.F.C.) (1 - -  r 2 r 2 ~ - 1  (51) 
sib n ]  " 

It is seen from this that under any assortative mating Q(D.F.Cosin) > 1, which means 
that the frequency of double first cousins in a population with assortative mating is 
always higher than when mating is random. In a population with heritability 0.75 
and marital correlation also 0.75, for example, the value of Q will be 1.24. Hence, 
there will be 24~o increase in the frequency of double first cousins as compared to 
their frequency in the same population under random mating. 

For the genotypic variance among individuals 1, 2, 3, 4 in the case of double first 
cousins, (24a) gives 

v(1, 2, 3, 4) _ 1 + r2sibn r2 
1 -  r 2 r 2 v"" (52) 

sib n 

From this follows that under any assortative mating, the variance among parents of 
double first cousins is always higher than in the whole population. Therefore, it can 
be argued that in the subpopulation of double first cousins the variance will be 
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higher than in the whole populat ion.  In a popula t ion with heritability 0.75 and 
marital  correlation 0.75, the genotypic variance a m o n g  the parents o f  double first 
cousins will be 66% higher than in the whole populat ion.  Al though  we cannot  say 
exactly what  will be the difference o f  the genotypic variances in the subpopulat ion 
o f  double first cousins and in the whole populat ion since it depends on properties o f  
the function Hn(zlxi, x~), we may  expect it to  be close to the same value o f  66%. 

Conclusion 

The frequency of  a relationship in a popula t ion under  assortative mat ing may  in 
general be different f rom the frequency of  the same relationship in the populat ion 
under  r andom mating. Also the distribution o f  a quantitative character in the 
subpopula t ion of  relatives is not  necessarily the same as in the whole populat ion.  
Therefore, methods  for  comput ing  correlations between relatives that  are based 
exclusively on linear relationships between variables (such as the path analysis) may  
lead to erroneous results when applied to arbi t rary relationships. However,  for any 
relationship which is a combina t ion  o f  descendant-ancestor,  full sib, Type 1 and 
Nth uncle-niece relationships, its frequency in a popula t ion under  assortative 
mat ing is the same as in the popula t ion under  r a n d o m  mating, and the distribution 
of  a quanti tat ive character  in the subpopulat ion o f  relatives is the same as in the 
whole populat ion.  All " t radi t ional"  relationships are included in this category, and 
these are the same relationships for which Condit ions A - F alone are sufficient in 
order  to obtain the covariance o f  the relatives (Gimelfarb, 1981). Results obtained 
for such relationships by general linear methods  are, therefore, quite correct. 

An  expanded set o f  conditions, which besides Condit ions A -  F also includes 
Condit ions G -  I, enables the covariances o f  relatives to be computed  for a larger 
variety o f  relationships. 
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