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Abstract. A discrete time genetics model is developed for populations that are 
undergoing selection due to infectious disease. It is assumed that the generation 
time of the host and infectious agent are non-synchronous and that only the 
host population is evolving. Two classes of epidemic processes are considered. 
The first class is for infectious agents that confer immunity following infection, 
while the second class is for those that do not confer immunity. The necessary 
and sufficient conditions are found in order for the disease to persist in a stable 
polymorphic host population. These conditions are shown to depend on the 
density of susceptibles, the selection coefficients, and the severity and class of 
the disease process. 
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1. Introduction 

A proposition of considerable epidemiological importance is that host genetic 
variability is partially responsible for the maintenance of infectious disease in 
populations. Moreover, the proposition that infectious diseases act as important 
selective forces for maintaining polymorphisms in host populations is an intriguing 
part of theories of evolution. Epidemiologists have observed that human popu- 
lations vary considerably in both susceptibility and response to infection, and have 
suggested that there may be genetic mechanisms acting. The most striking example 
is the resistance of erythrocytes containing HbS (i.e., the sickle-cell trait) to 
infection by Plasmodiumfalciparum malaria parasites [7] and the resistance of the 
Duffy-blood-group-negative erythrocytes, FyFy, to infection by Plasmodium vivax 
malaria parasites [14, 15]. With regard to host response to infection, there is 
generally indirect evidence of genetic variation. Such an effect may be demonstrated 
by the marked variation among children in the severity of diseases produced by 
highly infectious organisms such as chicken pox. Specific resistance genes for 
infectious agents affecting humans have been located in mice. These agents include 
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the etiological agents of visceral leishmaniasis and scrub typhus [17]. Mice have 
also demonstrated marked genetic variation in susceptibility to salmonella 
infections. Bremermann [4] has hypothesized that the high degree of polymor- 
phisms of host defenses may be a strategy of dealing with myriad evolving 
pathogens. 

The co-evolution of host and pathogen may be important in maintaining 
polymorphisms in both groups. Several authors have developed mathematical 
models of the co-evolution of pathogens and their hosts [10, 20]. Lewis [12] gives 
an excellent summary of this work as well as new results. Most of these models have 
been limited to the case where the pathogen and host have the same generation time. 
These "synchronized" generation models are inappropriate for most human and 
animal diseases because while the generation time of the host is on the order of 
many years, that of the pathogen may be only a matter of a few days. Therefore, a 
model which allows for non-synchronous generations is needed. 

Gillespie [8] developed a model for non-synchronous populations involving 
those infectious diseases which confer immunity following infection and where only 
the host evolves. Lewis [12] analyzed Gillespie's model for haploid populations and 
gave the sufficient conditions for maintaining a stable polymorphism in the host. 
Kemper [11] has worked with epidemic models for diseases that do not confer 
immunity following infection and where both genetic and epidemic components are 
continuous in time. The purpose of this paper is to extend the work of Gillespie and 
Lewis to account for a wider variety of infectious disease processes, including those 
which do not confer immunity following infection. Except for malaria, no attempt 
is made to relate the results of this paper directly to the diseases described above. 
However, the approach and a generalization of the results presented here should 
prove useful in understanding other specific disease-gene interactions. 

2. Basic Genetics Model 

An important assumption is that the generation time of the host is much longer than 
that of the pathogen. The host has discrete, non-overlapping generations such that 
the epidemic process runs its course within each host generation. Analysis will be 
limited to single-locus diallelic populations. Since the qualitative results are the 
same for the haploid and diploid populations considered in this paper, the simpler 
haploid population will be presented first. It is assumed that there is no migration or 
mutation and that the population size is large (conceptually infinite). Let the two 
alleles A and a occur with frequencies p and q = 1 - p .  Then, using standard 
population genetic arguments (e.g., Crow and Kimura, 1970: p. 179), the frequency 
of A in the next generation will be 

p w l  
p '  - , (1) 

where # = p w l  + q w 2 .  The wi's represent relative fitnesses that depend on the level 
of infection during the current generation. The level of infection J[k(p),  a] is 
defined as the probability that a genetically susceptible individual is infected (or 
chronically infected, depending on the epidemic process envisaged) during a 
generation. The function/~(p) is defined as the average density of the susceptible 
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population, 

k(p) = kip + kzq, (2) 

where 0 ~< kl ~< 1 and 0 ~< k2 ~< 1 are the coefficients of relative susceptibility of  the 
two genotypes. The constant a is the infectious contact parameter, which will be 
specified in Sect. 3. If it is assumed that the a genotype is totally resistant to infection 
(i.e., k2 = 0), then 

w, = (1 - 3)121 -]- S r l  

=- Vl - -  3 ( V 1  - -  r x ) ,  0 ~< r 1 < u 1 ~ 1, 

and 

W 2 = /22,  0 ~< V2 ~< 1. (3) 

The vi's are the relative fitnesses of  non-infected individuals, while ra is the relative 
fitnesses of infected individuals of genotype A. Without loss of generality, we allow 
a susceptible (but not infected) individual of genotype A to have unit fitness ; thus, 

Vx = 1, r I = 1 - t and 1-)2 = 1 - s, 

where s and t are selection coefficients. The relative fitnesses are now 

w l = l - 3 t  and w2= 1 - s .  (4) 

The relative fitness Wx is an implicit function of p and, therefore, selection is 
frequency dependent. Cockerham et al. (1972) give a general description of 
frequency dependent selection. 

Equation (1) is easily solved for the equilibrium gene frequency p*. We are 
interested in the polymorphic equilibrium (i.e., 0 < p* < 1), which implies 

W 1 ~-~ I~ z W2" 

Solving Eq. (1) at 0 < p *  < 1 yields 

S 
3[t7(p*),  ~] = . (5) 

t 

We see that 3 *  (the infection rate for susceptibles) depends only on the selection 
coefficients and is independent of the infection process. However, the value of p* 
does depend on the epidemic process used. A necessary condition for a polymorphic 
equilibrium to exist is that 0 < s < r ~ <  1, since we require that 0 < X <  1. 
Therefore, an infected individual of genotype A is less fit than a resistant individual 
of genotype a who, in turn, is less fit than a susceptible individual of genotype A. 

A polymorphic equilibrium is locally asymptotically stable (LAS) if 

@ ' ,  - 1 < @-p < 1 ,  (6) 

where 

& = 1 + (7) 
Op ~ L  Op o p j  
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Equations (4), (5), (6) and (7) are combined to yield the conditions forp* to be LAS, 
that is 

- l<l-[pqtl j '  < I ,  (8) 
L1 - s 3  I, 

where J '  - dd;/dp. The right-hand side of inequality (8) is satisfied if 

pqt J '  �9 > 0. (9) 
1 - s  

This is true i f J ' l ,  > 0. Therefore, J must be a monotone increasing function ofp in 
the neighborhood of p*. The left-hand side of inequality (8) is satisfied if 

pqt J '  �9 < 2. (10) 
1 - s  

In general, inequality (10) will be satisfied as long as the slope of J is not too great in 
the neighborhood of p*. 

2.1. Diploid Populations 

Now consider a one locus, diallelic diploid host population. There are three 
genotypes: AA, Aa and aa. Equation (1) remains the same, where 

Wl = p W a l  + q w 1 2 ,  

W 2 = p w l 2  + qw 22  , 0 <~ wiy <. 1, 

and w11, w12 and w22 are the relative fitnesses of the three genotypes AA, Aa and an, 
respectively. Equation (2) gives the average density of the susceptible population, 
where 

kx =pkll  + qk12, 

k2 =pk12 q- qkz2, 0 ~< kij ~< 1. (11) 

Two cases are considered here. The first is when the susceptible allele A is 
completely recessive (i.e., k12 = k22 = 0) and the second is when the susceptible 
allele A is completely dominant (i.e., k22 = 0). 

For the completely recessive case, 

W l l  = 1 - i t ,  

W12 = W22 = 1 - s .  (12) 

At 0 < p* < 1, we again have 

S 
y [ # ( p * ) ,  ~] = _.  

t 

Equations (4), (5), (6) and (12) are combined to yield the conditions for p* to be 
LAS, which are that 

- l < l - / p ~ q t / j  ' < 1 .  (13) 
I I - - L  - -  S J  , 
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Inequality (13) differs from (8) by a factor ofp and will be satisfied as long as the 
slope of J is not too great in the neighborhood of p*. 

In the case of complete dominance, the relative fitnesses are 

W 1 2  ~-  W l l  = 1 - -  i t ,  

W 2 2  = 1 - -  S.  (14) 

Equations (4), (5), (6) and (14) are combined to yield the conditions for p* to be 
LAS, which are that 

~ pq2t ~ j ,  , 
- 1 < 1 - k / ~ -  sA < I, (15) 

which differs from (8) by a factor ofq and will be satisfied under the same conditions 
stated above. 

The results of this section can be summarized in the following theorem: 

Theorem 1. For the single locus, diallelic populations specified above, the necessary 
conditions for the equilibrium point 0 < J *  < 1,0 < p* < 1 to exist and be L A S  are : 

(a) 0 < s < t < l  
(b) 3 ~' > 0 in the neighborhood of  p*, 
(c) The slope of  J is not too great in the neighborhood of  p*. 

Theorem 1 gives the necessary conditions for a stable polymorphism to exist, 
while the sufficient conditions will be found by specifying the form of J .  Conditions 
(b) and (c) constrain J to those forms which make biological sense. Condition (b) 
requires that the level of infection in the population increases with the density of 
susceptibles. However, condition (c) dictates that this level of infection cannot be 
too sensitive to small changes in the density of susceptibles. 

3. Models of Infection 

In this section, two basic models that have become paradigms of infectious disease 
are described. The first is the so-called S-I-S epidemic process, where infected 
individuals return to the susceptible state following their infection, i.e., there is no 
lasting immunity following infection. Diseases following this pattern generally 
become endemic. Examples of diseases that roughly follow this pattern are 
gonorrhea, meningitis, rhinovirus (common cold) and, to some extent, malaria. The 
second is the S-I-R epidemic process, where infected individuals become immune or 
resistant to further infection. Examples of diseases that roughly follow this pattern 
are measles, mumps, chicken pox, polio and a single strain of influenza. 

3.1. The S-I-S Epidemic Process 

The population is partitioned into three mutually exclusive classes of individuals : 
susceptible (but not infected), infected and genetically resistant. Let S(z) and I(z) be 
the fractions of the genetically susceptible population in the susceptible and infected 
classes at time ~, respectively. Since generations are discrete and non-overlapping, 
the population is closed for each generation. Mixing between susceptibles and 
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infectives is homogeneous and the infectious contact rate fi is defined as the number 
of contacts per infective per unit of time. Infected individuals recover and are 
removed from the infected class at a rate 7 proportional to the number of infectives. 

From the above description, the differential equations for the S- I -S  process are 

S'(z) = - S~(p)f l I  + 71, 

I'(z) = SY~(p) f i I -  yI, 

S(0) = So > 0, I(0) = lo > 0, S(r) -t- I(z) = 1, (16) 

where fi > 0 and ? > 0. Since it is assumed that the generation time of the host is 
much longer than that of the pathogen, it is expected that the epidemic process will 
approach its asymptotic values well within one host generation. The asymptotic 
behavior of I(r) for large r is as follows 

{01 if /~(p)a~<l, 
lira I(z) = 1 (17) 
~-~o /~a if /~(p)a > 1, 

where a =/3/7 is the infectious contact number [9]. 
If ~cr > 1 at the beginning of a generation, the fraction of the population that is 

infected at any time z, when z is large, will be 1 - (1/ka). If an individual were 
randomly selected from the genetically susceptible population at time z, the 
probability that the individual would be infected is approximated by 1 - (1//~cr). 
Therefore, the probability J is 

J[/~(p), a] = lim I(~), (18) 
~ o o  

and 

Z' dZ(p) 
J '  - where /~' - (19) 

y:2~, dp 

In haploid and diploid populations, we specify that k 2 = 0 and k22 = 0, re- 
spectively. Then, it follows that 

J ' > O  for O < p < l ,  

and condition (b) of Theorem 1 is satisfied for the S-I-S epidemic process. 

3.2. The S-I -R Epidemic Process 

The population is now partitioned into four mutually exclusive classes of 
individuals: susceptible, infected, immune following infection and genetically 
resistant. Let S(z), I(v) and R(z) be the fractions of the genetically susceptible 
population in the first three classes, respectively. 

The differential equations for the S-I-R process are 

S ' ( r  = - S Z ( p ) / 3 I ,  

I '(Q = SY~(p)f i I-  71, 

R'(~) = ~L 
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s (0 )  = So > 0, I (0)  = Io > 0, R(0)  = 0, 

S(r) + I(r) + R(z) = 1. (20) 

These differential equations have also been analyzed by others [2, 9]. The 
asymptotic behavior of S(r), I(~) and R(r) for large z is summarized as 

lira I(r) = 0, lira S(r) = S~o > 0 and lira R(z) = R~ > 0, 

where S~o is the unique root in (0, 1//7a) of the equation 

So = Soexp~-/Ta(1 - S~)] = 0. (21) 

If  it is assumed that the epidemic process starts with a chance introduction of 
infection at the beginning of the generation, we allow Io ~ 0 and So ~ 1. Then R~ 
represents the fraction of individuals infected during the course of one generation. 
Substituting into Eq. (21) yields 

1 - R~o - exp[-/TaRoo] = 0. (22) 

No explicit solution is available, but Roo can be found using successive approxi- 
mation or some other iterative procedure. 

The probability that a randomly selected individual will be infected during the 
course of one generation is approximated by Ro~. Therefore, the probability J is 
found by solving the following implicit function 

{~ if /7(p)a~<l, (23) 
d[/c(p), cr] = - e x p ( - / T a d )  if /7(p)~ > 1. 

Then d '  is differentiated as an implicit function, yielding 

d '  =/7'0-X2(1 - d ) [ d  + (1 - d )  ln(1 - J ) ]  - 1 

=/~'0-d;(1 - d )  i(i 1) ' (24) 
i ~. 

which lies in the open interval (0, 1 - (1//7o-)). (d  is not differentiable at/70- = 1.) 
Evaluation of (24) for permissible values of E yields 

J ' > 0  for 0 < p < l ,  

and condition (b) of Theorem 1 is satisfied for the S-I-R epidemic process. 
When interpreting the meaning of d ,  for both the S-I-S  and S-I-R processes, a 

word of caution is in order. Since d is defined as the probability that a genetically 
susceptible individual is infected during a generation, it does not refer to the whole 
population. If we define .,~ as the probability that an individual sampled from the 
whole population (including genetically resistant individuals) is infected during a 
generation, then we have 

Y = k ( p ) S .  

Kemper E11] carefully makes this distinction and points out that Y would most 
likely be the "observable" measure of prevalence in field data. 
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4. Analysis of Genetic-Epidemic Model 

4.1. Haploid Populations 

Assume that individuals of genotype A are completely susceptible (i.e., ki = 1), 
then from (2), the average density of susceptibles is 

= p .  

For the S-I -S  epidemic process, the probability J is given by (18) as 

01 if pa ~ 1, 
J ( p ,  a) = _ __1 if pa > 1. (25) 

pa 

A plot of J as a function o fp  is given in Fig. 1. The polymorphic equilibrium is 
found from (5) and (25) to be 

t 
J *  = s/t, p* - . (26) 

( t  - 

In general, we require that o- > 1, sincep* = 1 is LAS when a ~< 1. Condition (a) in 
Theorem 1 guarantees that p* will be contained in the interval (0, 1) as long as s is 
not too close to t. 

Evaluation of (19) yields 

1 
~r - when po- > 1. (27) 

p 2 0 - '  

Substituting Eq. (27) into Eq. (10) yields 

q , ( t - s ~  
\ / < 2, 

8 
S-I-R 

/ 
S - I - S  

I 
0.20 0.40 0.60 0.80 1.00 

P 

Fig. 1. Graph of  J as a function o fp  for a haploid population, where a = 5. Note that the more volatile 
S-I-R epidemic process has a greater slope than the S-I-S epidemic process 
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which is sat isfied by  cond i t ion  (a) of  Theo rem 1. Therefore ,  the p o l y m o r p h i c  
equi l ib r ium (26) exists and  is L A S  if p '0r  > 1 and 0 < s < t ~< 1, where  s is no t  too  
close to t. F igure  2(a) shows different  s table  equi l ib r ium poin ts  for  var ious  values of  
s / t  and  a. 

K e m p e r  [11] has shown that  the p o l y m o r p h i c  equi l ibr ium (26) is LAS,  in the 
case of  con t inuous  t ime, under  very s imilar  condi t ions  to  those  given in Theorem 1. 
He has  also ruled ou t  the existence of  l imit  cycles for the con t inuous  case. 

c:; 

%.00 

S-I-S 

c'=5.0 

/ "  
/ 

i i i i ! 
0.20 0.40 0.60 

S /T  

I l l / " "  

r=?.5 

o.~ i 
1 .00 

a 

S- I -R 

s / t  

Fig. 2. Graph of relationship of the polymorphic equilibrium values J*  and p* at different ratios of 
selection coefficients for haploid populations. Note that the level of p* decreases with increasing values 
of ~r. Also, p* is maintained at a lower level for the S-I-R epidemic process than for the S-I-S epidemic 
process, at the same parameter values 
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In general, if a is not close to 1, the disease will not die out. To see this, assume 
that at the beginning of generation t, 

p,a <~ 1. 

Since s < 1, it follows that 

P t  + i > Pt .  

The value o fp  will continue to increase with each generation until the equilibrium 
value is obtained, at which juncture p*a > 1. 

For the S-I-R epidemic process, the probability J is given by (23) as 

{~ if p a ~ < l ,  (28) 
J ( p ,  6) = - e x p ( -  pad;) if pa  > 1. 

A plot of J as a function of p is given in Fig. 1. The polymorphic equilibrium is 
found from (5) and (28) as 

- l n ( 1  - J * )  
J *  = s/t, p* = (29) 

a.,c* 

provided that s is not too close to t. Evaluation of (24) a t / ?  = 1, yields 

f = o-j2(1 - J ) [ J  + (1 - J ) ln (1  - j ) ] - i  (30) 

Examination of Fig. 1 reveals that the slope of J is quite large, which implies that 
condition (c) of Theorem 1 may not be satisfied for all 0 < s < t ~< 1. 

Substituting (30) into (10) yields 

- q J ( 1  - Y ) l n ( 1  - ~ r  �9 

((l/t) 2 y ) [ y  + ( i - ~ J ) T n ( 1  - y ) ]  < 2. (31) 

The left-hand side of (31) is a function of s, t and a, designatedf(s, t, a), since J *  is a 
function of s and t and q* is a function of J *  and a. Lewis [12] analyzed (31) and 
derived the following results: the function f (s ,  t, a) is an increasing function in a. 
Therefore, as a ~ oo, q* - .  1 for fixed I* = s/t. It follows that 

f (s ,  t, a) < f (s ,  t, ~ ) .  

Therefore, 

- J ( 1  - J )  l n ( 1  - J )  �9 

f ( s , t ,  o o ) = ( ( 1 / t ) ~ j ~ - j + ( l ~ J ~ l ~ _ j )  ] < 2 ,  (32) 

is a sufficient condition for (29) to be LAS. Inequality (32) is satisfied if 

2(~_ - J ) [ J _  + ( 1 - J ) l n ( 1 - J ) ] + J ( 1 - J ) l n ( 1 - J ) , > 0 .  (33) 

Lewis [12] has shown that 0 < s < t ~< 0.914 is a sufficient condition for satisfying 
(33). Therefore, the polymorphic equilibrium (29) exists and is LAS i fp*a  > 1 and 
0 < s < t ~< 0.914 for large a, where s is not too close to t. The limit on t extends 
towards 1 as a becomes smaller. Numerical simulations are carried out to examine 
the behavior of the system for large values of t. For a = 200 and s = 0.600, there is a 
stable fixed point for te(0.600, 0.916] (e.g., for t = 0.915 we have (0.008, 0.656), 
using the notation (p*, J*) ) .  For t~ (0.916, 0.946J, there appears to be a stable 



Epidemics and Endemicity in Genetically Variable Host Populations 299 

-,%',% • 6//% 6/., ~" 6//6// 6// 
60 % 

~ 05"0 0.40 0.60 o.so 1.oo 
p 

Fig. 3. Trajectories in the p J plane at different values of o, for a haploid population undergoing the 
S-I-R epidemic process. Each trajectory starts at the initial condition EPo = 0.01, J(P0, cr)] and moves 
from left to right terminating at the poIymorphic equilibrium given by (26). Note that the trajectories 
move along the line J = 0 until the threshold k(p)cr = 1 is exceeded. Since sit - 0.8, the trajectories all 
terminate at J*  = 0.80. However, the same trajectories will terminate at J* = sit in general, provided 
that the conditions for (26) to be LAS are met 

2-cycle (e.g., for t = 0 . 9 3 8  the system cycles between (0.010,0.799) and 
(0.006, 0.386)). The behavior  of  the system is quite chaotic for t e (0.946, 1.000), 
with no identifiable cycles. Figure 2(b) shows different stable equilibrium points for 
various values o f  sit  and a, while trajectories o f  the system in thep  - J phase plane 
are shown in Fig. 3. 

There are several points tha t  can be made about  the effect of  S- I -R  and S - I - S  
epidemic processes on the stability of  polymorphisms.  F r o m  Fig. 1, it is apparent  
that  the S- I -R  process is more  sensitive to changes inp.  This sensitivity tends to be a 
de-stabilizing force on the system for large values o f  t, including the case where the 
disease is fatal, i.e., t = 1. In contrast ,  the S- I -S  disease process is less sensitive to 
changes in p and provides a stable po lymorphism for  all permissible values of  t and 
o-. The observat ion that  S- I -R  epidemics tend to sweep th rough  populat ions  causing 
high at tack rates, while S - I - S  epidemics tend to appear  at constant  endemic levels, 
lends credence to the theory that  the former  process is more  de-stabilizing than the 
latter. F r o m  Fig. 2, it is apparent  that  the S- I -S  epidemic process maintains a higher 
frequency of  the susceptible A allele than does the S- I -R  epidemic process, for the 
same popula t ion parameters.  

4.2. Diploid Population - Completely Recessive Susceptibili ty 

Assume that  individuals of  genotype AA are completely susceptible (i.e., kl  1 = 1), 
then f rom (11), 

/~(p) = p2.  
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For the S-I-S case, the polymorphic equilibrium is 

J *  = s/t, p* = - . (34) 
t s)o- 

The value of p* in the complete recessive case is the square root of p* in the haploid 
case, and is therefore greater. 

Evaluating Eq. (19) yields 

2 
f - > 0, when pZff > 1 (35) p3a 

which upon substitution into (13) yields for the left-hand inequality 

O-2(1-s) 2 + O - t ( 2 - t - s ) > - t  2, 

which is satisfied by condition (a) of Theorem 1. The polymorphic equilibrium (34) 
is LAS ifp*2a > 1 and 0 < s < t ~< 1, wheres is not too close to t. This result agrees 
with that of Kemper [11] for the continuous case. As before, Kemper has ruled at 
the existence of limit cycles for the continuous case. 

For the S-I-R case, the polymorphic equilibrium is found to be 

~r = s/t, P* = / -  ln(1 - I) (36) 
O-I 

The value of ~r is found to be 

f = 2po-g2(1 - g ) [ J  + (1 - g) ln(1 - g ) ] - 1 ,  (37) 

with f > 0 whenp  > 0 and g < 1. Substituting (37) into (13) yields 

- J - - ~ + ( 1  ~ l n ( 1  -- ~ r  - J)ln(1 - J )  �9 f (s , t ,o-)=((1/t)  < 1 .  (38) 

The functionf(s, t, O-) has a unique maximum at p = 0.5. Therefore, the value of O- 
which maximizes f(s, t, O-) is designated O- . . . .  and takes the value 

- l n ( 1  - J )  
O - m a  x - -  

0.25J  

It follows that 

1 J ( 1  - g ) l n ( 1  - J )  �9 

f(s, t ,  amax)= -- ~ ((l/t) _ _ ~ j ~ ( ~  ~ 5 ~ l n ( 1  - - J ) ]  < 1 (39) 

is a sufficient condition for (36) to be LAS. Equation (39) is satisfied if 

4 ( ~ - g ) [ J  + ( 1 -  J ) l n ( 1 -  J ) ]  + J ( 1 -  J ) l n ( 1 -  J ) *  > O, 

( ) ( 4 )  ~ 4 ( i - 1 ) - 3 i t j l  * 
1 _ J J + (1 - J ) J  + (1 - J )  - > 0.  ( 4 0 )  

4 t  t t:(/ 1)-t 
i = 2  

In expression (40), the individual terms of the summation are greater than or equal 
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to zero for i t> 4. Since 0 < J *  < l, a sufficient condit ion for inequali ty (40) to be 
satisfied is that  

J 9 t ) j 2 ]  �9 6t  [24 + 3(4 - 6 t ) J  + (8 - > 0. 

The above inequali ty can be shown to hold for 0 < s < t ~< 1 using s tandard  
arguments .  Therefore,  the po lymorph ic  equil ibrium (36) is LAS i fp*Za  > 1 and 
0 < s < t ~ 1, where s is not  too close to t. No te  tha t  t has a larger bound  than  in the 
haploid  case. N o  cycles or  chaot ic  behavior  have been found  a round  (36) for  the 
limits on paramete rs  given. 

4.3. Diploid Population - Completely Dominant Susceptibility 

Assume that  individuals o f  genotypes AA and Aa are complete ly  susceptible (i.e., 
k l l  = k12 = 1), then 

/~(p) = p 2  + 2pq = p ( 1  + q). 

For  the S-I-S case, the po lymorph ic  equil ibrium is 

J *  s/t, p* 1 x/1 0, where  0 t . . . . .  < 1. (41) 
(t - s )~  

In addi t ion to condi t ion (a) o f  Theo rem 1, we require that  s not  be too close to t and  
that  a be reasonably  large in order  for  0 < p* < 1. In this case,p* is smaller than  the 
p* in the haplo id  case. Using Eqs. (15) and  (19) and evaluat ing the lef t-hand 
inequality,  we obta in  

(1 - 0) 3/2 < ~ [1 + (1 - 0)1/2].  (42)  

Since ((1 - s)/(t - s)) ~> 1 and  0 < 0 < 1, it follows tha t  inequali ty (42) is satisfied 
for  0 < s < t ~< 1, using s tandard  arguments .  Therefore,  (41) is LAS when s is not  
too close to t. K e m p e r  [11] has also ruled out  limit cycles for the cont inuous  
coun te rpa r t  o f  this case. 

For  the S-I-R case, the po lymorph ic  equil ibrium is 

J *  s/t, p* 1 X/1 0, where  0 -- ln(1 -- J * )  . . . . .  < 1. (43)  

Permissible values of  s, t and a are the same as previously defined for  the complete ly  
dominan t  S-I-R case. Using Eqs. (15) and (24) and evaluating the left-hand 
inequality, we obtain  

g ( p ) J ( 1  - J ) l n ( 1  - J )  �9 
f (s ,  t, o-) = (( l / t )  - J ) [ J  + (i ~ J ) l n ~  2_ j ) ]  < 1, (44) 

where g(p) = pq - q/(1 + q). The funct ion g(p) is m o n o t o n e  increasing i n p  with a 
m i n i m u m  of  - �89 at p = 0 and a m a x i m u m  of  0 at p = 1. Therefore,  the funct ion 
f (s ,  t, a) has a unique m a x i m u m  at p = 0, where g(0) = - �89 and O'ma x + OO. It  
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follows that 

f (x, t ,a)  < f(s , t ,  Crmax) < 1 

is a sufficient condition for (43) to be LAS. The limit of (44) as o- ~ oe is the same as 
(32). 

5. Discussion 

The results of this paper are relevant to the celebrated "threshold theorem" of 
epidemiology [2] for the S-I-R epidemic process. This theorem states that there will 
not be a major epidemic if k(p)a ~< I. The analogous result holds for the S-I-S 
epidemic process where the disease will not become endemic of/?(p)~ ~< 1. These 
situations are stated by expressions (17) and (23) for the S-I-S and S-I-R epidemic 
processes, respectively. If the frequency of the susceptible A allele is insufficient to 
maintain the disease, then under certain conditions the frequency will increase 
through selection until the threshold is exceeded, at which time the disease will be 
maintained. This dynamic threshold phenomenon is shown graphically in Fig. 3. 
Eventually, a stable polymorphic equilibrium will be established, provided that the 
infection process is not too severe. Such results have been confirmed for the 
continuous analog of the S-I-S epidemic-genetic process [ 11]. However, in the case 
of a very severe infection process (i.e., the S-I-R process with large a) when the value 
of t is close to one, it is possible to have limit cycles or chaotic behavior in haploid or 
completely dominant diploid populations. The polymorphic equilibrium is stable 
when t is close to one in completely recessive diploid populations, even for very 
severe S-I-R epidemics. This occurs because the density of the susceptible 
population is quite small, i.e., p2; in comparison to p2 + 2pq and p for completely 
dominant diploid and haploid populations, respectively. A small density of 
susceptibles ensures that part (b) of Theorem 1 will be satisfied. 

The equilibrium level of the infection J *  will depend only on the selection 
coefficients and not on the structure of the epidemic process, for haploid 
populations and diploid populations where the susceptible A allele is completely 
recessive or completely dominant. This is not true in the case of partial dominance. 
Assume that the fitness of an infected homozygote for the A allele is less than that of 
an infected heterozygote, but that they are equally fit when not infected. Then the 
relative fitnesses will be 

wll = 1 - J t ,  

W12 : 1 - c~Jt, 

w22 = 1 - s, (45) 

where 0 ~< c~ < 1. The equilibrium value of 3 ,  where 0 < p *  < 1, is 

J *  = . (46) * + (q* - p*) 

A good area for application is the case of P. falciparum and the sickle-cell trait. 
The correlation between the sickle-cell trait and the prevalence of P.falciparum has 
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been well-studied [3]. In this case, we have a one locus, diallelic diploid population, 
where S is the resistant sickle-cell allele. Then the three genotypes are AA, AS  and 
SS, whose individuals are totally susceptible, partially susceptible, and resistant, 
respectively. Then the relative fitnesses are given by (46), with c~ = 0 and s = 1. 
Fleming et al. [7] have measured the frequency of the sickle-cell trait and the 
prevalence of malaria in populations of the Sudan savanna of Nigeria. They have 
determined the frequency of the S allele to be q = 0.146. Assuming equilibrium, 
they have calculated the value of J * t  as 

q* 0.146 
J * t  . . . .  0.171. (47) 

p* 1 - 0.146 

One way to obtain an estimate of J *  is through the percentage of blood fields 
positive of P.falciparum. Although this varies with age and season, the zero to eight 
age group is most important since selection acts most strongly on the young, who 
have little acquired immunity. Fleming et al. [7] found the percentage of blood 
fields positive in this age group to average 85 percent (or ~ * =  0.850). The 
coefficients of relative susceptibility are estimated from their data as kl 1 = 1, 
k12 = 0.8 and k22 = 0. Evaluation of Eqs. (2) and (11) yield k(p*) = 0.929 and 

y *  
J *  - - 0.915. (48) ~(p*) 

Using J *  = 0.915 in (48) yields an estimate for t of 0.187. It is of interest to see if the 
point J -- 0.915, p = 0.854 is indeed an equilibrium point and, if so, whether it is 
LAS. To answer the latter question, we evaluate Eqs. (6) and (46), when c~ = 0 and 
s = 1, yielding 

- p i l + p t f ]  < 1 ,  (49) 
L F  - 

o r  

3p - 1 
J ' t .  < qp2t �9 ~- 78, (50) 

which must be satisfied for J *  = 0.915,p* = 0.854 to be LAS. Certainly, inequality 
(50) would be satisfied for most reasonable models of malaria transmission. 
Kemper [11] has shown that the polymorphic equilibrium for the continuous case 
similar to (45) coupled with the S-I-S model, is LAS when 0 < t ~< 1. However, the 
epidemiology of malaria is sufficiently complex such that the simple S-I-S model 
does not entail an adequate description of transmission. Various models have been 
used for malaria, although the so-called Ross-MacDonald model [13, 18] is still the 
basis for more elaborate models. Aron and May [1] give a review of the basic 
model. They also formulate and analyze more complex models. The derivation of J 
and f is a complex problem which will not be covered here. Clearly, an 
understanding of the dynamic interaction of the sickle-cell trait and P. falciparum, 
in indigenous populations should be an integral part of malaria control strategies. 

Application of the results of this paper to specific infectious diseases requires 
care. As previously mentioned, the S-I-S and S-1-R epidemic processes are only 
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r o u g h  a p p r o x i m a t i o n s  to ac tua l  disease processes.  A m o r e  realist ic hos t  p o p u l a t i o n  
wi th  age s t ruc tu red  suscept ib i l i ty  a n d  o v e r l ap p i ng  gene ra t i ons  w o u l d  u n d o u b t e d l y  
be necessa ry  for  a p p l i c a t i o n  of  the  mode l .  I n c l u s i o n  of  o v e r l a p p i n g  gene ra t i ons  
wou ld  necess i ta te  the  t e m p o r a l  r a the r  t h a n  the  a sympto t i c  analys is  o f  the ep idemic  
equa t i ons ,  since the exposu re  of  i nd iv idua l s  to in fec t ion  w o u l d  n o  l onge r  be  
u n i f o r m  across  genera t ions .  I n  ad d i t i o n ,  such  c o n s i d e r a t i o n s  as genet ic  dr i f t  a n d  
m i g r a t i o n  w o u l d  have to be cons ide red  in  some  cases, e.g., m i g r a t i o n  p lays  a n  
i m p o r t a n t  role in  m a i n t a i n i n g  foci o f  in fec t ion  d u r i n g  the  c o n s o l i d a t i o n  phase  o f  
m a l a r i a  e r ad i ca t i on  p r o g r a m s  [19] .  Never the less ,  the s imple  mode l s  p resen ted  here 
shou ld  p rov ide  ins igh t  in to  the  d y n a m i c  i n t e r ac t i on  o f  the hos t  g e n o t y p e  a n d  
infec t ious  disease.  
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