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Abstract. Ewens (1972) proposed a model in the infinite allele framework for 
populat ions with neutrality of  all alleles at a particular locus. This paper  
proposes a generalisation of Ewens'  result for situations where there is a form 
of weak selection. The models considered here are continuous time, discrete 
state space Markov processes. 
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1. Introduction 

The advent of  a variety of  biochemical techniques to distinguish between alleles 
at a locus focused attention on the neutralist versus selectionist hypotheses as 
explanations of  genetic variability. Models of  these hypotheses have also received 
considerable attention in recent years. An extensive bibliography and description 
of these models may be found in Ewens (1979). Of  particular concern to us here 
are the so-called infinite alleles models. These models require each mutant  allele 
to be a new (unique) allele. 

Among the collection of  models proposed as models for neutrality a model 
of  Ewens (1972) provides a prototype. Ewens sampling distribution is based on 
four assumptions: 

(i) neutrality of  all alleles at a locus; 
(ii) a fixed populat ion size that is large compared with the sample size; 

(iii) a stationary stochastic process of  mutation and drift; and, 
(iv) a potentially infinite number  of  alleles, where only unique alleles result 

f rom mutation. 
Though other collections of  assumptions have been studied, results similar 

to Ewens sampling formula emerge. Notable in this regard are the models of  
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Karlin and McGregor  (1966), Watterson (1974, 1976), Kingman (1977a, b) and 
Rothman and Templeton (1980). Indeed, a special case of  our model provides 
yet another approach to Ewens formula. 

Models of  symmetric selection have also been studied elsewhere. Gillespie 
(1977) shows that a model of  selection in a random environment yields Ewens 
sampling formula too. Thus any test of  neutrality may have little power for certain 
forms of selection. On the other hand Watterson (1977) describes an alternative 
form of selection which does produce an alternative model. 

Our approach is via a continuous time, discrete state space Markov process. 
Each class of  alleles is assumed to evolve according to a birth and death process. 
Alleles in a given class are assumed to be selectively neutral, so they have the 
same birth and death rates. But alleles in different classes have different birth 
and death rates. The classes are then coupled by assuming that mutants arising 
from births in one class may belong to another class. Though the number  of  
classes is assumed fixed the number of  possible alleles within any class may be 
infinite. 

Our purpose in introducing this model is two-fold. On one hand, by providing 
a f ramework for a future study of hypothesis tests, in the spirit of  Neyman and 
Pearson we hope to shed some light on the neutralist versus selectionist debate. 
The other motivating factor involves an ongoing study of mutation rates in man. 
Since indirect estimates are based on neutrality, among other assumptions, an 
investigation of this sort will allow us to describe the impact of  departures of  
certain assumptions on our estimators. In particular, data collected in Neel and 
Rothman (1981) indicates a higher frequency of rare variant alleles in tribal 
populations than in civilized populations. To investigate this difference without 
accepting a higher mutation rate in tribal populations requires such a framework. 

2. The basic model 

A simple linear birth and death process with immigration was first proposed as 
a model for allele behaviour by Karlin and McGregor  (1966). Our model extends 
their process to several classes with possibly different birth and death rates. Each 
class in isolation is a Karlin and McGregor  model but in our model the immigra- 
tion process is a transfer of  mutant alleles from one class to another. 

Consider the following modification of the classical infinite allele bir th-death 
process. Alleles are divided into C classes with birth and death rates in the j th  
class being bj and dj respectively. Let wj = bJ d~. I f  a birth occurs in class j then 
with probabili ty q the birth is a mutation to a new allele which we assume is a 
member  of  one of the existing C classes. The conditional probabili ty that a 
mutant, whose parent is in class j, belongs to class i is uji, y c=~ u~i = 1. 

Let @(t,  i) denote the number  of alleles with i copies in class j at time t, let 
Mj(t) = Y~7=1 iGj(t, i) be the total number of individuals in class j at time t and 

o o  

let Kj(t)=~=1 Gj(t, i) denote the total number  of different alleles present in 
class j at time t. The moment  generating function (m.g.f.) for {Gj(t, i)} is 

H(O, t) = E exp j~l 
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and H(O, t) satisfies the differential equation 

--=OH ~ [bjpiexp(Oi+l,_Oij)_l]OH 
Ot j = l  i=I OOij 

+ ~ ~ dfitexp(Oi-ld-Oij)-l] O~H 
j = l  i=2 O0/j 

OH c c 
"q-j=l ~ 4 ( e - ~  r=lE brUrj. 

[ )] �9 E Mr(t) exp ~ OuGj(t , i) , (1) 
j 1 i=1  

co 
where p = 1 - q  and OH/O0o = E[Gj(t, i) exp 2 jc l  Y~=I 6iGj(t, i)]. 

Setting O0 = iOj in (1) we obtain the following differential equation for the 
moment generating function of  {Mj(t)}, 

c c OL 
OL_ OL[b:p(e~176 E ( e~  • brtlrj 
Ot j = l  OOj j = l  r~ l  O0 r 

: ooJ,~ o ] -;-;~/(e J-1){bjp+bjqujj-4e-~ Z (eOr--1)Ujr , (2) 
j = 1 r :#j 

where L(O, t ) =  E[exp 2 ic l  O:Mj(t)]. 
Restricting attention to the marginal m.g.f, of  Mj(t),  we get 

~ E e ~ = {-~o E e~ ( e ~ - l )[ bjp + bjquj~ - dj 

+ ( e ~  Y. b~urjEM~(t) e ~176 (3) 
r#-j 

Thus from (2) and (3) we see that a necessary condition for the Mj(t) to be 
independent random variables is 

C 
(e~ ~ b, uo{EMr(t)-E(M,(t)  e~176 

j = l  r # j  

which is trivially satisfied if ujj = 1, j = 1 , . . . ,  C, but is not true in general�9 
If  there is only one class of alleles, so that C = 1, then the model reduces to 

the classical linear birth and death process discussed, for example, in Bailey 
(1964). This process becomes extinct with probability one if o9~ ~< 1, and if Wl > 1 
then the population becomes extinct with probability o91 ~o, or explodes with 
probability 1 -o9~ -Mo where Mo is the initial population size. Thus even if o91 = 1, 
the system does not settle down to a stable equilibrium distribution. 

By extending the linear birth and death model to incorporate several classes 
with different birth and death rates we hope to establish a model that, at least 
under certain conditions on the tot and uo parameters, will yield a suitable stable 
equilibrium population�9 

If we differentiate (2) with respect to 0j and set 01 . . . . .  Oc = 0, we get 

d c 
-~EMj(t) = EMj(t)  ~(ogjp-1)+ q Y, EMr(t)bru O. (4) 

r = l  
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Therefore a necessary condition for the existence of stable expected class sizes is 
(A) there exist non-negative constants M1, M E , . . . ,  Mc such that 

C 

Mtdt(1-totp)=q }~ Mrbrur j  , j = I , 2 , . . . , C .  
r= l  

If there is a positive solution to this system of equations then tot( p + qua)<~ 1 
with equality only if u, t = 0 for all r Cj. Denote by (B) the condition 

(B) tot(p+qutt)<l , j =  1 , 2 , . . . ,  C. 

Under conditions (A) and (B) there is also a consistent, stable expected 
number of alleles with i copies in class j at equilibrium, viz., 

Mj(1-totp)(totp)'-l/i, i>~1, j =  1 , 2 , . . . ,  C. 

A discussion of the conditions under which (A) is satisfied is given in Sect. 
4. One special case of interest is uo = C -1, the case where a mutant is equally 
likely to be a member of any of the C classes. If uo = C -1 for all i,j then condition 
(A) holds if 

C 

q ~ t o J ( l - t o t p ) =  C (5) 
t = l  

whence M~ is proportional to [d j (1-  totp)] -~. Condition (5) is trivially satisfied 
if to t = 1, j = 1 , . . . ,  C. If  the to t are not all equal then condition (5) indicates the 
degree of weak selection allowed in the model. 

3. The modified process 

Even if (A) and (B) are satisfied the simple model put forward in Sect. 2 needs 
to be modified in order to obtain a non-trivial equilibrium distribution for the 
Gt(t, i) process. Suppose that (A) and (B) hold and u~< 1 for at least one 
j - -  1, 2 , . . . ,  C. One way of modifying the above model to yield an interesting 
equilibrium behaviour is to adjust the rate at which mutant alleles are produced 
in such a way that the probability of a mutant offspring being produced in class 
r and joining class j in a small time interval (t, t+ dt) is (M,b, qurt) dt. 

We will use lowercase to denote the modified process. From (1) the modified 
process has m.g.f. 

h(O, t)= E exp( ~ ~ O~gt(t, i) ) 
j=l i=1 

which satisfies 

Oh 
Oh_ot j=l ~ i~1 ~ bjpi[exp(Oi+'~ l]o0o 

Oh c Oh 
+j=l ~' ,=2 ~ 4i[exp(O'-~~ 

C C 

+ q  ~ ( e % - l )  Y~ b,M, uoh(O, t). 
j = l  r = l  
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Setting Oh/Ot = 0 we find that this differential equation is solved by the joint m.g.f. 
C oo 

h(0, t )=  [[ I] exp[Aq(e%-1)]  
j = l  i = 1  

where a~ = M j ( 1 -  wjp)(tosp)~-l/i. That is, suppressing the t, at equilibrium the 
numbers of  alleles in class j with i copies, gs(i), are independent Poisson random 
variables with mean Ao, j = 1 , . . . ,  C; i -- 1, 2 , . . . .  Also at equilibrium the total 

oo 
number of  alleles represented in class j, k~ = X~= 1 gs(i), has a Poisson distribution 
with mean -M;[ (1  - tosP)/tosP] log(1 - to:p). 

At equilibrium the total number of individuals in the j th  class, ms, has m.g.f. 

exp[hu('e ~~ - 1)] = [(1 - tosP e~ 1 - tosP)] -~j 
i = 1  

where 4~s = M~(1 - tosP)/(toJP), and so mj has a negative binomial distribution, 

P(ms=m)  = ( 1 -  tosp)~j (qSj + r n -  1 ) m  (tosP) m" 

It is interesting at this point to go back and consider the linear birth and 
death process model proposed in Sect. 2 of Karlin and McGregor (1966)�9 Suppose 
we have C independent linear birth and death processes operating with the j th  
class having birth and death rates b s and d s respectively and with new alleles 

C 
entering the j th  class as a Poisson process at constant rate q ~r=l Mrbrurj, for 
some constants MI, M 2 , . . . ,  Mc. Further suppose the new alleles evolve with 
the same birth and death rates as the other memlSers of the class they enter. From 
Karlin and McGregor Theorem 2.1 we have that in class j the gs(t, i), i = 1, 2 , . . . ,  
have independent Poisson transient distributions, similar to the equilibrium 
distributions in the model above, and since the classes are independent it is a 

�9 �9 �9 C simple matter to sum across classes to get the transient dlsmbutaons of Y~;= 1 gJ (t, i) 
and ms(t), the total number of individuals in class j at time t. The Karlin and 
McGregor results follow without any conditions on M I , . . . ,  Mc. The role of 
conditions (A) and (B), restricting the values of M 1 , . . . ,  Mc that can be con- 
sidered, is to ensure that the proposed "modified process" is a closed system 
with class sizes that remain finite. 

Next we will investigate some features of the proposed modified process�9 
First, the conditional distribution of gs(1), gs(2) , . . ,  given that the total number 
of alleles represented in the j th  class is k~ = k, is multinomial; the conditional 
probability that an allele selected at random from the j th  class is represented by 
i copies being 

-(tosp)~/[i log(1 - tosP)], i = 1, 2 , . . . .  

More generally, the probability that an allele selected at random from the 
population is represented by i copies is 

[ E ~ gs(i) k~ = ~ (tosp)~/{illog(1-tosp)l} �9 E kj k s 
j = l  1 j = l  1 

C 

= X as(tosp)'/{illog(1-tosp) l} 
j = l  
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where 

Mj(1 - wjp)[log(1 - tojp)]/(tojp) 
aj= c ~.j=, Mj(1 - ~ojp)[log(1 - wjp)]/(tojp) 

as the kj are independent Poisson random variables. 
Another aspect of this model which is of interest is the conditional distribution 

�9 . C of the number of alleles represented by 1,2,3, �9 copras, 1.e. ~-j-1 gj(1), 
C . . . . . .  - C  

~,-1 gi(2) . . . .  , given the total number of lndlwduals m the populatmn, ~i-~ mi. 
- ~ C  C ~ -  - 

First ~j= ~ gi (i) has a Poisson distribution with mean p~ ~j = ~ ((h;toj)/i. Also ~c= ~ mj 
has m.g.f. 

C 

[I [1-(o;pe~ -%, 
j = l  

S O  

where 

Thus 

P mj = n = H (1 - wjp)+Jp"A., 
j i j = l  

A. = [~,+.~oc=" {j=I~ (q~J+xXJ- 1)a~fJ}] �9 

P ~ gj(1) = a~, gj(2) = a 2 , . . ,  m j  = n 
j 1 j = l  j = l  

/]a/ ) �9 pi (gwj)  , ail P ~ m j = n  
j = l  j 1 

[( )/ ]'/ = Ag'  ~ g w j  * ai!, (6) 
i = 1  j = l  

co 
where n = ~i= ~ iai. 

From the discussion in Sect�9 4, if condition (A) is satisfied then the model 
with no selection acting is precisely the model with wj = 1, j = 1 , . . . ,  C. Thus if 
there is no selection (6) reduces to 

/ P gj(1) = a~, gj(2) = a 2 . . . .  mj = n = (O/i) '~' ai!, 
j 1 j = l  j = l  H i = 1  

where 0 = (q/p)  F~jCm Mj, which is Ewens' sampling formula. Thus the modified 
process yields an equilibrium behaviour which provides a generalisation of Ewens' 
result to certain cases of weak selection�9 

Further, 
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where N = Y.~I in~ and x E'~l = x(x - 1) �9 �9 �9 (x - ni + 1). In particular,  

E ( y~l gy( i) j~'_l my = n) = A~i (/~=l CJto~/i)A,-i" 
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4. Comments on condition (A) 

Condi t ion  (A) imposes constraints on the toi and uij parameters  and the toi in 
turn reflect the relative selective advantages o f  the various classes o f  alleles. 
Summing the equat ions in (A) we get 

c 

E Mj d j ( 1 -  toy) = 0 (7) 
j = l  

and so if to1 = to: . . . . .  toc and some My is positive then (7) implies that  % = 1 
for all j. Also if toy are not  all equal then at least one % is greater than 1 and at 
least one % is less than 1. 

In general  we can write the system of  equat ions given in (A) in the form 
A M = 0 ,  where M ' = ( M 1 ,  M2,.. . ,  Mc) and A is a C •  C matrix. A non-zero 
solution to these equat ions exists if det A =  0. Let C =  U ' - I ,  where U =  (uv) is a 
matrix o f  probabilities. With the convent ion (1 - %) ( toJ (1  - %)) = 1 if toy = 1, we 
can write 

k = 1 i 1 , . . . , ik  

where Ch...~ k is the k • k matrix formed by the elements-in both the il,. �9 �9 ik rOWS 
and columns of  C and Y'~l,...,*k denotes summat ion  over all distinct subsets of  size 
k drawn f rom {1, 2 , . . . ,  C}. The dependence  o f  det A on to t and u a is made  clear 
in (8). 

I f  C = 2 then det A = 0 implies either to1 = w2 = 1 or 

q ua2 + u21 = 1. 

In  both  cases, if (B) holds,  positive solutions for Ma and M2 exist. Condi t ions  
ensuring the existence o f  positive solutions for  M~, . . . ,  Mc can be derived for 
the cases C > 2 by considering (8) and the equat ions in (A). 

One special case o f  the above model  which is o f  some interest is the case 
ua = C -1. This model  represents the si tuation where the class o f  a mutant  is 
selected at r a n d o m  f rom the C available. In this case the ( i , j ) th  element o f  A is 

aq = djtojqC -1, i ~ j 
= dj(toyp - 1 - qtojC-1), i =j 

and so 

det A=[j=~]l dJ(WjP-1)][ l + qC-'j~_l (toJ(tojP-1)) ]. 
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I f  tojp < 1, j = 1, 2 . . . .  , C then det A = 0 if  

c 
C = q  ~, ( t o J ( 1 - % p ) )  -1. 

j = l  

and M i is propor t ional  to [d~(1 _ % p ) ] - l .  
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