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Abstract. The behaviour of a P61ya-like urn which generates Ewens' sampling 
formula in population genetics is investigated. Connections are made with 
work of Watterson and Kingman and to the Poisson-Dirichlet distribution. 
The order in which novel types occur in the urn is shown to parallel the age 
distribution of the infinitely many alleles diffusion model and consequences 
of this property are explored. Finally the urn process is related to Kingman's 
coalescent with mutation to provide a rigorous basis for this parallel. 
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I. Introduction 

The following P61ya-like urn process ~ was described in Hoppe (1984). An urn 
contains one black ball whose mass is 0 > 0 and various numbers of other balls 
having assorted colours (non-black) each of mass one. At each instant of discrete 
time a ball is drawn at random (that is in proportion to its mass). I f  the selected 
ball is black then it is returned together with one additional ball of a previously 
unused colour. Otherwise it is returned together with one additional ball of the 
same colour. All new balls have unit mass and for definiteness the natural numbers 
will be used sequentially to label the colours as the need arises. At the outset 
there is a single black ball and no others in the urn. The random variable Xn is 
defined to be the label of  the additional ball returned after the nth drawing. K 
is the random number of distinct labels present after the nth return and &(n), 
1 ~< i ~  < K, is the number of  balls labelled i. Also a = (al,  aa, �9 . . ,  an) denotes, in 
the terminology of genetics, the allelic partition (Kingman (1978)) aj being the 
number of times the integer j appears in the set {Sa(n) , . . . ,  SK(n)}. 

* This research was partially supported by the Sloan Foundation under Grant 85-6-14 and by the 
National Science Foundation 
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The use of allelic partitions is convenient in those genetic applications where 
no biological significance is to be attached to the actual labels which merely 
represent distinct allelic forms of a gene and aj becomes the number of alleles 
having j copies in a sample. The sequence { X 1 , . . . ,  X , }  determines a random 
allelic partition Hn pertaining to which the following was established. 

Theorem A. {Hn} is a M a r k o v  process  h a v i n g  m a r g i n a l  d i s t r ibu t ions  

n! 012i 
P r [ I I . : a ] : ~ - g  ~ 

i=l  ia ia i  [ 
(1.1) 

where  [ 0 ]" = 0 ( 0 + 1) �9 �9 �9 ( 0 + n - 1) is the  a s c e n d i n g  f a c t o r i a l  a n d  a = ( al  , . . . , a , )  
wi th  Y, iai = n. 

The right-hand side of (1.1), known as Ewens' sampling formula, was derived 
(Ewens (1972), see also Karlin and McGregor (1972)) as the limiting distribution 
of allelic numbers in a random sample, first for a discrete Wright-Fisher model 
with mutation and then later by various authors for other models displaying 
infinitely many selectively neutral alleles. The goal of  this paper is to understand 
why (1.1) occurs in the present context where there appears neither a genetic nor 
a population structure. 

The paper is a mixture of theorems and discussion and it is organized as 
follows. In Sect. 2 we present our first two theorems describing the limiting 
behaviour of q/. The distributions which emerge relate intimately to work of 
Watterson and Kingman, connections which are explored in Sects. 3 and 4 dealing 
with size-biased relabelling of P61ya urns and the Poisson-Dirichlet distribution, 
respectively. Section 4 also addresses modelling issues associated with samples 
from a population. In Sect. 5 we draw upon a remarkable equivalence between 
the order that alleles are sampled and their age distribution in order to derive 
various age properties in an entirely new and simple fashion. In Sect. 6 we develop 
a representation for Ewens' partition as a residual allocation model. Section 7 
describes affinities between the Markovian property of / /n  and partition structures, 
while Sect. 8 establishes the relationship between the urn model in reverse time 
and the genealogy of the coalescent (Kingman (1982), Tavar6 (1984), Watterson 
(1984)) with mutation. The final section summarizes the main results. 

2. Limit behaviour of  the urn 

Theorem 1. 

l i m S i ( n ) = P i  and ~ P~= I 
n--> co n i=1 

Theorem 2. The propor t ions  

z . =  P,, 
i 

n ~ l  

a . s .  
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are independent and identically distributed each with a Beta (1, 0) density 0 ( 1 -  
z) ~ ~ l ( 0 < z <  1). 

Corollary. 

n - 1  

P I = Z 1  and P n = Z n  1~ ( 1 - Z i ) f o  rn>~2.  (2.1) 
i=1 

To prepare for the proofs we need to establish some facts concerning multivari- 
ate P61ya urns for which we refer to Blackwell and MacQueen (1973) whose 
elegant treatment motivated our approach. 

At time t = 0 an urn contains cq balls of  type i(1 ~< i <~ K).  I f  ai is non-integer 
we interpret the fractional part  as being represented by a ball having the fractional 
part  as mass. At each instant of  discrete time a ball is drawn at random (with 
probabili ty proport ional  to its mass). The ball is then returned to the urn together 
with one additional ball of  the same type and unit mass. The random variable 
X~ is the type of the nth additional ball placed into the urn. It is possible to 
formulate this process without using physics concepts such as mass and we may 
equivalently consider a fixed array of K cells labelled 1, 2 , . . . ,  K and associated 
non-negative reals ai, 1 ~< i ~< K, with Y~ oei = 0. Tokens are sequentially thrown at 
this array in such a way that if Xn denotes the cell into which the nth token 
lands then 

Pr[Xn+~ = i[ X~,  X2,  . . . , Xn] - -  OIl ~- v~(n) (2.2) 
O+n 

where vi(n)  equals the number  of  tokens in cell i after n throws. The process 
{X1, X2 , . . . }  is endowed with the following properties: 

~i(n) 
lim =P~ and Y~Pg=I a.s.; (2.3) 
n~oo n 

_P-= (PI,  P2, �9 �9 �9 PK) (2.4) 

has a Dirichlet distribution with parameter  ( a ~ , . . . ,  aK) which we denote by 
D ( o q ,  . . . , a K )  ; 

Conditional on P, {X1, X2 , . . . }  are independent and 
identically distributed with distribution Pr[X1 = i l P]  = P~. (2.5) 

The Dirichlet D ( a l ,  . . . , a K )  is defined as the joint distribution of a random 
. . .  ~ X K vector of  proportions -P=-(PI ,P2 PK) where P i=  JY.j=iXj  and 

X~, X 2 , . . . ,  XK are independent G a m m a  random variables having respective 
densities 

1 
- - e  'x,, l ( x ~ > 0 ) .  
V(o~,) 

(It is convenient to regard the X~ as rePresenting on some scale the abundances 
of  different resources so that 3~ Xj is the total abundance and P represents the 
relative proportions.) The distribution is singular with respect to Lebesgue 
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measure  in K dimensions ,  but  the K - 1  d imensional  distr ibution of  
(P~, P 2 , . . . ,  PK-I )  is absolute ly  cont inuous  with density 

1~(~[ K O/i) ( K~I ~aK--1 K-lpTi__ 1 
[I~ F(O/i) 1- Pi] i=,[I (2.6) 

over  the s implex {(Pl,  �9 . . ,  PK-~): Pi I> 0 and  L~ pi ~ 1}. We record here for  later 
recall the fact that  the marginals  P~ have Beta(O/i, Yj~;i O/J) densities 

F(E O/j) pT,-~(1 - - p i ) ( E J ~ ' % ) - l l ( O  <p~ < 1) 
r(O/,)r(E.~, O/s) 

with E(Pi) = O/i/~S~l O/j. A detai led discussion of  the Dirichlet  distr ibution may  
be found  in Wilks (1962, Sect. 7.7). For  nota t ional  convenience  we denote  the 
symmetr ic  Dirichlet  in which all O/i ~ O/ by the symbol  D(O/; K). 

Proof of Theorem 1. Between selections of  the b lack  ball {Xn} behaves  like a 
P61ya urn, the types being represented by the currently used colours. In t roduce  
{h~}~%1 an independen t  family  of  Bernoulli  r a n d o m  variables such that  Pr[hi -- 1] = 
0 / ( 0  + i - 1) and Pr[hi = 0] = (i - 1)/(  0 + i - !) .  Define s topping t imes { ti} by t 1 = 1 
a.s. and,  for  i/> 2, ti = min  { j >  ti_l: Aj = 1} or oo if no such j exists. These  times 
herald the in t roduct ion  of  new colours. 

Fix an integer k/> 1 and set for  each n/> 1 

U(k) ~J i f l ~ < j ~ < k , A  s = l  a n d X , + k = X j  

" \ 0  else. 

tr(k)V ~ takes values in { 0 , 1 , 2 , . . . , k }  and condi t ional  on The process  { . . . . .  1 
{X1, �9 �9  Xk} it behaves  like a (k + 1) colour  P61ya urn where the types have been 
labelled according to the occurrence  t ime of  their  initial appea rance  if  that  t ime 
was prior  to k or zero (otherwise).  The initial urn compos i t ion  for  the {U(f  )} 
process is the relabelled configurat ion of  the {X~} process  after  k draws and is 
given by (O/(0k),..., O/(k k)) where  

O/,k)=(~iSx,(k) i=o.l<~i<~k' 

Also, let 

Si(n,k)=#{j: u)k)=i,l<~j<~n} i f0~<i<~k 

denote  the relabelled configurat ion of  observed types at t ime n + k (where all 
types first observed after  t ime k have been labelled zero, as noted  previously) .  
Most  o f  the k + 1 colours are of  course absent.  

Let n ~ o o  and app ly  (2.3) to deduce  the existence of  r a n d o m  quantit ies 
(k). 0 ~< i <~ k} such that  Ti , 

Pr[lim Si(n,k)+O/Ik) (k)lX 1 X k ] = l  
L n~oo n+k+O --'Yi , ' ' ' ,  

and take expecta t ions  to obta in  
(k) 

lirfl Si(n'k)+ai -311 k) a.s. 
.-~ n+k+O 
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Observe that  S~(n, k ) +  oil k ) =  oil n+k) for  1 ~ i ~  k by definition so that  

- (n+k) 
lim ,~i = 71k) 
,,~oo n + k 

implying that  y~k) does not  depend on k and giving 

C t ( n )  
i 

lim =y~ a.s. l < ~ i < o o  
n ~ o o  n 

where yl k) =- yi for 1 ~< i < co. 
Next, note that  

0 
E['y(ok) I X ,  , X2 ,  . . . , Xk]  = 

O + k  

because condi t ional  on (X~, X 2 , . . . ,  X k )  the r andom variable y(0 k) has a Beta- 
(0, k) distr ibution being a marginal  o f  the Dirichlet distribution 
o(G ,?) , . . . ,  Thus 

I I ~ E 1 - ~  y~ - O ~ - k "  
i=l  

Since 

co k 

1 -  ~, Yi = lim 1 -  Z 3'~ 
i = 1  k ~ o o  i ~ l  

we use domina ted  convergence to force 

0 
~=1 k-~o~ 0 + k  = 0  

1 oo / > 0  Y9 and because -Y~=I  7~ this assures i=~ "y~ = 1. 
With the limit behaviour  in hand  for the relabelled process we return to the 

original sequence {X,}. The colour  i first appears  at time 6 and thus S~(n) = a ~') ti 

for n/> 6. We conclude that  

S,(n) 
lim = %, =- Pi a.s. 
n -->(x) I"~ 

By our  const ruct ion the only positive terms in the sequence (71(w), T2(w) , . . . )  
are (7~,(w), y,2(oJ),. . .  ) and thus Y~_, Pi = Y.~=~ %, = 1 because Pr[6 <oo  finitely 
often] = l im ,_~  Pr[h~ = 0, Vi/> n] = l im ,_~  rI~=, (i - 1) / (0  + i - 1) = 0. 

P r o o f  o f  Theorem 2. I f  ( Y 1 , . . . ,  Y,+I) have a joint  D ( a ~ ,  a 2 , . . . ,  a ,+ l )  distribution 
] ~ n + l  

then the r a n d o m  variables { U1, �9 �9 �9 U, }, where Uk = Y k / ~  ~= k Y~, are independent  
n + l  

with Beta(ak,  ~ = k + l  a~) densities respectively (Connor  and Mos imann  (1969)). 
We will use this fact to verify that  Z ,  and the family { Z ~ , . . . ,  Z,_a} are indepen- 
dent for all n/>2.  Thus fixing n denote by ~ ( ' )  the o--algebra generated by 
{XI,  X 2 , . . . }  up to the time t,; let ak = S k ( t , ) ,  1<~ k<~ n, represent the number  
o f  balls labelled k in the urn just after the first ball with label n is added  and 
define a , + l =  0. By coalescing into one group all types with labels > ~ n + l  we 
obtain a process whose probabilist ic behaviour  f rom time t, onwards  is that  o f  
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a P61ya urn with initial composition ( a l , . . , ,  a,+,)~ Accordingly, given ~(n) the 
joint distribution of ( P , , . . .  P . , ~ = , + I P i )  is D(a, ,  a2 , . . . ,  a,+,) and con- 
sequently given if( ')  the random variables {Z~, l<~i<~n} are independent 
Beta(o~,/3~) where/3~ = ~i"__++~+1%. The definition of t, requires a ,  = 1 a.s. forcing 
th~ joint density given ~('> to factor into a product of two terms, 

"([' F(a~+fli) z'~ ' ( l - z~ )  ~ ' - ' ]  and O(1-z.)  ~ 
i = 1  r(o~,)r(~,) 

The unconditional joint density likewise factors as cb(z, , . . . ,  z ,_,)O(1-z,)  ~ 
for some function 43. This displays 0(1 - z , )  ~ as the marginal density of Z, and 
shows Z, and { Z 1 , . . . ,  Z,-1} to be independent. Since n is arbitrary the proof  
is complete. 

Proof of Corollary. 

P.=z.~ ei 
i = r l  

= Z,(1 - P1 . . . . .  P, 1) 

l - P ,  . . . . .  P, ] 
= Z . f :  E - : p---~_2 ( l - P ,  . . . . .  P.-2) 

= Z . ( 1  - Z . _ , ) ( 1  - P1 . . . . .  P.-2) .  

Induction finishes up the proof. 

3. Connection with Watterson's  k-al le le  model  

The genetics underlying (1.1) is obscured by the above formulation. In the original 
context (Ewens (1972)) a population of 2 N  genes with an infinite number of 
possible alleles at a locus with no selective differences is reproducing according 
to a discrete t ime Wright-Fisher process. The 2 N  genes of each generation are 
formed by sampling with replacement from the gene pool o f  the previous gener- 
ation. Additionally as each gene is selected there is a probability u that a 
(non-recurrent) mutation occurs to a novel allele. The process tracking the allele 
numbers is transient since each allele is eventually lost, but the partition of the 
population forms a finite state irreducible Markov chain which approaches an 
equilibrium distribution under mutation and genetic drift from which a sample 
of size n is taken whose partition distribution (in the limit N --> oc, u --> 0, 4Nu --> O) 
is then shown to be described by (t.1). 

Strictly speaking, if a sample is taken then there must be a well-defined 
population (probability model), namely the equilibrium distribution. Unfortu- 
nately (Ewens (1979)) this distribution is not tractable and Karlin and McGregor 
(1972) bypass it to derive (1.1) instead analysing the line of descent from one 
generation to the next to derive a recursion which simplifies in the limit 4Nu --) O. 

A variety of different models for selectively neutral mutation lead, in the limit 
of increasing population size to (1.1). Kingman (1978) has described three broad 
features linking the models and Watterson (1976) and Kingman (1977) have 
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identified the limiting populat ion as being Poisson-Dirichlet,  a type of limit of  
Dirichlet populations. (This will be defined below.) In this section we explain 
how the urn model ~ arises as a limit of  samples from Dirichlet populations 
thereby recovering the genesis of  (1.1) as resulting from a sample. We rely on 
an approach due to Watterson (1976) to the infinite alleles model. 

Watterson begins with a k-allele Wright-Fisher process allowing a constant 
mutation probabili ty from one type Ai to any other type Aj. For large population 
sizes he approximates by a diffusion whose stationary distribution of allele 
frequencies is the symmetric Dirichlet D(a;  k) where a = O / ( k -  1) and 0 is a 
parameter  determined by the diffusion. Watterson shows that in the limit (k-~ 
00, ~ -+ 0, k~ -+ 0) the distribution of the partition determined by a random sample 
{X1, X 2 , . . . ,  X~} from D ( ~ ;  k), converges for each fixed n, to the right-hand 
side of  (1A). (Here Xi takes the value j(l<~j<~k) if the ith observation is of  
allele Aj.) Now such a sequence {X1, X2, �9 �9 �9 Xn} can be generated from an urn. 
In fact, relations (2.2)-(2.5) exhibit a duality, familiar to enthusiasts of  exchangea- 
bility, identifying a random sample from a Dirichlet population as a sequence 
of selections from an appropriate  multivariate P61ya urn. We may therefore 
imagine a P61ya urn as described in Sect. 2, having an initial composition of 
balls for each of the k allelic types, from which n drawings are made. This 
sequence has the same joint distribution as a random sample from D ( ~ ;  k) and 
thus has the same partition distribution. 

The observations {X1, X 2 , . . . ,  X,} are exchangeable so the information in 
them may be summarized by the set of  occupancy numbers {nl, n2, . .  �9 n k }  where 
ni denotes the number  of  observations of  allele A~. Thus we can resort to another 
method of  bookkeeping whereby we record the observations by relabelling the 
alleles according to the order in which they first appear  in the sample. Thus the 
first allele observed is assigned the new label 1 and so are all subsequently 
observed alleles indistinguishable from it. The second different allele observed 
is relabelled 2 and this process is continued to relabel all k types. Represent this 
relabelled sequence as { I11, Y2, . . - ,  Yn}. The occupancy numbers of  this sequence 
obviously form a permutat ion of (n 1,/'/2, �9 - �9 , nk) and thus the partition is the same. 

The probabilistic structure of  { Y1, Y2, �9 �9 .} is most transparent by considering 
the observations as being generated by the P61ya urn described two paragraphs 
up. At the start the total mass of  all the balls in the urn is km One ball is selected, 
relabelled as 1, and returned together with an additional ball also labelled 1. 
Moreover all of  the original balls in the urn of the same type as the ball selected 
are renamed 1. This gives Y1 = 1 a.s. The urn now contains k~ + 1 balls of which 
(a  + 1) carry the new label 1 while the remainder have not been renamed. Thus 
with probabili ty (t~ + 1) / (ka+ 1) I/2 takes the value 1 while with probability 
(k - 1)c~/(kc~ + 1) Y2 will take the value 2 (corresponding to a different allele). In 
general, given { Y1, Y 2 , . . . ,  Y~} 

Pr[ Y,+, = i[ II1, Y 2 , . . . ,  Yn] 

where/x , (n)  = #{1 ~<j~< n: Yj = i} and therefore 

Pr[ Y,+I = new label I Y1, Y 2 , . . . ,  Y n ] -  

a + Izi(n) 
(3.1) 

k a + n  

( k - r  

ko~ + n 
(3.2) 
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where ~b(n) is the number of distinct values among { Y1, �9 . . ,  Y,}. Equations (3.1) 
and (3.2) describe an urn model which, for large k and small t~ with ka-> 0, 
closely approximates ~// and we refer to it as a/l(a; k). 

We interpret these equations as follows. Each time an allele type is first drawn 
from the urn, the mass of alleles not yet observed decreases by an amount a. 
Ultimately the source of  new alleles is exhausted since k < oo. But when k is large 
and a small, the effective mass of unobserved alleles remains nearly constant, 
for moderate sample sizes, at the nominal value ka.  Since in the limit (k-~ oo, ot -~ 0 
and ko~-> 0), the probabilities in (3.1) and (3.2) converge, respectively, to 
I~i (n) / (O + n)  and 0/ (0  + n) precisely their counterparts defining a//, we would 
expect that the corresponding partition distributions converge to the partition 
distribution of the urn a//, which, by Watterson's (1976) result is given by (1.1). 
This can be made rigorous using weak convergence as for example in the proof  
of the theorem in Kingman (1977). However, the truth of this assertion is already 
known by the direct, although non-intuitive combinatorial argument in Hoppe 
(1984) and our goal here is merely to provide some insight into Theorem A. The 
urn model ~ thus represents a limiting case of sampling from a Dirichlet 
population, by maintaining a constant source 0 of novel alleles regardless of the 
number of  distinct alleles already present in the sample. 

In a similar fashion we can provide illumination for Theorems 1 and 2. 
Observe that (2.3) is a strong law of large numbers recovering the Dirichlet 
distribution from the limiting frequencies. Equally there is a limit for the relative 
frequencies in the relabelled { Y~, Y2,.-.} and we proceed to show this limiting 
population to be the size-biased permutation of D ( a ;  k). We first define this 
concept. 

Let P = (P~, P2, �9 �9 .) be a random probability distribution on the integers, 

Pi~>0 and Y.P~=I a.s. 
i 

P may be supported (as with D(~ ;  k)) on a finite subset of the integers and this 
subset may be random. For concreteness of terminology we will continue to call 
P~ the frequency of some allele A~ in a hypothetical population. The size-biased 
permutation ps _= (p~, p~ , . . . )  randomly rearranges the frequencies {Pi} in pro- 
portion to their values, that is for any i~>1 and distinct subscripts o-(1), 
~r(2) . . . .  , o-(i), 

Pr[P] = P~(j): 1 ~ j  ~< i l _P]= P~o)j__II 2 P=(J) 1 k = l  Po-(k) �9 (3.3) 

This equation has a simple interpretation. We imagine that an individual is 
randomly selected from the population and we denote the frequency of its 
(random) allelic type for P~. All such alleles are then removed from the population 
after which another random selection is made. The frequency (in the entire 
population) of this second randomly chosen allele is P~ and this process is 
repeated indefinitely or until all alleles have been exhausted. 

If  the population is finite, then each random selection is made using a uniform 
distribution over all remaining individuals. This means that an allele is selected 
in direct proportion to its numbers in the population. On the other hand, when 
the type space is countably infinite, as there is no uniform distribution over such 
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a set, the selection procedure is interpreted as meaning directly that an allele 
type is chosen in proportion to its frequency. Hence the name size-biased permu- 
tation. 

There is an equivalent mechanism for generating _ps from a random sample 
(with replacement) {X1, X2 , . . . }  from _P. (Here again Xi is directed to take the 
value j if the ith observation is allele Aj.) Denote by Qj the relative frequency 
in the population of the j th  distinct allele in the sample. Clearly if or(l) and (r(2) 
are any distinct positive integers 

Pr[Q1 = P~(1)[-P] = P~(1) 

and 

Pr[Q1 = P~(1), Q2= P~(2)I-P] -- E k P~(1)P~(2) P~(1)P,r(2) = 
k=l 1 -- P~(1) 

These are just (3.3) for i = 1, 2, and it can be shown more generally (by induction) 
that Q = (Q1, Q2, . . - )  is a version of _ps. 

In a correspondingly natural way, mimicking an earlier construction, the sample 
{X1, X2 , . . . }  determines a sequence { Y1, Y2,. . .} which relabels the alleles suc- 
cessively with the positive integers according to the order they first appear in the 
sample. 

Let o ! ' )  = ( i / n )  # {1 ~< i ~< n: Y~ =j} be the empirical probability function " < j  

for the relabelled observations. The strong law for exchangeable variables (2.3) 
asserts that 

1 
lim - # {1 ~< i ~< n: Xi = k} exists for each k. 
n ---) or) n 

Hence for almost all realizations {Xl(W), X2(w), . . .}  the proportions of all the 
different types converge. The labelling is irrelevant for the convergence along 
each sample path. Therefore 

lim o!  ") exists for each j. - ~ : j  
t l  --) c o  

But by definition, Qj is the relative frequency in the population of the j th  distinct 
allele in the sample and thus 

!irn Q~')= Qj. (3.4) 

When _P is the symmetric Dirichlet D ( a ;  k) then this method of generating 
the size-biased permutation _P" is by its construction equivalent to the urn o//(a; k) 
and (3.4) thus describes the limiting proportions of the k types in @(a;  k). Since 
ag(a; k) approximates 0-//, we would therefore expect _W to be close to the 
population defined by (2.1). This is confirmed by the representation (Patil and 
Taillie (1977)) 

i - - 1  

PSi=U1, P~= Ui I~ ( 1 -  Uj), 2<~i<~k-i (3.5) 
j = l  

of the size-biased permutation of the symmetric Dirichlet, where { U~} are indepen- 
dent random variables having Beta(1 + a, ( k - i ) a )  distributions respectively (_P~ 
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is an example of a completely neutral vector, in the terminology of Connor and 
Mosimann (1969), or a residual allocation model, in the terminology of Patil and 
Taillie (1977). The nomenclature in the first instance is striking because the 
genetics underlying this paper is called the neutral theory). Observe that in the 
limit k ~ oe, a ~ O, ka ~ O, the Beta(1 + a, ( k -  i )a )  random variables become 
Beta(l,  0) and (3.5) formally merges with (2.1). 

The partition distribution of a sample from a population depends only on 
the unordered population frequencies and thus the partition distribution of a 
sample from D(a;  k) is the same as that obtained from the urn ~//(a; k). This 
indicates that the partition (1.1) of the limiting urn 0//should be the same as that 
obtained from the limiting population (2.1) (modulo some continuity arguments). 
This conclusion is correct and while the heuristic development leading to it is 
original the result is not new since it is known from the cited work of Watterson 
(1976) together with Kingman (1977) that the Ewens formula (1.1) describes a 
random sample taken from a Poisson-Dirichlet population with parameter 0 
(denoted by PD(O) and described in the following paragraph). The size-biased 
permutation of PD(O) is given by (2.1) (see McCloskey (1965), Engen (1975), 
Patil and Taillie (1977)) while the non-increasing order statistics of (2.1) are 
PD(O). Both of them describe the same stochastic abundance structure and 
therefore give rise to the same partition distributions (1.1). 

There are a number of characterizations of a Poisson-Dirichlet population 
(see Kingman (1978, Appendix)). The original definition and existence proof  was 
given by Kingman (1975). He begins with a symmetric Dirichlet D(a;  k) in which 
the population frequencies are re-arranged in decreasing order 

P(,)/> P(:)~>' '"  I> P(k) 

and he shows that for each fixed j, (P(I), P (2) , . . . ,  P(j)) converge jointly to a 
vector (P~*,. . . ,  P~) as k-)  co, a - )  0, ka - )  0, and this vector is the j th  joint mar- 
ginal of a random probability _P* for which he coined the term Poisson-Dirichlet. 

We note, finally, that D ( a ;  k) does not converge to a proper random 
probability as ka -) 0. Each finite joint distribution tends to the zero vector since 
large k and small a realizes a population in which all alleles are present only in 
small proportions. Kingman's use of a permutation (descending order statistics) 
prior to passage to the limit overcomes this degeneracy. Similarly by first taking 
another (the size-biased) permutation we are again able to derive an appropriate 
limit. In fact, what the urn ~ is doing is directly generating the size-biased 
permutation of the Poisson-Dirichlet. We take this up in careful detail in the 
next section. 

4. Relation to the Poisson-Dir ich le t  distribution 

Watterson (1976) was the first to associate the Ewens sampling formula with a 
Poisson-Dirichlet population. His approach required the integration of  a mixture 
of multin0mials with a symmetric Dirichlet. Since the representation of the 
Poisson-Dirichlet as defined by Kingman loses the nice structure of the Dirichlet, 
which allowed the integration to be carried out, a similar calculation is not 
analytically feasible if the mixing distribution is Poisson-Dirichlet, and in fact 
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Watterson conjectures, "I t  is presumably the case, but not easy to prove, that 
[the Ewens formula] could be arrived at by directly sampling from the population 
described by D ( a ;  k) rather than proceeding indirectly as we have done, letting 
k[the number of alleles] ~ oe". 

A proof  of this conjecture was provided by Kingman (1977) using weak 
convergence theory to graft limits of partitions and limits of populations. We 
sketch his arguments. Suppose given a sequence of populations {p(k)} (Kingman 
assumes that the populations are finite and that samples are taken without 
replacement, but his argument is valid, and simplifies slightly, if sampling is with 
replacement, in which case the populations could be infinite, as is required here). 
Such a sequence is said to have the Poisson-Dirichlet limit if the population 
frequencies arranged in decreasing order converge in the sense of finite 
dimensional distributions to a Poisson-Dirichlet for some 0. This is shown to 
imply weak convergence of  the corresponding induced distributions regarded as 
measures on an appropriate compact metric space. The partition distribution of 
a random sample is expressible as the expectation of a bounded continuous 
function on this space and hence if {_p(k)} have a PD(O) limit then the partitions 
converge to the partition from a PD(O) population. (We note in passing that 
Kingman also proves the converse assertion.) Watterson (1976) contains an 
explicit calculation that the partitions from D(c~; k) converge to (1.1) as a ~ 0, 
k-* co with ks  ~ 0, and (Kingman (1975)) by the very definition of PD(O), the 
sequence {D(a ;  k)} has the PD(O) limit. This identifies the Ewens formula as 
describing the partition from a Poisson-Dirichlet population. 

This technical and indirect approach contrasts with the concreteness of 
Watterson's integrations for the symmetric Dirichlet. 

A direct proof  would be appropriate to exhibit for a result so basic but we 
have not seen one and we therefore provide such here. Our approach does not 
require determining the partition distribution, rather we compute the conditional 
probabilities of  observing any particular type in the future given the current 
sample. This exposes the prominent role played by the Poisson-Dirichlet and its 
characteristic property which Ewens exploited, and which is a consequence of 
the representation (2.1). 

Theorem 3 (Watterson, Kingman). The partition distribution of a random sample 
{ X ~ , . . . ,  X~} from a Poisson-Dirichlet population _P is given by Ewens' sampling 
formula. 

Proof In view of Theorem A it suffices to establish that {X1, X2, �9 �9 .} behaves 
sequentially (with appropriate relabelling) like the urn ~/. We therefore need to 
evaluate the posterior probabilities, given the sample {X1, X2, �9 . . ,  Xn}, that the 
next observation will be novel or one of the types already observed (I thank 
Bruce Hill for a Bayesian interpretation which led to the step of conditioning on 
_P below). Consider then Pr[Xn+I=Xj[Xa,X2,. . . ,X~] where l<~j<-n. By 
exchangeability of the sample it suffices to determine Pr[Xn+~ = XI]X~, . . . ,  Xn]. 
We thus evaluate 

Pr[X,+~ = X, l X l , . . . ,  X, ]  = E[Pr[X,+~ = X, [ X ~ , . . . ,  Xn, _P] I X ~ , . . . ,  X, ]  

= E[Px, I X l , , , , ,  Xn]. 
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The random variable Pxl is the first component in the size-biased permutation 
of P and is therefore Beta(l, 0). I claim that, more generally, the posterior 
distribution of Pxl given {X1 ,X2 , . . . ,X , }  is Beta(T,O+n-T) where T =  
#{l~<j~<n: Xj=Xi}.  The argument for this, though quite straightforward, 
requires some extensive preparation. The key is the remarkable property of (2.1) 
that it defines a population which is invariant (in distribution) under size-biased 
permutation (Engen (1975)), from which ensues this implication (Hoppe (1986), 
Theorem l(a)): 

If  a category if randomly (in proportion to its frequency) deleted from a PD( O) 
population then the resealed (to sum to unity) residual population is again 
PD( O ) and is independent of the frequency of the deleted category. (4.1) 

The first observation 321 by definition selects a category in proportion to its 
frequency. Give this category the new label # 1. Its frequency Pxl in the population 
will be denoted by both P~ and by Z1 e. The remaining categories are then 
relabelled #2,  # , . . .  with corresponding frequencies P~, P3~, . . .  in such a way 
that 

i--1 
# # 

P2 =Z2  and P~=Z~ II ( 1 - Z ~ )  fori~>2 (4.2) 
j - - 2  

# co where {Z~ }i=a are independent and identically distributed Beta(l, 0) random 
variables. That this is possible is a direct consequence of (4.1) and the fact that 
(2.1) gives a representation of a PD(O) population. The random sample is thus 
relabelled as {X~, X~ , .  # �9 . ,  Xn }. Evidently Xl  ~ ~ # 1. For j/> 2 either X~ = X1, 
in which case X 7 = # 1, with 

Pr[Xj = X1 [_P] = P1 ~ 

or Xj # X1 in which case X; ~ = # i  with (by (4.1) and (4.2)) 

Pr[X~ = # i[ X~ # Xl,  _P] = e~  

and thus 
i--1 

Pr[XT=#i[_P]=P~(1-P[)=Z~ II ( 1 - Z f )  for i~>2. 
j = l  

(Notice that the lower index in the product is now 1 in contrast with the 2 of 
{X2, X3 , . . .}  are still conditionally (4.2).) Moreover the random variables # # 

independent (given P#)  since relabelling does not alter their exchangeability, 
and represent a random sample from the same PD(O) population. The posterior 
distribution Pxl given {X1, X 2 , . . . ,  X,} is in the relabelled # context, the same 
as the posterior distribution of P~ given a random sample { X ~ , . . . ,  X ,  ~} of size 
n - 1  from P#. 

Thus assume that {X1, X 2 , . . . , X , _ I }  is a random sample from a PD(O) 
population _P (the symbol # has been deleted for notational ease). For the 
evaluation of the posterior distribution Pa given {X1, X2 . . . .  , X,-1} we refer to 
Connor and Mosimann (1969) who have defined a generalized Dirichlet distribu- 
tion Q =  (Q1, Q 2 , . . . ,  Qm) by Qx= U1, Q~ = U~ I~11 (1 - Uj), for 2 ~  < i<~ m -1 ,  

1 __,~, m--1 and t~,, = ,-,j=l QJ where { Ui} are independent Beta(a,  b~) random variables. 
The m - 1 dimensional vector (Q~ , . . . ,  Qm-1) has a joint density with respect to 
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Lebesgue measure  given by 

m-1 F ( a i + b i )  a-1 . . . .  
q~m ,-1 ~ F(a~)C(b~)  q~' qJ 

i = 1  j = i  

on the simplex qi/> 0 and ql +" " "+ qm = 1. Just as the posterior  o f  a Dirichlet 
remains a Dirichlet with a change in the parameters  the same is true o f  the 
general ized Dirichlet. In  part icular  if a r andom sample is taken f rom Q and if 
ni denotes  the number  o f  observations o f  type i (represented by f requency Q/) 
then the poster ior  density o f  (Q1, Q 2 , . . . ,  Q m - 1 )  is propor t ional  to 

i ~ l  j = i  i = 1  

which is a generalized Dirichlet  with poster ior  U~ being Beta(~i~,/~) where ~ = 
ai + ni, bin-1 = bm-t + nm and then recursively/~-1 =/~ + ni + bi-1 - bi. Note  that b0 
is arbitrary, entering as a power  1 bo. 

Cons ider  now our  r a n d o m  sample {XI,  X 2 , . . . ,  X~ 1} f rom _P (described in 
the form (2.1)). The joint  distribution is for  fixed (Xl, x 2 , . . . ,  X,_l) 

P r [ X l = x l , X 2 = x 2 , . . . , X , _ l = x n _ l , _ P ~ A ]  = tx (dp)  I I  P~' 
i = 1  

where A is a Borel set in [0, 1] ~176 is the measure induced through the r andom 
mapp ing  _P on the Borel sets o f  [0, 1] ~, and n~ is the number  of  1 ~ j<~ n - 1 such 
that  Xj = i. (The p roduc t  is only infinite in notation.)  The poster ior  distribution 
o f  P is 

P r [ _ P e a l X l = X l , . . . , X ,  1=x,_1]  = t x (dp)  [I  P~' t x (dp)  pT'. 
i = 1  / d  [0,1]  m i = 1  

(4.3) 

Those categories not  represented among  {Xl, x2, �9 . . ,  x,  1} are integrated out in 
the numera tor  (if A is suitable) and (4.3) for the specified {x~, X e , . . . ,  X~-l} is 
then identical to the cor responding  expression for the posterior  o f  a r andom 
sample f rom the popula t ion  

P 1 , P 2 , . . . , P m  1 , 1 -  
j = l  

where m is large enough  to include all the observed categories (that is m - 1 1> 
max{x1, x2, �9 �9 �9 x ,_ l } .  The first m - 1 dimensional  marginal  o f  this popula t ion  is 
just the first m - 1 dimensional  marginal  o f  (2.1) and is thus a generalized Dirichlet 
with parameters  given by a~-= 1 for  all i and b~ ~ 0 for all i. The posterior  
distr ibution is therefore a generalized Dirichlet  with 5~ = a~ + n~ = 1 + ni and solv- 
ing r e c u r s i v e l y  bi--1 = hi "~- ni -~- b i -1  - bi = bi -k- n i =- brn-1 + nrn ~- rim--1 + "  " " + hi .  I n  

part icular  ti 1 = nl + 1 and bl = 0 + nm +" �9 �9 + n2 = 0 + (n - 1 - nl). But recall that  
T = nl + 1. Thus we identify the posterior  o f  P1 as being Beta(t~l, 0 + n - 1 - nl) = 
Beta(T, n + 0 - T )  as claimed above and hence, with a return to the original 
notat ion in the statement o f  the theorem we are proving, 

T 
E [ P x 1  I X 1 ,  . . . , X ~ ]  = E[Beta (  T, 0 + n - T)] - 0 + n" (4.4) 
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I f  we define h(n) = #{1 <~j ~< n: X~ = Xi} then by the exchangeability 

Pr[X,+l = X i l X , , . . . ,  X,]  = ti(n__~) (4.5) 
O+n 

and after summing over all distinct values among { X , , . . . ,  X,} we also get 

0 
Pr[Xn+~ ~ { S l ,  . . . , X n } l X l , . . .  , X n ]  -- 0 -t- n" (4.6) 

These are the conditional probabilities defining the urn process verifying that 
{X1, . . . ,  X,} has the Ewens partition structure and completing the proof. 

Equation (4.6) brings us back full circle to Ewens'  (1972) original paper  
describing how new alleles enter the sample. The expectation of (4.6) gives the 
unconditional probabilities 

and 

Pr[n + l th allele is the same as one of the first n alleles] = - -  
n 

O+n 

Pr[n + l th allele is novel] = 
0 

O+n" 

In particular, as Ewens has pointed out, the number  of  different allelic types 
drawn on the first n draws has no bearing on the probabili ty that on the (n + 1)th 
draw a new type is obtained. Our proof  thus has the nice feature of  directly 
relating this sampling property of  the allelic types to the structure of  the underlying 
population (2.1). 

Equation (4.4) implies that 

Pr[Xn+l = X1 IX1, �9 �9 �9 Xn] = P[X,+I  = X1 [ T]. (4.7) 

This is a statement of  Johnson's  sufficiency postulate (see Good  (1965)). The 
symmetric Dirichlet D(a; k) also satisfies (4.7) and the right-hand side is then 
(a + T)/(ka + n). I f  the population P from which the sample {X,,  X 2 , . . . ,  X,} 
is taken is,  however, a mixture of  Poisson-Dirichlets or symmetric Dirichlets 
then (4.7) does not hold since the data { X , , . . . ,  X,} provides information about 
0 or a which in turn is reflected in the posterior distribution of P. In such mixture 
models the future probabilities of  observing new alleles will depend on the 
multiplicities of  all alleles in the current sample. The sampling theory for mixture 
models is therefore expected to be much more complicated and we suggest that 
attention should be restricted to those populations satisfying (4.7) as appropriate 
candidates for modelling purposes. It is thus of  interest to find a general class 
of  distributions for which (4.7) is particularly pleasing or tractable. In this 
connection we mention Hill (1979) who has proposed in a quite different context 
a class of  models for species sampling. It is also worth pointing out that a 
non-symmetric Dirichlet D(a, ,  a2 , . . . ,  ak) does not satisfy (4.7), rather it gives 

Pr[X,+,  = X l ] X l , . .  . r, X n ]  = (OIx,"]- T)/( O+ n) 

(where 0 = OL 1 "q-" " " -1- O ~ k )  which is a function of both X1 and T not just T. This 
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consideration may be useful in the development of a sampling theory incorporat- 
ing selection. 

Both the Poisson-Dirichlet and the symmetric Dirichlet represent infinite 
populations satisfying Johnson's sufficiency postulate. To derive a class of finite 
populations satisfying (4.7) we can proceed as follows (although we use the 
Poisson-Dirichlet the same construction works for the symmetric Dirichlet). Let 
{X1, X2, �9 �9  XM} represent a random sample from a Poisson-Dirichlet popula- 
tion P. This sample determines a population P ( M )  of size M (use any convenient 
labelling, the actual choice being irrelevant for the discussion at hand). 

Let {~ ,  ~ 2 , . . . ,  ~,}, n ~< M be a random sample without replacement taken 
from P ( M ) .  Since P(M)  is itself determined by a random sample from P then 
by exchangeability {~1, ~ 2 , . . . ,  ~,} may be considered as a random sample from 
P (labels not withstanding). Consequently (4.5) and (4.6) are in force which in 
turn imply Ewens' formula, proving that a random sample of size n chosen 
without replacement from a population of  size M whose partition is described 
by (1.1) also has the partition (1.1) (Theorem 7.1 of Kelly (1979) and Trajstman 
(1974)). The Poisson-Dirichlet can thus be interpreted as the infinite population 
analogue of finite populations which are described by Ewens' formula. 

Actually if P is any population with a family of partition distributions induced 
by sampling and if a finite population P(M)  is constructed from P, as in the 
previous paragraph, then samples from P ( M )  also have the same partition 
distribution. Kingman (1978) uses this "consistency" condition to define partition 
structures but he deals with properties of samples while we are concerned with 
properties of  populations. As is evident the two are hardly distinguishable. 

5. Ages of alleles 

In this section we establish a new methodology, based on the urn ~ for questions 
involving the ages of alleles in the infinite alleles models. We defer to Sect. 8 a 
rigorous validation based on mutation in the coalescent. 

Recall that we have shown the following. If {X1, X2, �9 �9 .} represents a sequence 
of observations from a Poisson-Dirichlet population with parameter 0 then the 
limiting proportions of the alleles indexed by their order of occurrence is given 
by (2.1). But Griffiths (unpublished) has shown that (2.1) also describes the 
proportions of the oldest, second o ldes t , . . ,  alleles in the infinite alleles diffusion 
limit. Thus the distribution of types according to ages in the population is the 
same as the distribution of types according to order in the sample. One explanation 
for this has to do with size-biased sampling and reversibility. Using arguments 
based on the latter Kelly (1977) for the Moran model, and Watterson and Guess 
(1977) for the diffusion limit of  the Wright-Fisher process show that the probabil- 
ity an allele is oldest in the population is its frequency. But this is also the 
probability of observing any particular, and hence the first allele (size-biased 
sampling). Thus the frequency in the population of  the first observed allele is 
the same as the frequency of the oldest allele. Analogous arguments can be made 
for the second oldest, third oldest, etc. The use of size-biased sampling (permuta- 
tion of labels) was also invoked by Hoppe (1986) to give an alternate proof  of 
Kingman's (1978) sampling characterization of the Ewens formula. Another 
explanation based on genealogy will be given in Sect. 8. 
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This parallel between ages in the population and order in the sample will 
now be exploited to derive very readily results previouly determined by more 
laborious methods, as well as to shed some insight into why these are obtained. 
We have selected twelve examples for illustration below. Where there is both an 
(a) and (b) part, the former gives the known result while the latter presents the 
order approach and proof  (where necessary). These show that the urn model 
provides a unified framework and powerful approach to diverse issues. 

Let {X1, X2,...} be a sequence of observations from a Poisson-Dirichlet 
population _P. In order to obtain joint probabilities involving both the sample 
and the population, we make the identifications: 

{ X 1 , . . . ,  Xn} represents the observed sample; 

{X,+~, X~+2,.. .} represents the population. 

(What we mean by the latter is that we can recover the population by the strong 
law of large numbers applied to {Xn+l, X,+2, . . .} .)  In the sequel e represents 
the type of a randomly selected allele from the sample, S ~  #{1 ~<j~< n: Xj = e} 
is the number of alleles in the sample which are type e, and Si = 
#{1 ~<j ~< n: Xj -- Xi} is the number of alleles of the same type as the ith observa- 
tion in the sample. Observe that exchangeability forces S and Si to be identically 
distributed. 

1. (a) Watterson and Guess (1977). If  an allele has frequency Y in the 
population then it is the oldest with probability Y (conditional on the population). 

(b) If an allele has frequency Y in the population then it will be observed 
first in the sample with probability Y (conditional on the population). 

2. (a) Watterson and Guess (1977); Kelly (1977). If an allele is represented 
by i individuals in a sample of size n then it is the oldest in the population with 
probability i /(  O + n). 

(b) Pr[X,+, = e IS = i] = i/(O + n). 

Proof By (4.5) Pr[Xn+l = Xj]Sj = i] = i/(O + n). Hence 

�9 1 Pr[Sj = i] 
Pr[X~+l=e lS=i]  = ~. 1pr [X~+I=Xj IS~= zJ p - - ~ - ~  

j=~n 

=i / (O+n) .  

3. (a) Watterson and Guess (1977); Kelly (1977). If  an allele is represented 
by i individuals in a sample of size n, then it is the oldest in the sample with 
probability i/  n. 

(b) Pr[X1 = e l S =  i] = i/n. 

This is immediate from exchangeability. 

4. (a) Kelly (1977). In a sample of size n the oldest allele has i representatives 
with probability 

O ( n ~ / ( O + n - 1 ) .  
n \ i / / \  i 
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n i 

Proof. From the urn model ~ the first allele observed carries the label 1. Its 
future occurrence in the sample can thus be described by a two-type Pdlya urn 
indicating that Pr[S1 = i] is a mixture. 

Pr[S1 = i] = xi-l(1 _ x ) , - i 0 ( 1  _x)O a dx (5.1) 
= 0  

of binomials with success probabili ty having Beta(l ,  0) distribution (by (2.4) and 
(2.5)). This integrates to 

o(,,-1] V(i)I"(n+O-i) 
\ i - l l  l '(n+O) 

which is another way of expressing the desired probability. 
5. (a) Saunders, Tavard, and Watterson (1984). I f  N~ is the number  of  types 

in the populat ion which are older than the oldest allele in a sample of  size n then 

PrfNn=k]=0--~nnn 0-77n ' k - -0 ,1 , . . . .  

(b) Let ~,~ denote the number  of  types observed in the sequence 
{Xn+l, Xn+2,. . .} before a type in {X1, X 2 , . . . ,  Xn} is observed for the first time 
again. Then 

Pr[un = k] = 0 ~ n  , k = 0 , 1 , . . . .  

Proof. Let { 7"1, T2, . . .}  denote those times i/> n + 1 for which Xi is either novel 
(not in the preceding set {X1, X 2 , . . . ,  Xi-1}) or in {X1, X2, . . . ,  X,,}. 

Pr[vn ~> k] = Pr[i_~ 1 {Xr, is novel}] 

k 

= [I Pr [Xr, is novellX~ is novel(l<~j~< i - 1 ) ]  
i - -1  

k 

= H E[Pr[Xr, novellXrj  novel(1 <~j~< i -  1), 
i - -1  

rd I novel(1 ~<j ~< i - 1)]. 

Think of the {X1, X2 , . . . }  as generated by the urn ~.  The conditioning specifies 
that the urn contains n "o ld"  balls (representing the {X1, X2, �9 �9 �9 Xn}), one black 
ball (novel) and T ~ - n -  1 "recent"  balls (the colours added subsequent to the 
nth drawing) just before the T~th drawing and the T~th drawing results in either 
an old ball or a black ball. Since old balls have unit mass while the black ball 
has mass 0 it is apparent  that the conditional probabili ty of  drawing a black ball, 
given that either a black ball or an old ball has been drawn, is 0 /0  + n. Notice 
that T~ disappears and that this argument generalizes (4.6). 
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6. Wat terson  (1974). I f  a~ denotes  the n u m b e r  o f  alleles represented  i t imes 
in a sample  of  size n then  

E [ a i ] = O ( n ] / ( O + n - 1 )  \ill\ i 

P r o o f  In tegra te  Pr[S~ = i[ al , . . . , a ,]  = iai/  n obtaining E [  ai] = n / i Pr[S1 = i[ 
and then use (5.1). 

Observe  that  this me thod  yields the interesting rela t ionship 

Pr[oldest  allele in the sample  is represented  i t imes] = / E[a~]. 
n 

7. E w e n s  (1973, 1979). I f  K ,  denotes  the n u m b e r  o f  distinct alleles in a sample  
of  size n then 

n! 
E [  a~ [ K ,  = k] - - -  I 

i ( n - i ) !  

where Is~k)l is the coefficient o f  O k in 0(0 + 1) �9 �9 �9 (0 + n - 1) (a Stirling n u m b e r  
of  the first kind).  

P r o o f  Pr[S1 = i I a l , . . . ,  an, Kn] = i a J n  and taking the condi t ional  expecta t ion 
with respect  to K ,  results in 

E[a, ]K.] =-n. Pr[S1 = i I K , ] .  
1 

According  to K i n g m a n ' s  (1978) character izat ion theorem,  after  removal  of  the i 
alleles cor responding  to the type of  an individual  chosen at r a n d o m  f rom the 
sample ,  the remaining n - i alleles consti tute a sample  f rom the same popula t ion .  
Thus 

Pr[S~ = i[ K .  = k[ = Pr[S, = i, K .  = k ] / P r [ K .  = k[  

= Pr[Sa = i[ Pr[Kn_i = k -  1 ] / P r [ K .  = k[ 

and the assert ion follows f rom (5.1) and Ewens '  (1972) result Pr[Kn = k ] =  
okls(.k>[/ O( O + l ) . . . ( O + n - 1 ) .  

Again observe  that  this me thod  yields the re la t ionship 

Pr[oldest  allele in the sample  is represented  i times[ K . ]  = i  E[a~lg.] 
n 

and hence the following. 

8. Donne l l y  and  Tavard  (1985). In a sample  of  size n the probabi l i ty  that  the 
oldest  allele is represented  by i individuals,  given that  there are k distinct alleles 
in the sample  is 

(n - 1)! l s ~ , l / i s ( %  
( n - i ) ]  
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9. Ewens (1972). 

Pr[two alleles d rawn at r a n d o m  are of  the same type]  -= E [ ~  P~] - 
1+0"  

Proof Evalua te  as Pr[X1 = X2] leading immedia te ly  to 1/(1 + 0). 

10. Watterson and Guess (1977). Let P(a)= max  P~. Then  for  0.5 ~< x ~< 1 the 
densi ty of  P(a) is 0x- l (1  - x )  ~ 

Proof We use the no ta t ion  in the p r o o f  of  T h e o r e m  1. 

Pr[P(1) > x] = ~ Pr[Pj > x and  P(1) = P j ]  
j= l  

oo 

= Y~ Pr[T~ > x and  P(1) -- ~/j] 
j = l  

oo 

= ~ P r [ , / j > x ]  
j = l  

: ~ P r [ ~ ' j > x l , X j :  1] P r [ ,~ j= l ] .  
j = l  

Given  Aj = 1 then the limit p ropor t ion  yj is Beta( l ,  0 + j - 1 )  so the sum becomes  

_ 
(1 d t o + j _  ~ -  0 (1 - t )  ~ dt 

j = l  j 1 

= 0 f ]  t - l ( 1  -- t) ~ dt. 

11. Ewens (1972). I f  K, = # distinct alleles in a sample  of  size n then 

P r [ K ,  = k] = okls~k)]/[O] ". 

Proof The p.g.f, o f  1,2, is (using the independence  of  the {hi} in Theo rem 1) 

E[SKn] : [~ ( . i- l+Os~ 
i = i \ i + O - - 1 ]  

the n u m e r a t o r  of  which generates  the Stirling numbers  above.  
As a corollary,  if  ti is the t ime of  appea rance  of  the ith novel  allele then 

Pr[h = n] = P r [K,_ I  = i - 1 and An = 1] 

o'-lls(~'2~) I 0 
[0] "-1 n+O-1  

[0]" 

The f requency spec t rum ~b(x) for  the Poisson-Dir ich le t  12. Ewens (1972). 
popula t ion  _P is 

~)(x)=Ox 1(1 -- X ) ~  O < X < I .  
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Proof L e t f  be a bounded measurable function on [0, 1] and let Qa = P~ be the 
first component in the size-biased permutation of _P. Then clearly 

~ f (  P~)P~ = E[f(  QO I P] 

and since Q~ has a Beta(l ,  O) density 

E[Z f (  P~)P,] = E[f(  Q,) ] 

Ix = f(x)O(1-x)  ~ dx. 
= 0  

Choose for f the function 

f(x)={lo/X ifx>tifx<~ t 

to derive 

I: E[number  of types whose frequency exceeds t] = Ox-l(1-x) ~ dx 
= t  

showing that O x - l ( 1 - x )  ~ is the frequency spectrum. 
By setting g(x)= xf(x) we can write 

Ix E[Z g(P~)] = g(x)C(x) dx. 
= 0  

This was obtained (for continuous f )  by Kingman (1980), Eq. (3.4.2) by resorting 
to the Riesz representation theorem for positive linear functionals. Our argument 
seems more direct and relates the frequency spectrum to the size-biased permu- 
tation. 

The multivariate frequency spectrum (Watterson (1974, 1976)) can also be 
derived using (in the bivariate case, for instance) 

~f(Pi,  5)  PiPj 
1 - P, = E [ f ( p , ,  Q2)]P] 

where Q2 = P~ the second component in the size-biased permutation of P. 

6. A representation for Ewens' partition 

A residual allocation model Q = (Q1, Q2,...) (see Connor and Mosimann (1969), 
Patil and Taillie (1977)) is described in terms of an independent family { Ui} of 
random variables called residual fractions. We may think of Q as defining how 
resources are assigned to a region or types (alleles, colours) are assigned to a 
population. The first colour is assigned to a proportion U1 ~ Q1 of the population, 
the second colour to a proportion U2 of the remaining (or residual) fraction 
1 - U1 of the population and in general the ith colour is assigned to a proportion 
Ui of the residual fraction I]~-1~ (1 - Uj) left after the first i - 1 colours have been 
assigned. In equation form 

i 1 

Q~ = Ua, Qi = Ui H ( 1 -  Uj), i~>2. (6.1) 
j = l  
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When there are but a finite number k of colours to be assigned (6.1) is defined 
only for i ~  k -  1 and then Qk = I]j~-] (1 - Ufl. This can be succinctly obtained 
by demanding that Uk be identically 1. From (2.1) we see that the size-biased 
permutation of the Poisson-Dirichlet PD(O) is a residual allocation model with 
the residual fractions being identically distributed Beta(l,  0). Also the size-biased 
permutation (3.5) of the symmetric Dirichlet D ( a ;  k) is a residual allocation 
model with the residual fractions U~ being Beta(1 § a, ( k - i ) a ) .  

It was observed at the end of Sect. 4 that the Poisson-Dirichlet is the infinite 
population analogue of  finite populations described" by Ewens' partition. This 
raises the natural question of whether a corresponding representation holds for 
Ewens' partition. 

Thus let _F be a finite population of size M representing alleles whose 
unordered frequencies are distributed as in (1.1), but with M replacing n. For 
instance _F might represent the Moran model in discrete time (Watterson (1974), 
Trajstman (1974)) at stationarity. Form the size-biased permutation y by selecting 
one individual at random and removing all V1 alleles of the same type, then 
selecting another individual at random from the residual M -  V1 and removing 
all V2 alleles of the same type, then continuing in this fashion until the entire 
population has been depleted (after K selections) and finally defining 
V ~- ( V I  , V 2  , . . . , V K  ) .  

Theorem 4. _V has the representation 

VI = 1 ~- Bin(M - 1, Z1) 
(6.2) 

V~ = 1 + B i n ( M -  1 -  V~ . . . . .  V~_I, Zi), 2 ~ i ~ K  

where {Zi} are i.i.d. Beta(l,  0) random variables and K is the first integer such that 
Vl..~- V2 ~- . . . + VK = M. 

The notation Bin(r, Z)  refers to a binomial random variable on r trials and 
success probability Z, both of which may be random. 

Proof. According to Theorem 3, F may be realized as a random sample 
{X~ , . . . ,  XM } from a Poisson-Dirichlet population _P. Because of exchangeability, 
selecting one observation at random from the set { X 1 , . . . ,  XM) is probabilistically 
equivalent to selecting the first observation XI. The proof  of Theorem 3 shows 
tha the urn ~ automatically generates the size-biased permutation of the partition 
determined by {X~ , . . . ,  X~} and therefore ( V 1 , . . . ,  VK) is equal in distribution 
to (S~(M) ,  . . . ,  SK ( M ) ) ,  using the notation of Sect. 2. But SI(M) can be described 
by a two-type P61ya urn with initial composition (1, 0) and then Eqs. (2.4) and 
(2.5) show that S i ( M )  is a Beta-binomial random variable of the specified form, 
verifying (6.2) for Vi. To get V2 we then remove all {Xj: Xj = X1} before selecting 
another allele for the second component in the size-biased permutation. But those 
Xj # X1 remaining after the first deletion represent a random sample from a 
population _Q which is obtained by removal of one category at random from _P. 
Now P is invariant under this operation (size-biased permutation), meaning that 
Q is also Poisson-Dirichlet, and moreover Q is independent of the frequency of 
the deleted category (see Hoppe (1986)). Thus S2(M)  is also a Beta-binomial 
with the mixing variable Z2 independent of Z1. This argument works for S i ( M )  
in general establishing (6.2). 
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Corollary. The population _V described by (6.2) is invariant under size-biased 
permutation. 

It is implicit in the description of a residual allocation model that the popula- 
tion be a continuum. To come up with an analogous concept for discrete popula- 
tions it is necessary to rethink the independence structure of the residual fractions. 
Using (6.2) as our guide we therefore focus not on the proportions assigned to 
the ith type but rather the actual amount assigned, which, for the model (6.1) is 
Ui[Ij-ll ( 1 - U  j). This quantity depends on {U1, U 2 , . . . ,  U/_I} only through 

i - - 1  . . 

II~=1 (1 - Uj), which is the remaining portion of the population. This observation 
suggests an appropriate reformulation of the residual allocation model for a 
discrete population. 

Suppose a discrete population of size M < co is to be painted with colours 1, 
2 , . . . ,  C where C may be finite or infinite. We present a method for assigning 
the colours sequentially in such a way that once the first i -  1 colours have been 
assigned then the ith is assigned by a randomized procedure which depends on 
the previous assignments only through their cumulative total. Specifically let 
{Ri(n): 0<~ n ~< M} for each 1 ~ i<~ C be a family of integer-valued random 
variables where 0 ~  < Ri(n)<~ n. The families are independent but we make no 
assumptions about dependence within a family. If colours 1, 2 , . . . ,  i -  1 have 
been assigned to nl, n 2 , . . . ,  n~_l individuals respectively then 

ni= Ri M -  ~, nj 
j = l  

of the remaining individuals are assigned colour i. This process is continued until 
the population is exhausted with colour K (random) and the vector 
(nl,  n 2 , . . . ,  nK) is said to be a discrete residual allocation model. 

Comparing with (6.2) we see that the Ewens partition has a representation 
as a discrete residual allocation model with residual functions 

R~(n) = 1 + Bin(n - 1, Zi) 

where {Z~} are independent Beta(l,  0), thereby providing affirmation of the 
question raised in the second paragraph above. 

The construction typified by Theorem 4 works for samples from any (con- 
tinuous) residual allocation model _Q as described by (6.1). Suppose a random 
sample (with replacement) of size M is drawn from Q. Let ni be the number 
of observations in category (colour) i while K is the first index such that 
n l+  n2+" �9 "+nK =M.  

Theorem 5. (nl, n2 , . . . ,  nr) is a discrete residual allocation model with residual 
functions Ri(n) = Bin(n, U~). 

Proof The assertion of this theorem is that 

" /M i-1 Ui). (6.3) ni = Bln~ - j~lnj ,  

Now by definition, for arbitrary non-negative integers Xl, x2 , . . . ,  xr summing to M 
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r 
where (~ )  is the multinomial coefficient M !/l~ ;= 1 xi ! On the other hand, according 
to (6.3) 

P r [ n l = x l ' n 2 = x 2 ' " " n r = x r ] = E [ ~ = ~ (  xi / 

where y~ = x l + . . . + x ~  and yo=0.  The multinomial coefficients in the two 
expressions are equal and in the first one U~ appears with a power xi while 
( 1  - U;) appears  with a power x~+~ +xi+2+" �9 �9 +xM = M - x a  . . . . . .  xi = M - y i .  
Hence the two expressions are the same, proving the theorem. 

This p roof  may fail to expose the nice way in which samples from a residual 
allocation model may be generated by successive sweeps through an array of M 
cells, picking out which colours go to which cells. Given U1 carry out independent 
Bernoulli trials, with success probabili ty Ua, at each of the M cells. A success 
assigns the colour 1 to the cell and it drops out. For the remaining cells again 
carry out independent Bernoulli trials, this time with success probabili ty U2. A 
success assigns colour 2 and this "sweeeping through" the cells with successive 
Bernoulli trials is repeated until all cells are assigned colours. The contents of  
cell i are identified with the ith observation from Q. 

When Q is the Poisson-Dirichlet  then (6.3) gives a representation different 
from (6.2). There is no contradiction. The random variables {V~} in (6.2) are 
already in size-biased form, while the {n~} in (6.3) are not. Observe also that 
some of the {n~} may be zero while the { V/: 1 ~< i ~  < K} are all positive. 

Several methods have been proposed for simulating a random sample from 
a Poisson-Dirichlet  family, notably we mention Stewart's appendix to Fuerst et 
al. (1977), Griffiths and Li (1983), and Watterson (1985). Equation (6.2) provides 
another way based on simulating Beta-binomial random variables. Additionally 
it generates the age classes themselves directly. It should be possible to generate 
samples very efficiently this way. 

Finally we use (6.2) to derive the joint distribution of the { V~}. First we need 
a typical term 

Ix Pr[St (M)  = i] = 1 xi_l( 1 _x)M_,0(1 __x)O_l dx 
= 0  

=o(M-1] r(i)r(M+O-i) 
\ i - 1  / F(M+O) (6.4) 

(We computed this earlier as (5.1).) Thus 

Pr[V1 = X l , . . . ,  Vr =xr ,  K f> r] = Pr[S~(M) = X l , . . . ,  St(M) =xr, K >! r] 

= (i ( M - I - Y i - I ]  
i=1 \ x i -1  / 

• tx'-~(1 - t)M-Y'-l-x'O(1 -- t) ~ dt 
t=O 

=rI  O ( M x Y ~ - I - 1 )  f'(x~)F(M+O-y~)" 
i=l F ( M +  0 -Yi-l)  
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b y  ( 6 . 4 )  w h e r e  y~ = x l  + "  �9 �9 + x~ a n d  Yo = 0. This expression simplifies to 

O~M!F(M+O-y~)  ~[ 1 
( M - y ~ ) ! F ( M  +O) ~=~ M-y,_1" 

The evaluation of 

(6.5) 

P r [ V l = X l , . . . ,  Vr=xr, K = r ]  

proceeds identically but with the side constraint Yr = M giving 

OrM!F(O) (I 1 (6.6) 
F ( M  + O) i=1 ti 

where t~ = M-Yi -1  = x~ + x~+l + ' ' "  + xM. Equations (6.5) and (6.6) have recently 
been derived by Donnelly and Tavar6 (1985), by entirely different methods based 
on a coalescent, as the joint distribution of  the age partition in a sample from 
the infinite alleles model, thus providing another manifestation of the iden- 
tification of order with age. (We proved a special case r = 1 in Sect. 5.) 

We close by observing that if the equations in (6.2) are divided by M and 
then M ~ 0o it follows immediately by the strong law of large numbers for binomial 
random variables that 

--M' M'  " "" ' 

converges almost surely for each fixed r as M ~ o o  to (Z1 ,Z2(1 -  
Z1), �9 �9 �9 Zr [[~-11 (1 -Z~)).  This is not really a proof  of Theorems 1 and 2 because 
(6.2) depended on these theorems, but the derivation is very suggestive that (6.2) 
can be used to model a multitude of finite populations whose sampling properties 
in the limit of large population size are described by the Ewens sampling formula 
(Kingman (1977)). 

7 .  T h e  r e v e r s e d  c h a i n  a s  a p a r t i t i o n  s t r u c t u r e  

According to Kingman (1978) a partition structure is a family {P,} of distributions 
on partitions satisfying the following consistency relation: If a sample of size n 
has allelic partition distribution P, then the distribution of a random subsample 
of  size m taken from this sample is P,,. 

The relationship between P,, and P, is expressed by 

P,,,=o'.,,,P,, (7.1) 

where {O'mn} is a family of linear transformations satisfying 

O't,=~l,,O-mn ( l < m < n )  (7.2) 

which in the special case n = m + 1 reduces to 

a l + l  
Pm(al , . . . ,  am)= Pm+l(al+ 1, a2 , . . . ,  am, O) 

m + l  

,,+1 i (a i+ 1) 
+ E - - P m + l ( a l , . . . ,  a~-l-1,  a ~ + l , . . . ) .  (7.3) 

~=2 m + l  
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The Ewens distribution is a part i t ion structure arising natural ly th rough  a 
process {H,} thus directing us to examine (7.1) and (7.2) in the context o f  Markov 
chains. 

The process {/-/n} o f  Theorem A begins at Ho = 0, the empty partition. This 
is a consequence  o f  the initial composi t ion  o f  the urn ~ .  We can, however,  impose 
an initial composi t ion  prescribed by a measure Ho to define a more  general 
Markov  chain with one-step transit ion probabilit ies 

P(a, b) = Pr[H,+ 1 = b I/7, = a]  

f rom part i t ion a ------ (a l ,  �9 �9  a~) o f  the integer r to part i t ion b (necessarily o f  the 
integer r + 1), and arbitrary initial distribution Ho, where 

0 
if b =  ( a l +  1, a 2 , . . . ,  ar, O) 

O+r 
iai 

P(a,b)= O+r i fb=(a~, . . . ,a i - l ,a~+l+l , . . . ,ar ,  O) (7.4) 

rar 
i f b  = ( a l , . . . ,  a t - l ,  1). 

,O+r 

We next consider  the t ime-reversed probabilit ies 

P r [H.  = a ] H n +  1 = b] = Pr[H~+I = b [H.  = a ]  Pr[Hn = a]/Pr[H.+~ = b]. 
These will depend  on the initial state Ho but when Ho = 0 it may  be verified using 
(1.1) that 

[ a l + l  i fb=(a l+l ,  a2, / . + 1  .. , a , , 0 )  

~(r+ l)(ar+l + l) 
pr[II"=al/7"+~=b]={7 n - ~  i f b=(a l , . . . , a r - l ,  ar+a+l,...,a,,O) 

i f b  = ( a l , . . . ,  a , -  1, 1). (7.5) 

Denote  the matrix o f  reversed transit ion probabilit ies by Z,n+a. In t roduce  the 
notat ion T,(a) = Pr [ / / ,  = a 117o = ~] and compute  T,(a) = Zb Pr[ / / ,  = a I 
//,+1 = b] T,+l(b)  which simplifies to 

a a + l  
T~(al,.. . ,a~)= T~+l(al+l, a2,...,a~,O) 

n + l  
n - -  -~ ' ' ' ,  

+ ~ r ( a ~ + l )  Tn+l(aa , . .  a~_l-l, ar+l, an, O) 
r=2 n + l  

+ Tn+l(al, . . . ,  an - 1, 1). 

This is (7.3). We may  in the same fashion for I < m < n compute  Pr[// t  = a [/Tn = b] 
by a decomposi t ion  based on // , , .  I f  Z, , ,  is the matrix with components  
Zm,,(a, b) = Pr[/Tm = a]H,, = b] then we find 

T m =Z,,,T, 
and 

Zln = ZlmZmn. 

This shows that  (7.1) and (7.2) are the C h a p m a n - K o l m o g o r o v  equations for  the 
t ime-reversed Markov  chain o f  partitions. This reversed chain begins in some 
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partition a and passes through partitions of  decreasing integers. Further elucida- 
tion and interpretation of  the reverse process will be made in the next section 
using the coalescent with mutation where it will be shown that the reverse process 
follows the lines of descent back in time through successive generations thereby 
describing the genealogy. 

8. The urn and genealogy of the coalescent with mutation 

Kingman (1982a, b, c) has introduced a continuous time Markov chain ~t ,  the 
n-coalescent, taking values in ~n, the set of all equivalence relations on 
{1, 2 , . . . ,  n}, to describe the common ancestry among n individuals randomly 
selected from a haploid population. Two individuals are in the same equivalence 
class at time t if and only if they share a common ancestor t time units in the 
past. The coalescent traces back the genealogy of a sample of individuals and 
provides a richer sample space structure than the classical methods (such as 
diffusion approximation) which keep track only of the numbers of  each type in 
successive generations. 

A sample path may be visualized as an inverted tree rooted in n vertices, each 
corresponding to one individual and numbered with the integers {1, 2 , . . . ,  n}, 
from which emanate vertical branches (lines of descent) passing backward 
through genealogical time (but forward in the coalescent). At random times, two 
branches meet at a vertex (representing a common ancestor) and then continue 
as one branch up the line of descent. The rules governing the times and choices 
of branch meetings guarantee that ~t  is Markov. Specifically, in the infinitesimal 
time interval (t, t+  h) the probability is h + o(h) that any two branches will meet. 
If  there are i branches then the overall probability of a change in state is 
�89 + o(h) and the selection of branches to coalesce is made completely at 
random. The process ~t  is then obtained from a horizontal cross-section through 
the tree at time t by identifying those individuals descending from each intersected 
branch as belonging to the same equivalence class. There is associated with ~t  
a pure death process Dt where D~ = I~l ,  I" I denoting the number of equivalence 
classes. Dt is the number of intersected lines of descent at time t and therefore 
also equals the number of  distinct ancestors, at time t in the past, of the sample 
(taken at time 0). 

~t  passes through a sequence 

R.,  R n _ l , . . .  , R1 (8.1) 

of equivalence relations on {1, 2 , . . . ,  n} spending an exponential amount of time 
with mean 2 / k ( k - 1 )  in state Rk. Here R,={( i , i ) : l<- i<~n}  and R1 = 
{(i,j): 1 ~< i,j<~ n}. The sequence (8.1) has the property that Ri-~ is obtained by 
combining two equivalence classes in Ri and thus the number of  equivalence 
classes is IRil = i. 

Kingman (1982c) derives Ewens formula as a consequence of mutation in 
the coalescent. In particular suppose that each equivalence class in ~t  is subject 
to a mutation in the interval ( t, t + h) with probability (0/2) h + o (h). Then define 
a random equivalence relation ~ on {1, 2 , . . . ,  n} by grouping individuals as 
follows. Two individuals are in the same random equivalence class if no mutation 
occurs up either's line of descent to their first common ancestor. Kingman (1982c, 
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Theorem 4) shows that if ~ c g ,  has k equivalence classes with sizes hi,  h2, �9 �9 �9 hk 
then 

k 
0 k ]7I ( A j - 1 ) !  

Pr[~  = ~:] - J=' (8.2) 
E0] o 

If  (8.2) is multiplied by the combinatorial term counting the number of 
equivalence relations with a given partition then (1.1) arises. 

Now (8.2) also occurs in Hoppe (1984, Eq. (2)) with reference to the urn 
process {X1, X ~ , . . . ,  X,}  described in Sect. 1 above. Specifically 

k 
o k 11 ( S j ( n ) - l ) !  

Pr[X1 = x l , . . . ,  X ,  = x,] - j=l (8.3) 
[0 ]"  

In fact there is a one-to-one correspondence which we now describe, between 
sequences {xl, x2, �9 �9 �9 x,} of urn paths and equivalence relations r ~ g,.  In one 
direction, given {xl, x 2 , . . . ,  x,} define an equivalence relation r by placing i and 
j in the same class iff xi = xj. Conversely given r set xi -= xi(r = 1 if and only if 
(1, i) c ~:. Let j(2) = rain{i: & ~ 1} and put x~ = 2 if and only if (j(2), i) ~ ~c. Then 
let j(3) = min{i: xi # 1 or 2} and continue in the obvious way to construct a path 
{ x l , . . . ,  x,}. The urn process {X~, . . . ,  X,}  is associated in this fashion with a 
random equivalence relation and by (8.2) and (8.3) this random equivalence 
relation has the same distribution as the Y~ of Kingman. 

There is a deep connection between the urn process 0//and the genealogy of 
the sample, to which we now turn, to explain why (8.2) and (8.3) are identical. 
Recall that ~t  tracks the genealogy of afixed sample of size n, and (8.2) describes 
the distribution at time 0 of the random equivalence relation ~ obtained from 
~,.  This is a probability on the set g,  of all equivalence relations defined on 
{1, 2 , . . . ,  n}. ~ however defines a process of partitions on sets whose sizes are 
changing. In particular H, defines a partition of the integer n, / / . - 1  a partition 
of the integer n - 1, . . . ,  HI a partition of one. The equivalence relation ~ induces 
a partition a = ( a l ,  a 2 , . . . ,  a,) of the integer n where a~ is the number of 
equivalence classes in ~ having size i. In view of Kingman's result that this 
partition has the Ewens sampling distribution, n a m e l y / / , ,  this suggests that we 
construct a process of random equivalence relations on sets of decreasing sizes 
whose induced partition process has the same distribution as the reverse chain 
{H,,, H,_I , . . . , / /1} .  For this construction we need candidates for the sets upon 
which these random equivalence relations will be defined. While ~ is defined 
on the original sample of  size n it will ensue that the appropriate sets to use 
comprise decreasing lines of descents which have not undergone mutation from 
a given time in the past to the present. 

I f  a time t is fixed then each member of the sample traces back to one of the 
D, ancestors alive at time t in the past. Some are mutations from these D, ancestors 
while others are not. Denote by L, the number of ancestors at time t who have 
non-mutated descendents in the sample. These we call non-mutant ancestors and 
a line of descent from such an ancestor to the present is called an original line 
of descent. (We tacitly assume that mutations are therefore not included in the 
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line of  descent  o f  their parents  but  are cons idered  to begin new lines of  descent  
(Griffiths (1980)).) 

Observe  that  L, is a pure  death  process,  changes of  state resulting f rom either 
coalescence or mutat ion.  Coalescence  occurs  at unit  rate to each pa i r  o f  original 
lines of  descent  giving an overall  rate i ( i  - 1)/2 when  Lt = i. Muta t ions  occur  at 
rate 0 /2  along each line and thus the overall  muta t ion  rate is i0 /2 .  Combin ing  
we find that  L, changes f rom i to i - 1 in t ime (t, t + h) with probabi l i ty  ( i(0 + i - 
1) /2)h + o ( h ) .  Denote  by  T, < T, 1 < "  �9 �9 < ?'1 the t imes at which Lt changes state 
and for definiteness set Lt = i -  1 at T~ making  L~ r ight-cont inuous.  

Each m e m b e r  of  the sample  either traces back  without  muta t ion  to one of  
the L t non-mutan t  ancestors ,  or else is a muta t ion  f rom one of  the D~ ancestors.  
Those descending without  muta t ion  are the same type as their  ances tor  and it is 
natural  then  to trace back  far ther  in t ime the history of  these L, non-mutan t  
ancestors  to define an equivalence relat ion (akin to ~ )  on the L, original lines 
of  descent  which will g roup  into equivalence classes non-mutan t  ancestors  of  the 
same type. I f  this is done  for  each t then the resulting process  should  trace the 
changing genealogy of  the sample  into the past.  

These  considerat ions  mot ivate  the definit ion of  a process b ~ of  equivalence 
relations on the Lt original lines of  descent  which places any two lines into the 
same equivalence  class of  O~ if and only if u p o n  fol lowing the ancestors  they 
represent  far ther  up their  lines of  descent  (that is far ther  into the past)  there is 
no muta t ion  to either before  their  first c o m m o n  ances tor  (that is in (t, T) where  
T is the m o m e n t  they first coalesce).  This specification mimics that  o f  ~ but  
respective the L, non-muta t ed  ancestors  at each t ime t ra ther  than  the individuals 
in the sample  (who are the non-muta ted  ancestors  at t ime t = 0). 

As does Yt~ so does 5 p, pass  through a sequence  

S , ,  S,_1 . . . .  , S l  

of  equivalence relations. In contrast ,  though,  Si is an equivalence relat ion on a 
set of  cardinal i ty  i, not  on the same fixed set {1, 2 , . . . ,  n}, and of  course,  it is 
general ly not  the case that  ISi[ = i. 

When  Lt decreases by  one .9~ changes state. I f  by  muta t ion  then 6e t loses one 
equivalence class of  cardinal i ty  one and I b~ decreases  by one. Else, a coalescence 
results in an equivalence class, o f  cardinal i ty greater  than  one, losing a m e m b e r  
but  15etl then of  course stays the same. Whether  by muta t ion  or coalescence the 
transi t ions f rom Si to Si_l are caused by the loss of  an original line of  descent.  

The process  {S~}~=, provides  a sequence of  r a n d o m  equivalence relat ions on 
sets o f  decreasing size n, n - 1 , . . ,  1 paral lel ing the reverse par t i t ion chain deter- 
mined by  ~/. The margina l  distr ibution of  each S~ is easy to find. Just  as K i n g m a n  
de termined  the distr ibution (8.2) o f  ~2 (which is just  our  S, )  we can use a 
backward  K o l m o g o r o v  a rgument  to prove  that  

k 

O k 1-[ ( A j - 1 ) !  

Pr[S, = ~:] - J=l (8.4) 
[o]' 

where {)t~, A2,. �9 �9 ~tk} are the sizes of  the equivalence classes of  ~. After  all, in 
view of  the Poisson nature  of  coalescence and muta t ion  the i original lines of  
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descent may be looked upon as representing a sample of  size i defining an 
/-coalescent from which (8.4) is a recontexted version of (8.2). 

While the changes of  state in 5~, consequent from the joining of two 
equivalence classes the behaviour of 0 ~ is determined somewhat differently. 
Kingman (1982c, Theorem 1) shows that the death process D, and the jump 
chain {Rk; k = n, n - 1 , . . . ,  1} are independent and by definition 5~t = RD,. In the 
case at hand we have a death process Lt and a jump chain {Sk; k = n, n - 1 , . . . ,  1} 
with 5 ~, = SL,. However  Lt and {Sk} are not independent since Sk "looks into the 
future" by tracing lines of  descent until their coalescence and searching for 
mutations. For example if L, = i 

Pr[L,+At = i - l [ L t  = i] = �89 + 0 - 1)At + o(At) 

but if we were to, additionally, condition 0~ and for simplicity let 5r t be the 
equivalence relation {(I, m); 1 <~ 1, m <~ i}---~ corresponding to the event that all 
of  the i original lines of  descent at time t trace back without mutation to a single 
ancestor, then given L, = i and 0~ = ~ the next original line of  descent must be 
lost by coalescence since the event {5~ = ~:} forbids mutations. In view of the 
"compet ing Poissons" (coalescence versus mutation) 

Pr[L,+a, = i -  1] Lt = i, ~t = ~:3 =�89  1)At+ o(k t )  

displaying the lack of independence between L, and {Sk}. 
We have deliberately ignored numbering the lines of  descent in the process 

L,. Members of  the original sample of  size n can be numbered in some fashion 
(usually random) using the integers {1, 2 , . . . ,  n}, but when two lines of  descent 
join there is no natural or best number  for the line emerging from their common 
ancestor. More importantly the probabilistic structure is not dependent  on the 
choice (which may also obscure the simplicity of  the process). In particular while 
the marginal distributions of  {S~} do not depend on the choice (the distribution 
of Si depends only on the sizes of  its equivalence classes) the joint and hence 
conditional distributions do. 

To demonstrate this dependence of the joint distributions, consider the case 
where n = 3 and members of  the initial sample of size 3 are numbered in some 
fashion with the integers 1, 2, 3. Suppose the backward genealogy has a coales- 
cence at T3 between 1 and 2, then a mutation at T2 to the line 3 (numbered in 
the initial sample) and finally a mutation at 7"1 to the line resulting from the 
joining of 1 and 2. Suppose the numbering rule is as follows. A mutation event 
occurring to an original line of  descent eliminates its number. I f  a coalescence 
event occurs between two original lines of  descent then the choice for the line 
emanating from their joining will be the smaller of  the two numbers. In this 
example the equivalence classes in $3 are {1, 2} and {3}, the equivalence classes 
in $2 are {1} and {3} and the equivalence class in $1 is {1}. 

Let ~7 be the equivalence relation with classes {1} and {3}. Suppose given 
$2 = ~7. Observe that there are only two choices for $3: 

s with equivalence classes {1}, {2}, and {3} corresponding to a mutation 
at T3; 

(2 with equivalence classes {1, 2} and {3} corresponding to a coalescence 
at T3. 
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The relation ~ with equivalence classes (1} and {2, 3} is not permitted since the 
joint event {$2 = ~ and $3 = ~} would require a coalescence between lines 2 and 
3 in ~ in which case the line emerging from their coalescence would be numbered 
with 2 (being the lesser of  2 and 3) forcing $2 to have classes {1} and (2}, a 
contradiction. Hence 

Pr[S3 = ~[$2 = ~7] = 0. 

It is evident that a different numbering can be used to violate this equation for 
the same choices of  ~ and 7. 

Accordingly it is preferable to let Sa, (resp. Si, 1 ~ i ~< n) prescribe a partition 
process M, (resp. Ai) which is the partition of the integer Lt (resp. i) determined 
by the sizes of  the equivalence classes in 5r (resp. Si). Thus M, is a continuous 
time process passing through the states 

A n ,  A n - l ,  �9 �9 �9 , A I .  

Theorem 6. {Mr} is a Markov process whose embedded reverse jump process 
{A1, A 2 , . . . ,  An} is equivalent to the partition chain {II~, II2, . . .  , Fin} of Sect 1. 

Proof The process {Mr} looks into the future of  the coalescent and to verify the 
Markov property it is convenient to reverse time turning the future into the past. 
"Thus fix a reference time s > 0 and define the reverse process 

M~=M~_t, O<~t<~s. 

The past o--algebra o-{M~: 0<~ u ~  < to} at time to is o-{M~ :s-to<<-v<~s}, which 
depends only on the number  of  original lines of  descent at time s - to and the 
mutation-coalescence beyond s - to. Now let ta > to and consider the conditional 
distribution of zd~ given o-{M~: 0<~ u ~< to}. This is the same as the conditional 
distribution of  S~s_ti  given or{My: s - to ~< v <~ s}. Ms-,l is determined by the muta- 
tion-coalescence in ( s - t l ,  s - t o )  together with the mutation-coalescence sub- 
sequent to s - to the latter of  which is completely captured by Ms_~. Hence the 
conditional distribution of  Ms_,~ given o-{Mv: S - t o ~  v<~s} is the same as the 
conditional distribution of ~r given Ms-to which shows that {MT} is Markov 
on O<~t<~s. Since the Markov property is preserved under time reversal (a 
symmetric version of the Markov property asserts that the future and the past 
are conditionally independent given the present) it follows that {Mt} is Markov 
on 0 <~ t ~< s, and s being arbitrary the first part  of  the theorem follows. 

Because {Mr} is Markov so is the embedded jump process {A,, A , -1 , .  �9  A1} 
and then also its time reversal {A~, A 2 , . . . ,  A,} whose one-step transition prob- 
abilities we now calculate. First we consider Pr[A, = b IA,_~ = a] for partitions 
a and b of  n -  1 and n respectively. There are two cases. 

(1) a~_ l=b~_l+ l ,  a ~ = b r - 1 ,  the remaining aj=bj ( j ~ < n - 1 ) :  This occurs 
when one of the equivalence classes in Sn necessarily having cardinality r t> 2 is 
reduced by one because of a coalescence at T, involving two of the n original 
lines of  descent. The joint probability 

Pr[A, = b, A,_I = a]  
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may  be expressed  as 

P r [A ._ I  = a, a coa lescence  occur red  at T.,  and  resul t ing or iginal  l ine of  
descent  lies in one o f  the ar ~ equ iva lence  classes o f  size r -  1 in a] 

which  m a y  be fur ther  d e c o m p o s e d  as 

ar -  1 

E A B C  
i--1 

where  

A = P r [ A n  l = a ]  
B = Pr [coa lescence  at Tn IAn_l = a]  
C = Pr[ resul t ing  or ig ina l  l ine o f  descent  lies in the class Ci o f  size r -  1 in 

a]A._l  = a and  a coa lescence  at  Tn]. 

Here  {C; ~ C i (a ) ;  1 <~ i ~< ar 1} enumera tes  all  the equ iva lence  classes o f  size r - 1 
in a. 

The r a n d o m  par t i t ion  A ._ I  involves only  mu ta t i on  and  coa lescence  subsequen t  
to T. and  by  the Poisson na ture  o f  these  events An-1 is i n d e p e n d e n t  o f  the type  
o f  event  which  occur red  at  Tn. Consequen t l y  

B = Pr [coa lescence  at T.]  

n ( n - 1 ) / n ( O + n - 1 )  n - 1  

2 2 O + n - 1  

in view of  the  compe t ing  Poissons.  
F ina l ly ,  the  event  C specifies r -  1 o f  the n - 1 l ines o f  descent  involving a. 

In  view of  the  exchangeab i l i ty  presen t  forc ing l ines o f  descent  to be lost  comple t e ly  
at  r a n d o m  each o f  the  n - 1  or ig inal  l ines o f  descent  has the same chance  o f  
represen t ing  the pa i r  which  coa lesced  at Tn. Thus 

r - 1  
C -  

n - l "  

This gives 

ar--1 n - 1  r - 1  
P r [ A .  = b, A . -1  = a]  = ~ P r [A ._ I  = a]  - -  - -  

i=1 O + n - 1  n - 1  

( r -1 )ar_ i  
- P r [A ._ I  = a] .  

O + n - 1  

The second  case is 
(2) a l  = bl - 1, the r ema in ing  aj = bj ( j  ~< n - 1): This co r r e sponds  to a muta-  

t ion  at 7". causing one  o f  the equ iva lence  classes in S . ,  having  ca rd ina l i ty  one,  
to be e l imina ted .  The eva lua t ion  o f  P r [ A .  = b, An 1 = a]  p roceeds  as in case (1), 
t hough  s l ight ly  s implif ied.  

P r [ A .  = b, A n_  1 = a]  = Pr[An 1 = a and  a mu ta t i on  occur red  at Tn] 

= P r [A ._ I  = a]  P r [muta t ion  at T. ] a . - 1  = a ]  

0 
= Pr[A._x = a]  O + n - l "  
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If  we divide by Pr[A, 1 = a] we arrive at 

( r -  1)at 1 in (1), 

P r [ a , = b i a , _ l = a ] =  O + n - 1  

0 in (2). 
O + n - 1  

The computat ion of the general one-step transition probabilities Pr [Ai= 
b ]Ai-~ = a], 1 ~< i ~< n - 1 proceeds identically because in the evaluation of the 
joint probability Pr[Ai = b, A;_1 = a] in view of the Poisson nature of  coalescence 
and mutation, the i original lines of descent may be looked upon as representing 
a sample of  size i defining an/-coalescent  upon which mutation is superimposed 
so that the previous arguments carry through with i replacing n, giving 

[ ( r -1 ) a~_ l  in (1) 

Pr [A;= blA,_l=a]= t O o i - 1  (8.5) 

in (2). 

These equations are identical with (7.4) the transition probabilities for the urn 
0//. Since A1 and H~ both begin with the partition of one our proof  is complete. 

Corollary. The jump chain {An, A n - i , . . . ,  A1} of the backward genealogieal process 
M, is equivalent to the reverse partition chain {H,, H,-1, �9 �9 HI} of the urn ~ 

Among the { Tn, T, 1 , . . . ,  T1} will be k (random) times T, k < T,k_ , < .  �9 �9 < T,, -= 
T~ at which an original line of  descent is created by a mutation. Denote these 
corresponding ancestors by J~k, ~k-~, �9 �9  J l .  By construction each individual in 
the sample must be descended without mutation from some J~ (because lines of  
descent are eliminated in chronological order beginning with the present). At 
time 7"1 a single (the first) line of descent is created corresponding to J l .  (We 
are running  backwards through the coalescent, that is forward in genealogical 
time.) Label it one. At T2 a second line is created. I f  it arose from the splitting 
of the first line then it (remains part of  the first line and) keeps the label one. I f  
it arose by mutation (of some other line, unspecified) then it must correspond 
to ~2 and is so labelled two. In general, if the line of  descent created at time T~ 
resulted from the splitting of an existing line, then it keeps the label of  that line, 
else it is a mutation corresponding to some J j  and it is assigned the (previously 
unused) label j. All individuals which descend without mutation from J j  inherit 
label j. This results in a classification of the alleles by ages, in which the oldest 
is assigned 1, the second oldest 2 , . . .  and so on. Since individuals are assigned 
the same age if and only if they trace back without mutation to a common ancestor 
the partition by ages gives, by definition, the same partition as the random 
equivalence relation ~ of Kingman. 

Introduce marker variables { Y1, Y2 , - . . ,  Y,} where Y~ is the label assigned 
at time T,. 

Theorem 7. The process { Y1, II2, . . . ,  Yn} is equal in distribution to the urn process 
{x,, x~ , . . . ,  x~}. 
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Proof This is essentially a restatement of Theorem 6. The process { Y1, Y2 , . . . ,  Yn} 
bears the same relationship to {A1, A 2 , . . . ,  A,} as {X1, X 2 , . . . ,  Xn} bears to 
{H1, FI2,.. . ,  1I,} in view of  (8.5). 

We are now in a position to explain the one-to-one correspondence between 
urn paths and equivalence relations described after (8.3). Each original line of  
descent acquires an age category based on Y~. By construction there is no mutation 
along any line from the time it is created until the present. At time t = 0 there 
are n original lines of  descent corresponding to the n members of  the initial 
sample. Each will have an age label I1/ (a label as an allele) and a time number  
(the subscript i on Y~) indicating its chronological order of occurrence. Earlier 
we pointed out that numbering the lines of  descent in the process L, disturbs the 
simplicity of  the structure. But suppose we number  the members of  the sample 
by their chronological number  as just described. This will give a specific joint 
distribution to (Sn, S n - 1 , . . . ,  $1). In fact, if Sn = ~: where ~: is an equivalence 
relation on ~n then automatically Sn-1 is deterministically forced to be r /where  
~7 is the equivalence relation induced on ~n-1 from ( by the deletion of n from 
{1, 2 , . . . ,  n} because the last line created (numbered n) is lost first going back 
in real time. The same deterministic structure holds going through 
Sn 1, S, 2 , - . - ,  $1. But in the other direction, in view of (8.4) 

O k k 
]~ ( h , -  1)! 

[0]i i=l  
Pr[S~ = ~:l S,_1 = ~/] - �9 PES,_~ = rllS, = ~] 

0 m m 

E o--~'j~, (m-l)! 

where {ai: 1 ~< i <~ k} are the sizes of  the equivalence classes of  s ~ and {/xj: 1 <~j <~ m} 
are the sizes of  the equivalence classes in r/. For any consistent pair (~7, s ~) with 
the above numbering Pr[Si_I = ~7 [S~ = ~:] = 1. Consequently 

o r -  1 if coalescence at 7]/ 
Pr[Sg = selS,_l = ,7] = + i - 1  (8.6) 

_ 0 if mutation at T~ 
+ i - 1  

where r -  1 is the size of  the equivalence class of  ~7 involved in the coalescence. 
Equation (8.6) is a restatment of  (4.5) and (4.6). The former describes the 

probabilistic mechanism by which new lines of  descent are created (either by the 
splitting of an existing line or by mutation), while the latter, describing the urn, 
gives the probabilities that each allele entering the sample is previously observed 
or novel. Watterson (1984, Sect. 3.6) and Donnelly and Tavar6 (1986, Sect. 5) 
also give case (2) of  (8.6) although only for the unconditioned probabilities 
Pr[mutation at T~]. 

The thrust of  Theorems 6 and 7 is that the urn process in the forward direction 
looks like the jump chain of the coalescent with mutation run backwards to the 
present from the birth time of the oldest allele in the sample. The labelling of 
alleles by the order in which they appear  in the sample is probabilistically 
equivalent to labelling them by the order in which their ancestors appeared in 
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genealogical time, and thus by their age. This justifies the methodology developed 
in Sect. 5 and we formalize this assertion as a corollary. 

Corollary 1. The distribution of allele numbers in the sample labelled by age is the 
same as the distribution of allele numbers labelled by the order in which they arise 
in the sample. 

The coalescent was introduced by Kingman as a robust approximation to the 
genealogy of a sample of  individuals taken from a large population evolving 
according to one of a number of similar models. Suppose given a hypothetical 
infinite population to which the coalescent applies exactly and let Oi denote the 
proportion in the population of the ith oldest allele. Take a sample of  size n and 
for fixed r let E~,r be the event that the oldest, second o ld e s t , . . . ,  rth oldest 
alleles in the population are contained in the sample. By definition the oldest 
allele is always present in the population meaning that Pr[O1 > 0] = 1 and thus 

c o  o o  

Pr[~j=r+ 1 0 s < 1] = 1. Therefore (~j=r+l OJ) n -'> 0 with probability one as n --> 
E and since Pr[E,,r] = 1 -  [(Y.j=r+l Oj)"] 

~irn Pr[E,,r] = 1. (8.7) 

Denote by Ni(n; S) the number of individuals in the sample of the ith oldest 
allele in the sample and let N~(n; P) be the number of individuals in the sample 
of the ith oldest allele in the population. As n increases, the oldest allele in the 
sample changes so that Ni(n; S) fluctuates, but Ni(n; P) of course grows 
monotonically. For each sample path eventually (by (8.7)) the first r oldest alleles 
in the population lie in the sample and N~(n;S)=N~(n;P), l<~i<~r, n~no 
(random). 

Corollary 2. The proportions ( 01, 02, . . . )  in the population of the alleles ordered 
by decreasing age have the same representation (2.1) as the alleles relabelled by 
their order of observation in the sample. 

Proof According to Theorem 7 and Corollary 1 the random vector 
1/n(Nl(n; S ) , . . . ,  Nr(n; S)) has the same joint distribution as 
1/n(S t (n) , . . . ,  S~(n)) which by Theorem 1 converges a.s. to the residual alloca- 
tion model described by (2.1). Therefore 1/n(Nl(n; P ) , . . . ,  Nr(n; P)) has the 
same limiting distribution. But it converges to (O1, 02, .. �9 Or) by the strong law 
of large numbers for exchangeable random variables (namely the sample from 
the population Q). 

This corollary implies Griffiths' result mentioned in Sect. 5. Our proof, based 
on the coalescent, should remain valid in the limit for any model in the domain 
of  attraction of the coalescent. We will not pursue the appropriate limiting 
operations and weak convergence needed for a precise interpretation, since 
Corollary 1 is of primary importance. Incidentally, Corollary 1 does not follow 
from Corollary 2. Just because a population is described by (2.1) this does not 
imply that the first observation, for instance, will be from the category labelled one. 

It is remarkable that Theorems 6 and 7 should hold. After all, the urn process 
{X1 ,X2 , . . . ,Xn}  is (by Theorem 3) a sample from a population, while 
{ Y1, Y2, �9 �9 �9 Y,} is the jumpchain of a stochastic process. The latter takes place 
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in continuous (and in reverse) time while the former involves no temporal 
structure, the subscripts on the X merely marking the different alleles in the 
sample. 

We close this section by touching base with recent work of  Watterson (1984), 
Ethier and Griffiths (1987), and Donnelly and Tavar6 (1986), all exploring the 
terrain of the coalescent. The last paper in particular derives joint distributions 
for age partitions and obtains Griffiths' representation for the age-class propor- 
tions. Our continuous time process ~ of random equivalence relations is novel 
and gives a genealogical interpretation of the urn by automatically tracing the 
ancestry of  a sample back in time according to the ages (resulting in Theorem 
6). The points of contact between 5r and the papers cited above deserve further 
study. It also seems appropriate to investigate the connection between the genea- 
logical approach and reversibility, perhaps by way of an infinite dimensional 
diffusion whose sample paths are not delabelled order statistics (Ethier and Kurtz 
(1981, 1986)) but are refined enough to track the changing genealogy. We have 
some preliminary results in this direction. 

9. Final remarks 

There are numerous interwoven ideas in this paper which we briefly summarize. 
This paper has analyzed the behaviour of a P61ya-like urn model which 

generates a Markov chain of partitions having the Ewens sampling formula as 
the marginal distributions and which imposes a labelling of alleles according to 
their order of occurrence in the sample. This is identical in distribution to that 
specified by the ages, a beautiful duality which we have shown ensues because 
the urn partition process is equivalent to the discrete skeleton representing the 
jumps in the time-reversed coalescent with mutation. This genealogical interpreta- 
tion explains Griffiths' result that the age distribution of alleles in the population 
is the size-biased permutation of the Poisson-Dirichlet distribution. 

The sequential nature of the urn often obviates the need to compute joint 
probabilities involving the Poisson-Dirichlet (or its size-biased sibling) and 
provides a simple basis for computing age and copy number distributions of 
alleles, both in a sample and the population, as manifested by the numerous 
examples above. In the spirit of  this technique, we have built, on the urn, a direct 
proof  that a random sample from a Poisson-Dirichlet population has the Ewens 
sampling structure. Previously this has been verified by passage to the limit from 
a Dirichlet distribution because of the difficulties of integration with respect to 
the Poisson-Dirichlet. Furthermore this approach illuminates Ewens' original 
prescription of the appearance of alleles in the sample. 

The Poisson-Dirichlet has a representation as an infinite residual allocation 
model when described in size-biased form. We have formulated a concept of 
residual allocation model appropriate for discrete populations and have shown 
that the size-biased version of Ewens' partition is such a model which is addi- 
tionally invariant under size-biased permutation (analogously to the Poisson- 
Dirichlet) and is equivalent to partition by ages of alleles. The representation 
provides a new method for efficient simulation from a Poisson-Dirichlet popula- 
tion as well as from any other residual allocation model. 
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Note added in proof. P. Donnelly (Theor. Popul. Biol. 30, 271 288) has, meanwhile, also discussed the above 
urn model and its relation to the ages of alleles. 


