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Abstract. The immune response to Mycobacterium tuberculosis (Mtb) infection is the for-
mation of multicellular lesions, or granolomas, in the lung of the individual. However, the
structure of the granulomas and the spatial distribution of the immune cells within is not
well understood.

In this paper we develop a mathematical model investigating the early and initial immune
response to Mtb. The model consists of coupled reaction-diffusion-advection partial differen-
tial equations governing the dynamics of the relevant macrophage and bacteria populations
and a bacteria-produced chemokine. Our novel application of mathematical concepts of
internal states and internal velocity allows us to begin to study this unique immunological
structure. Volume changes resulting from proliferation and death terms generate a velocity
field by which all cells are transported within the forming granuloma. We present numerical
results for two distinct infection outcomes: controlled and uncontrolled granuloma growth.
Using a simplified model we are able to analytically determine conditions under which the
bacteria population decreases, representing early clearance of infection, or grows, represent-
ing the initial stages of granuloma formation.

1. Introduction

Tuberculosis (TB) is an aerosol-transmitted infectious disease that accounts for
approximately 1.5 million deaths per year. It has been estimated that there were 8.4
million new cases of TB in 1999 [41] and that, currently, 1/3 of the world’s popu-
lation is infected with Mycobacterium tuberculosis (Mtb) [10]. However, infection
rarely leads to active disease. For most people, the body’s immune response is
effective in either clearing or containing the pathogen, resulting in latent infec-
tion. This usually occurs anywhere from 2–5 years after initial infection [1,4]. The
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immune response to Mtb is the development and maintenance of unique lesions,
called granulomas, in the lung of infected individuals. Granulomas are multi-cellu-
lar spheroids, consisting of bacteria, macrophages and other immune cells. It may
be that how these granulomas form and how well they function could be determi-
nant in disease progression, i.e. latency or active disease. There is evidence that
smaller solid granulomas (< 3mm in size) are formed in patients whose immune
system is controlling the infection. Larger, caseous granulomas (> 5mm in size)
are less likely to effectively contain bacterial growth and spread. Thus, granuloma
size and structure may contribute to the outcome of infection [5,7]. Reactivation
of latent infection can occur if the immune system is compromised in some way,
e.g. through infection with human immunodeficiency virus (HIV-1), aging, drug
and alcohol abuse [9].

In any infection, the first line of defense against a pathogen is the innate immune
response. The initial site of Mtb infection is the alveoli of the lung, where it comes
into contact with lung macrophages and dendritic cells. Macrophages respond to
bacterial infections by the process of phagocytosis: the engulfment of bacteria.
These macrophages are both uninfected and unactivated, meaning that they do
not contain bacteria (uninfected) and are less efficient at phagocytosis than acti-
vated macrophages [6]. Activated macrophages become efficient at phagocytosis
and bacterial killing due to the presence of T cells and cytokines [8,24,36]. Phago-
cytes are attracted to sites of infection via the release of chemokines by a variety
of cell types. During Mycobacterium tuberculosis (Mtb) infection, epithelial cells,
resident macrophages, T cells and bacteria each release chemokines that promote
migration of immune system cells to the infection site. Similar processes also
occur in tumors, wound healing and arthritis. It is speculated that if macrophages
phagocytose and kill bacteria quickly, infection can conceivably be cleared [32,38].
However, Mtb has evolved to resist killing by unactivated macrophages. In fact, it
prefers to reproduce within macrophages [21]. The intracellular bacteria popula-
tion of its host macrophage can become so large that the macrophage bursts and
dies [38]. Therefore, a more forceful response is required and adaptive immunity
develops. Infected macrophages release various chemokines (e.g. IL-8, MIP2, IP-
10, MCP-1) that attract macrophages, neutrophils and T cells to sites of infection
[13]. Additionally, macrophages produce cytokines (e.g. IL-12, TNF-α) that both
up- and down-regulate adaptive immunity [9].

In this paper we develop a model of the innate immune response to Mtb infec-
tion.We wish to capture migration of uninfected macrophages to the site of infection
and their subsequent phagocytosis of bacteria. Macrophage movement to the site
of infection occurs via both random motion and directed cell movement (chemo-
taxis) due to chemokines released by bacteria. For example, Sannoyima et al. [30]
discovered that fMet-Leu-Phe is one of the proteins released by bacteria that is
a known chemoattractant. Once in the lung, macrophages phagocytose bacteria.
Infected macrophages are able to kill their intracellular bacteria. However, their
killing capacity is much lower than that for macrophages activated via T cell and
cytokine signals. In fact, chronically infected macrophages are known to be less
effective at a variety of immune functions. For example, infected macrophages have
diminished phagocytic potential, a decreased level of MHC-II presentation (which
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plays an important role in macrophage activation) [6] and produce less chemokines
than activated macrophages [20,31].

Phagocytosis can be divided into two main operations: engulfment and kill-
ing. The macrophage first uses its receptors to bind to the bacteria, surrounding
it by a membrane and then internalizing it into a compartment called a phago-
some. Within the macrophage, lysosomes, which contain enzymes, peptides and
proteins, can then fuse with the phagosome to generate a phagolysosome. The lyso-
somal contents are then released, killing the bacteria. Mtb, however, interferes with
phagosome-lysosome fusion and thus survives in the phagosome [3] and grows in
the host macrophage [21].

Previous mathematical models have been developed to consider macrophage
dynamics, for example: partial differential equation (PDE) models in tumor biol-
ogy [25,26]; ordinary differential equation (ODE) models in Mtb infection [42],
phagocytosis [37], HIV infection [16,43] and in the immune response to an unspec-
ified disease or infection [18,29]. The Mtb-immune system model of Wigginton
and Kirschner [42] and Tran et al.’s [37] model of phagocytosis serve as our back-
ground models for the immune response and phagocytosis, respectively. Wigg-
inton and Kirschner developed a model of the adaptive, cell-mediated immune
response to Mtb infection. This model consisted of ODEs governing the temporal
dynamics of extracellular and intracellular bacteria, relevant macrophage classes,
T cells and cytokines. Simulations showed that different disease trajectories (active
disease, latency and clearance) could be obtained depending on the effectiveness
of macrophages and T cell killing of infected macrophages. Tran et al. devel-
oped a model of phagocytosis using an internal state formulation: AMi denoted
the population of alveolar macrophages (AM) containing i particles. As a macro-
phage engulfs more particles, the total number of internal particles increases i.e.
AMi → AMi+1 → AMi+2 . . . etc. That paper presented a model framework to
represent various processes leading to silicosis, a disease which affects the lung and
is characterized by progressive fibrosis and a chronic shortness of breath. Silicosis
is caused by continued inhalation of the dust of siliceous minerals, including quartz.
The model consisted of equations governing the temporal dynamics of the alveolar
macrophages, neutrophils, a generic chemoattractant and fibroblasts. Using that
model they were able to demonstrate quantitative agreement with experimental
studies.

In addition to phagocytosis, we must capture the movement of the macrophages
to the site of infection. There are many models of chemotaxis in the literature (e.g.
[2,11,14,15,22,25,26,33,34]) most of which build on the original model of Keller
and Segel [14]. Depending on the types of cells and biological phenomena being
modeled, the chemotaxis coefficient can either be constant [25,26], dependent on
the chemoattractant concentration [2,14,15,27] or dependent on cell receptors [11,
33,34]. We have not been able to find data describing how infection affects the
chemotactic movement of the macrophage. We expect that they become worse
at responding to chemotactic signals, as they are sick, but due to lack of data we
chose the simplest option of assuming that uninfected macrophages have a constant
chemotactic coefficient and that infected macrophages do not respond to chemo-
attractant.



Macrophage response to Mycobacterium tuberculosis infection 221

Finally, the adaptive immune response to Mtb infection can lead to the forma-
tion of a granuloma [9]. Tracking the progression of the granuloma boundary will
enable us to predict if infection is progressing or being contained. Mathematically,
the formulation of a granuloma is similar to that of a solid tumor: both can be
considered as multicellular spheroids. The models of Ward and King [39,40] use
reaction-diffusion equations to study the growth of avascular tumors. They use a
common internal cellular velocity, or bulk velocity, to describe the growth of the
tumor radius and the movement of all cells within the tumor. It is assumed that the
tumor spheroid is well packed (has no-voids) and that any cell proliferation, death
or, in our case, phagocytosis contributes to a volume increase (or decrease) that
causes the cells to move.

In this paper, we develop a new spatio-temporal model of the initial, innate
immune response to Mycobacterium tuberculosis infection. Our goal is to cap-
ture either clearance by innate immunity or progression of disease via granuloma
growth. In §2 we present the model and then present numerical results in §3. We
find that, in agreement with experimental results, no stable latent solution is found.
In §4 we present a simplified model that allows some analytical progress. Finally
in §5 we discuss the model and describe additions that are required to model the
complete cell-mediated immune response.

2. Mathematical model

In this section we present a mathematical model that describes the innate, initial
host response to Mtb. We consider extracellular and intracellular bacteria, unacti-
vated macrophages and a chemoattractant produced by extracellular bacteria. We
use reaction-diffusion-type equations to describe how these dependent variables
proliferate, die, move and interact. For simplicity, we employ a one-dimensional
cartesian geometry corresponding to the growth of a slab of bacteria and immune
cells rather than a spheroid. Defining B(x, t) as the extracellular bacteria density,
Mw(x, t), w = 0, . . . , N as the macrophage density (where the subscript denotes
the number of intracellular bacteria within a macrophage) and the chemoattractant
concentration as C(x, t). Note that M0 is the only macrophage with no internal
bacteria. Below, we discuss the governing equations for each of the variables.

Extracellular bacteria dynamics

Extracellular bacteria replicate at a rate α and can be phagocytosed, at rate λ, by the
first p macrophages. Essentially this means that macrophages stop eating bacteria
when they become “full”. Macrophages die at a rate µ at which time all intracel-
lular bacteria are released. This is captured by the source term µ

∑N
w=0 w Mw in

the bacteria density equation, where N is the maximal intracellular bacterial load.
Intracellular bacteria replicate within their host macrophage at a rate βw (defined
below). A macrophage is able to hold up to N intracellular bacteria and if any of
these N replicate, the macrophage bursts releasing bacteria extracellularly at rate
βN ·N . Finally, bacteria move via diffusion and a common internal velocity (for a
more detailed description see Ward and King [40]). The common internal velocity
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comes from models of tumor growth [40,12] where it is assumed that a multicellu-
lar spheroid (tumor) has no voids and that processes such as cell proliferation and
death generate a velocity field that moves individual cells and governs the spheroid
boundary position. In our model, phagocytosis also affects the internal velocity,
denoted by v(x, t). Thus, the extracellular bacteria equation is:

∂B

∂t
+

internal
velocity
︷ ︸︸ ︷
∂ (v B)

∂x
=

bacterial
growth
︷︸︸︷
α B −

phagocytosis
︷ ︸︸ ︷

λ B

p∑

w=0

Mw +

macrophage
death

︷ ︸︸ ︷

µ

N∑

w=0

w Mw

+ βN N MN︸ ︷︷ ︸

macrophage
bursting

+DB ∂2B

∂x2
︸ ︷︷ ︸
diffusion

,






(1)

where DB is the coefficient of diffusion.

Macrophage and Intracellular bacteria dynamics

As described in the introduction, macrophages have essentially three states: unin-
fected, infected and activated. Uninfected macrophages take up bacteria and, if not
activated quickly, become infected. Infected macrophages can still phagocytose and
kill, however, their ability to function properly decreases with increasing bacterial
load.Activated macrophages are extremely efficient at killing their intracellular bac-
terial load. However, in this model of innate immunity, we do not include cytokines
or T cells and therefore activated macrophages, which require T cells for activa-
tion, are not considered in the present model. The N + 1 macrophage equations
are split into two distinct types: firstly an equation for uninfected macrophages,
M0, i.e. those that have no intracellular bacteria and, secondly, a set of equations
for infected macrophages, Mw, that have w intracellular bacteria. Macrophages
phagocytose extracellular bacteria at a rate λ and die at a rate µ. Infected macro-
phages can clear their bacterial load at a rate ψ and return to the uninfected state.
For simplicity, we assume that infected macrophages lose their ability to kill before
they lose the ability to phagocytose. The macrophage classes included in this model
are

M0 : uninfected macrophage, can phagocytose
Mw, w ∈ {1, . . . , κ} : can phagocytose and kill
Mw, w ∈ {κ + 1, . . . , p} : can phagocytose but cannot kill
Mw, w ∈ {p + 1, . . . , N} : cannot phagocytose or kill

where w, κ, p, N are positive integers and we assume that macrophages lose
their ability to kill before they lose the ability to phagocytose, i.e. κ < p < N .
Finally, uninfected macrophages can move via internal velocity, diffusion and by
chemotaxis, i.e. up gradients of a chemokine,C(x, t), produced by the extracellular
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bacteria. During an actual cell-mediated immune response, macrophages them-
selves release chemoattractants to aid the battle against infection [9]. However, in
this model we are studying solely the early response to infection, and hence we
concentrate on a chemical release only by bacteria e.g. fMET-Leu-Phe [28,30].
The equation governing the dynamics of the uninfected macrophage population is
given by

∂M0

∂t
+

internal
velocity
︷ ︸︸ ︷
∂ (v M0)

∂x
= −

phagocytosis
︷ ︸︸ ︷
λ B M0 −

macrophage
death
︷ ︸︸ ︷
µ M0 +

intracellular
bacterial
killing

︷ ︸︸ ︷

ψ

κ∑

w=1

Mw

+DM ∂2M0

∂x2
︸ ︷︷ ︸

diffusion

− ∂

∂x
χ

(

M0
∂C

∂x

)

︸ ︷︷ ︸

chemotaxis






(2)

Infected macrophages, those which have internalized bacteria, are able to phago-
cytose extracellular bacteria while their own bacterial load w ≤ p. They die at rate
µ and can kill their intracellular bacteria if their bacterial load is w ≤ κ . Intra-
cellular bacteria can grow within their host at a rate βw (defined below), but we
assume that one bacteria divides at a time. Finally, these macrophages move via
the internal velocity and diffusion only. This is probably not strictly true. We may
expect that a chronically infected macrophage would have reduced speed and be less
able to sense the surrounding chemical gradients, however they most likely have
some potential to move chemotactically. This could be incorporated by choosing
non-constant forms for DM and χ in equations (3).

∂M1

∂t
+ ∂ (v M1)

∂x
=

loss/gain due to
phagocytosis

︷ ︸︸ ︷
−λ B M1 + λ B M0 −µ M1 − ψ M1

− β1 M1︸ ︷︷ ︸

intracellular
bacteria
growth

+DM ∂2M1

∂x2

∂Mw

∂t
+ ∂(v Mw)

∂x
= −λ1 B Mw + λ2 B Mw−1 − µ Mw − ψ1Mw

−βw w Mw + βw−1 (w − 1) Mw−1︸ ︷︷ ︸

loss/gain due to intracellular
bacteria growth

+DM ∂ (Mw)

∂x2






(3)

Macrophages that phagocytose extracellular bacteria move “up” the infection scale
i.e.Mi → Mi+1, hence the loss and gain terms in equations (3). This process occurs
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similarly with intracellular bacteria growth. Infected macrophages, with a bacterial
load w ≤ κ , clear this load at a rate ψ and return to the uninfected macrophage
state,M0. In the infected macrophage equation this is represented by the following
form of ψ1(w)

ψ1(w) =
{
ψ, w ≤ κ

0, otherwise

Macrophages with a bacterial load w ≤ p can perform phagocytosis, and that rate
is represented by λ1(w) and λ2(w) as follows

λ1(w) =
{
λ, w ≤ p

0, otherwise
, λ2(w) =

{
λ, w ≤ p + 1

0, otherwise.

Finally, bacteria within macrophages grow at a rate that decreases with the number
of bacteria within the host due to space and nutritional constraints. Hence, we define
βw(w) as

βw(w) = β0

(w0 + w)
. (4)

Chemoattractant dynamics

The chemoattractant C(x, t) is produced by extracellular bacteria, B, at a maximal
rate sB and diffuses at a rate DC . It has a natural decay rate, �C , and is utilized by
uninfected macrophages,M0, at a rate �M . The governing equation for chemoattr-
actant, C is:

∂C

∂t
= sB

B

B + b0
− �C C − �M M0 C +DC

∂2C

∂x2 . (5)

Granuloma radius

We assume that cellular velocity, v(x, t) at the granuloma boundary, x = R(t),
describes the radial growth of the granuloma and thus the equation governing R is

∂R

∂t
= v(R, t). (6)

Finally, we assume that there are no voids in the granuloma, therefore, for x ≤ R(t)

VM

N∑

i=0

Mi + VB B = 1, (7)

where VM and VB are, respectively, the volume of a single macrophage and a single
bacterium.
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2.1. Non-dimensionalization

For ease of numerical analysis we non-dimensionalize equations (1)–(7). The bac-
teria and macrophage densities are non-dimensionalized with respect to the volume
of a single bacterium (VB ) and macrophage (VM ), respectively. Time is non-dimen-
sionalized by the bacterial growth rate (α) while the spatial coordinate, x, and the
granuloma radius, R(t), are non-dimensionalized with respect to the initial gran-
uloma radius R(t0) = R0. Finally, the chemoattractant is non-dimensionalized by
sB/�C . Thus, the non-dimensionalizations are written as:

B = B̂/VB, Mj = M̂j /VM, t = t̂/α, x = x̂ R0,

R = R̂ R0, v = v̂ R0 α, C = Ĉ (sB/�C)

Now, using the non-dimensional no-voids condition (7), B is given by

N∑

i=0

M̂i + B̂ = 1. (8)

The non-dimensional macrophage equations are given as

∂M̂0

∂t̂
+ ∂ (v̂ M̂0)

∂x̂
= −λ̂ B̂ M̂0 − µ̂ M̂0 + ψ̂

κ∑

j=1

M̂j

+D̂M ∂2M̂0

∂x̂2 − χ̂
∂

∂x̂

(

M̂0
∂Ĉ

∂x̂

)

∂M̂1

∂t̂
+ ∂ (v̂ M̂1)

∂x̂
= −λ̂ B̂ M̂1 + λ̂ B̂ M̂0 − µ̂ M̂1 − ψ̂ M̂1

−β̂1 M̂1 + D̂M
∂2M̂1

∂x̂2

∂M̂w

∂t̂
+ ∂ (v̂ M̂w)

∂x̂
= −λ̂1 B̂ M̂w + λ̂2 B̂ M̂w−1 − µ̂ M̂w − ψ̂1M̂w

−β̂w w M̂w + β̂w−1 (w − 1) M̂w−1

+D̂M ∂2M̂w

∂x̂2






(9)

where w = 1, . . . , N , β̂w = β̂0

w + w0
,

ψ̂1(w) =
{
ψ̂, w ≤ κ

0, otherwise
,

λ̂1(w) =
{
λ̂, w ≤ p

0, otherwise
and λ̂2(w) =

{
λ̂, w ≤ p + 1

0, otherwise.
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The non-dimensional chemoattractant equation is

∂Ĉ

∂t̂
= B̂

B̂ + b̂0
− �̂C Ĉ − �̂M M̂0 Ĉ + D̂C

∂2Ĉ

∂x̂2 , (10)

and the non-dimensional granuloma radius is given by

∂R̂

∂t̂
= v̂(R̂, t̂). (11)

Finally, using the no-voids condition, equation (8), the equation governing the
internal velocity can be written as

v̂x̂ = B̂ − Vr λ̂ B

N∑

j=0

Mj + µ̂

N∑

j=0

[
M̂j (Vr j − 1)

]

+β̂N N (Vr − 1) M̂N + D̂B
∂2B̂

∂x̂2 + D̂M

N∑

j=0

∂2M̂j

∂x̂2

−χ̂ ∂

∂x̂

(

M̂0
∂Ĉ

∂x̂

)






, (12)

where B is found via equation (8). The dimensionless parameters are

(λ̂, λ̂1, λ̂2) = 1

α VB
(λ, λ1, λ2), µ̂ = µ

α
, (ψ̂, ψ̂1) = 1

α
(ψ, ψ1),

(
β̂w, β̂0

)
= 1

α
(βw, β0) , �̂C = �C

α
, �̂M = �M

α VM
, b̂0 = b0 VB,

V̂R = VB

VM
,
(
D̂B, D̂M, D̂C

)
= 1

R2
0 α

(DB, DM, DC) , χ̂ = χ sB

R2
0 α �C

.

Boundary and Initial conditions

We impose no-flux boundary conditions at x = 0 for all concentration and density
variables. At the granuloma boundary x = R, we assume that chemoattractant
is released so that uninfected, M0, macrophages are attracted into the granuloma.
Therefore the boundary conditions are given as

D̂M
∂M̂w

∂x̂
= 0, i = 1, . . . , N for x̂ = 0, R̂

D̂C
∂Ĉ

∂x̂
= 0, D̂M

∂M̂0

∂x̂
= 0, for x̂ = 0

D̂C
∂Ĉ

∂x̂
= −Q̂C Ĉ, for x̂ = R̂

D̂M
∂M̂0

∂x̂
− χ̂ M̂0

∂Ĉ

∂x̂
= Q̂M Ĉ, for x = R̂.

In the above, Q̂C = QC/(R0 α) and Q̂M = QM VM sB/(�C R0 α), where QC

and QM are the flux rates across the granuloma boundary for the chemoattractant,
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C, and the uninfected macrophages, M0, respectively. We choose the following
initial condition for the macrophages

M̂0(x, 0) = 0.0. (13)

This implies that the granuloma is initially comprised of bacteria alone.

3. Numerical simulations

3.1. Numerical method

The aim of this section is to numerically approximate the solutions to the system of
equations (9)–(12). We approximate the solutions in the manner described by Ward
and King [40] and here we give a brief outline of this method. The moving boundary
of the granuloma is mapped onto the unit interval via the following scaling of the
spatial variable: x = R(t) ρ. This scaling means that the derivatives in equations
(9)–(12) are also scaled:

∂

∂t
→ ∂

∂t
− v(1, t)

R(t)
ρ
∂

∂ρ
,

∂

∂x
→ 1

R(t)

∂

∂ρ
.

The equations are solved sequentially: first, v(x, t) is found using the trapezium
method; then R(t) is updated; then equations (9)–(10) are approximated using the
NAG routine D03PCF [23]. These steps are then repeated withB(x, t) found at each

time point by using the no-voids condition
(
B = 1 −∑N

i=0 Mi

)
. Additionally, we

need to track the total amounts of extracellular bacteria, BT , and intracellular bac-
teria, IB given by

BT (t) =
∫ R(t)

0
B(x, t)dx

= R(t)

∫ 1

0
B(ρ, t) dρ,

IB(t) =
∫ R(t)

0
VR

N∑

w=0

w Mw(x, t) dx

= R(t)

∫ 1

0
VR

N∑

w=0

w Mw(ρ, t) dρ.

(14)

For simplicity, when we present levels of BT and IB we will use scaled values,
namely BT /R(t) and IB/R(t) which means that the maximum values of BT and
IB are 1 and VR , respectively.

Parameter estimates

It is hard to determine precise values for all the parameters in this system. Hence we
choose to seek order of magnitude estimates for as many parameters as possible.
Such order of magnitude estimates come from both modeling and biological liter-
ature. In some cases it has not been possible to obtain more than one estimate for a
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parameter, and hence we have included order of magnitude estimates for different
cells so as to achieve a lower (or upper) bound. From Wigginton and Kirschner [42]
(and references therein) we obtain estimates for the kinetic parameters, Owen and
Sherratt [25] (and references therein) gives estimates for DM , DC and χ . These
estimates are of similar magnitudes to the approximations used in Ward and King
[39,40], Owen and Sherratt [26] and Sherratt [33]. The full list of parameter esti-
mates is shown in Table 1. Two parameters not shown in this table are p and κ
where Mp and Mκ are the last macrophages able to perform phagocytosis and kill
their intracellular bacteria, respectively. It is thought that it takes between 50 and
100 intracellular bacteria to cause a macrophage to burst [42]. We do not have any
data to suggest when macrophages stop ingesting bacteria or stop killing their intra-
cellular bacteria. However, a previous study [42] has suggested that macrophages
become chronically infected when they have half the number of intracellular bac-
teria required for bursting. It is a reasonable assumption that these macrophages
have reduced phagocytic and killing ability. For simulation purposes we have cho-
sen to take the number, N , of intracellular bacteria required to burst their host
macrophage to be N = 4, hence we have 5 macrophage types: Mi, i = 0 . . . 4.
We choose M2 to be the last class of phagocytic macrophage and M1 to be the
last class of macrophage able to kill its intracellular bacteria. Bacteria are, in gen-
eral, much smaller than macrophages (orders of magnitude). However, due to our
assumption on N , we will take (the volume of bacteria) VB = VM/10 so that a
bursting number of NB = 4 is reasonable. The chemoattractant decay and produc-
tion terms, �C, sB, b0, have been chosen so as to lead to reasonable results and
are in line with previous authors [25,26]. The utilization of chemoattractant, �M ,
is chosen so as to be of a reasonable size when non-dimensionalized, as there are
no order of magnitude estimates available. We assume that the rate of diffusion of
chemoattractant is larger than for macrophages,DC > DM , since chemoattractant
is very small compared to cells in human tissue and can therefore move relatively
unhindered. The assumption that the diffusion coefficient for bacteria is less than
that for macrophages, DB < DM , implies that bacteria spreads out slower than
macrophages. This is a reasonable assumption given that macrophages are actively
patrolling the tissue looking for foreign objects. As the chemoattractant is a purely
diffusive quantity, it is reasonable to assume that the flux parameter is equal to the
diffusion parameter, i.e. QC = DC . We note, however, that there is no experimen-
tal evidence to support or contradict this assumption. We have varied the resting
macrophage flux parameter, QM , over a wide range (10−16 < QM < 10−8). The
value chosen produces both controlled and uncontrolled growth for reasonable val-
ues of ψ and β0. Choosing QM much smaller requires unreasonably large values
of ψ ∼ O(103) to control the granuloma size.

Henceforth, for simplicity, we drop carets and assume all parameters and vari-
ables are non-dimensional, unless explicitly stated otherwise.

3.2. Numerical simulations

In this section, we first present plots showing how the granuloma radius and bacte-
rial populations change over time for different values of ψ and β0, the intracellular
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killing and intracellular growth parameters, respectively. Then we present graphs of
the spatial distributions of the macrophage classes, velocity and chemoattractant at
different time points for two specific case of: (1) controlled granuloma growth; (2)
uncontrolled granuloma growth. In all the simulations that we perform, the granu-
loma radius either grows uncontrollably or dies out. Reasons for this are proposed
in the Discussion §5. All simulations were run until the granuloma radius decreased
below R = 10−4 or increased above R = 200 however, for presentation purposes,
we have chosen to show results up to scaled time of 6 units.

In Figure 1 we present graphs of the granuloma radius plotted against time
for different values of the rate of phagocytosis, λ, the intracellular bacteria kill-
ing parameter, ψ , and the intracellular bacteria growth parameter, β0 (Figure 1).
From Figure 1(a) we see that if λ = 0 the granuloma radius grows uncontrolla-
bly, as there is no mechanism to slow the bacterial growth. However, if λ is large
enough (λ ∼ 100), the macrophages are able to control the extracellular bacterial
population and kill the bacteria they internalize at a rate that results in clearance.
It can be seen that, for β0 = 0 and λ = 100, granuloma growth decreases as ψ
increases until the value of ψ is large enough to control the granuloma, i.e. R → 0
(Figure 1(b)). However, increasing β0 from zero, and setting ψ = 500, λ = 100,
(Figure 1(c)) increases the growth rate of the granuloma until it grows uncontrol-
lably, which is intuitive from a biological standpoint. If ψ is large enough, less
intracellular bacteria will be released than were initially taken up via phagocytosis.
Therefore, there will be less extracellular bacteria, less chemokine production and
a decrease in resting macrophage recruitment. However, ifψ is smaller (or β0 large
enough) there will be more extracellular bacteria and the macrophages will not be
able to phagocytose and kill them rapidly enough. This will lead to the extracellular
bacteria dominating the granuloma. This is shown in Figure 2 where we present
graphs of the scaled bacteria populations over time for different values of ψ and
β0. We note that when the radius grows uncontrollably (for ψ = 500, β0 = 200
or ψ = 200, β0 = 0) the extracellular bacteria tends to one, and the intracellular
bacteria dies out. This intracellular bacteria death occurs due to a lack of infected
macrophages, which we discuss more fully below. When the granuloma dies out
(for ψ = 500, β0 = 0 or ψ = 500, β0 = 100) both bacteria populations tend
to zero. We have not been able to find a steady state solution for the granuloma
radius, which would correspond to a state of latency. We suggest that this is prob-
ably because the steady state solution is unstable in the present model. This agrees
with current biological theory, which suggests that many types of immune cells are
required for successful formation of a latent granuloma.

We now discuss in more detail the cellular distributions for two cases: (1) con-
trolled granuloma growth (ψ = 500, β0 = 100, λ = 100); (2) uncontrolled
granuloma growth (ψ = 500, β0 = 200, λ = 100).

(1) Controlled granuloma growth: ψ = 500, β0 = 100, λ = 100

Under conditions leading to the control of the granuloma, initially, the extracellular
bacteria produces chemoattractant, C, recruiting uninfected macrophages, M0, to
the site of infection. By t = 1.0 (Figure 3(a)) theM0 macrophages have entered the
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Fig. 1. Graph showing how the granuloma radius, R, varies with time, t , for: (a) ψ = 500,
β = 100 and λ is varied; (b) β0 = 100, λ = 100 and ψ is varied (c) ψ = 500, λ = 100 and
β0 is varied. Other parameters are as in Table 1.
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bacterial population. Other parameters are as in Table 1.

granuloma and have a peak at the granuloma boundary, ρ = 1, where ρ = x/R(t)

is the rescaled spatial variable. The consequences of choosing p = 2 and κ = 1 is
seen at this early time point: there are moreM3 andM4 macrophages thanM2 and
M1 macrophages. The last class of macrophages that can perform phagocytosis are
the M2 population, whereas the last class of macrophages that can kill their intra-
cellular bacteria are theM1 population. This implies that theM3 can only decrease
in number via macrophage death or bacterial growth. However, M2 macrophages
can become M3 macrophages via phagocytosis and M1 macrophages can revert
to M0 macrophages via intracellular bacterial killing. The velocity, v, at t = 1.0
(Figure 4(a)) increases from ρ = 0, but decreases near ρ = 1 due to the number
of macrophages. The chemoattractant, C, (Figure 4(a)) is lower at ρ = 1 than in
the central part of the granuloma due to leakage into the surrounding tissue and
being utilized by resting macrophages. The granuloma radius initially increases
and does not drop in size until approximately t = 2.0 (Figure 1(b)) which accounts
for the rise in chemoattractant between t = 1.0 and t = 2.0 (Figure 6). As the rest-
ing macrophage population rises, between t = 2.0 and t = 4.0, they become
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Fig. 3. Controlled granuloma growth: Graph showing the spatial distribution of the mac-
rophage populations at different time points with ψ = 500, β0 = 100 and λ = 100, other
parameters are as in Table 1: (a) t = 1.0; (b) t = 2.0; (c) t = 4.0; (d) t = 6.0.

dominant throughout the granuloma. The extracellular bacteria population de-
creases, whereas the infected macrophage population and, hence, the intracellular
bacteria populations increase due to phagocytosis. Finally, at t = 6.0, the infec-
tion is almost cleared: both bacterial populations and the infected macrophages
are dying out; the granuloma radius, R, is decaying to zero; and the uninfected
macrophages are the dominant cell type in the granuloma, M0(x, t) → 1.0.

(2) Uncontrolled granuloma growth: ψ = 500, β0 = 200, λ = 100

Under conditions leading to uncontrolled granuloma growth, initially, the plots for
the macrophages, velocity and chemoattractant are very similar to those for con-
trolled growth (Figure 5(a)). However, as time progresses, the extracellular bacteria
begin to dominate the granuloma due to the high intracellular growth rate inducing
rapid macrophage bursting (Figures 5(b)–(d) & 2). Although more chemoattractant
is released (Figure 6(b)) the macrophages do not kill their intracellular bacteria at a
high enough rate to control the growth of the granuloma. Therefore, the extracellu-
lar bacteria grow uncontrollably, increasing the internal velocity of the granuloma
(Figure 6(a)) and the macrophages are forced into a small layer near the granuloma
boundary. As time progresses, the rate at which the granuloma grows increases
(v(R, t), see Figure 6(a)), the extracellular bacteria tend to one and the macro-
phage populations decrease.
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internal velocity, v, and (b) the chemoattractant, C, at different time points with ψ = 500,
β0 = 100 and λ = 100, other parameters are as in Table 1.

Comments

The progression of Mtb infection can be split into three types of outcome: control via
innate immunity (clearance); control via cell-mediated immunity (latency); uncon-
trolled granuloma growth with cell-mediated immunity. The model presented here
is one of innate immunity as no other cell types other than resting macrophages are
recruited to the site of infection. Therefore, results showing uncontrolled granuloma
growth are indicators of regions in parameter space where the initial macrophage
response is not sufficient to control the infection, and therefore a cell-mediated
immune response is required.

4. Analysis

4.1. Spatially homogeneous model

In this section, we present a simplified version of the dimensional model presented
in Section 2, equations (1),(2),(3), (5), that is spatially homogeneous. For simplicity,
we assume the following: all extracellular bacteria have been phagocytosed which
implies that we can neglect the equations for B and M0, because all the bacteria
is now held inside the macrophages,; macrophage natural death rate is negligible
(on short time scales); and all macrophages can kill internalized bacteria (κ = N ).
Additionally, as all extracellular bacteria have been phagocytosed, there is no longer
any production of chemokine, C. Hence, in this simplified model, the steady state
value of C is C = 0. To asses the progression of infection over time, we track the
bacterial load (i.e. the total amount of bacteria), given as

BL = BI =
N∑

1

w Mw(t) dw, w = 1, . . . , N, (15)
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Fig. 5. Uncontrolled granuloma growth: Graph showing the spatial distribution of the mac-
rophage populations at different time points with ψ = 500, β0 = 200 and λ = 100, other
parameters are as in Table 1: (a) t = 1.0; (b) t = 2.0; (c) t = 4.0; (d) t = 6.0.

and as we have assumed that there is no extracellular bacteria, B = 0. In equation
(15), Mw represents the solution of the following dimensional equations

dMw

dt
= −ψMw − βw w Mw + βw−1 (w − 1) Mw−1, w = 1, . . . , N (16)

and we have neglected all spatial effects.

Solution

We recast w, the number of intracellular bacteria in a macrophage of class Mw, as
a continuous variable and solve that approximation to equation (16). Then, BL can
be written as

BL =
∫ N

1
w M(w, t) dw (17)

where M is the solution of the reformulated macrophage equation

∂M

∂t
(w, t)+ ∂M

∂w
(βw w M(w, t)) = −ψ M(w, t) (18)

which can be written as

∂

∂t
M + βw w

∂

∂w
M = −M

(

ψ + ∂

∂w
(βw w)

)

. (19)
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Fig. 6. Uncontrolled granuloma growth: Graph showing the spatial distribution of (a) the
internal velocity, v, and (b) the chemoattractant, C, at different time points with ψ = 500,
β0 = 200 and λ = 100, other parameters are as in Table 1.

We take the following form of βw, simplified from equation (4),

βw = β0

(
1 − w

N

)
. (20)

Recasting this model in terms of the following non-dimensional variables and
parameters

B = B̂ V −1
b , M = M̂ V −1

m , t = t̂ β−1
0 , w = ŵ N, ψ = ψ̂ β−1

0 , Vr = Vb/Vm,

leads to the following equation for M (for convenience, carets are dropped)

∂M

∂t
+ w (1 − w)

∂M

∂w
= −M (ψ + 1 − 2 w), (21)

where 0 ≤ w ≤ 1.
Now, equation (21) can be solved using the method of characteristics. If we

assume that the initial distribution of macrophages is concentrated betweenwl and
wh according to

M(w, 0) = M0(w) =
{

 (w − wl)(wh − w), wl ≤ w ≤ wh

0, otherwise
(22)

where 
 is chosen so that
∫ wh
wl
M(w, 0) = 1 i.e. 
 = 6/ (wh − wl)

3.
Therefore, M is given as

M = M0(q)
(
e−t (q − 1)− q

)
e−(ψ+1) t , (23)

where

q = w

et − w (et − 1)
.
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Alternatively we can write the solution for M as

M =







 e−(ψ+1) t
(

wh − w

et − w a

)(
w

et − w a
− wl

)

×
(

1 + w a

et − w a

)2

, w̄l(t) ≤ w ≤ w̄h(t)

0, otherwise

(24)

where

w̄h(t) = wh e
t /(1 + a wh),

w̄l(t) = wl e
t /(1 + a wl),

and a = et − 1.
Figure 7 shows plots of the macrophage population against intracellular bac-

teria for different values of t and ψ . As time progresses the bacteria divide and
the macrophage population becomes “more” infected. The initial data has compact
support, M(w, 0) > 0 only for w ∈ (wl, wh), and the solution maintains compact
support,M(w, t) > 0 only forw ∈ (w̄l(t), w̄h(t)). We note that w̄h(t), w̄l(t) ∼ 1
as t → ∞ and thus the width of the domain of compact support shrinks to zero as
t → ∞. Note that the unique steady state solution to equation (21) is

M = mc

(
1 − w

w

)ψ 1

w (1 − w)
, (25)

for 0 ≤ w ≤ 1, but this is not integrable and so not an acceptable solution. There-
fore, no stable steady state solution exists i.e. no stable latent state is possible.
The bacterial load is found by solving equation (21), which gives the following
expression for BL

BL
∣
∣
t=0 = Vr

wh + wl

2

BL
∣
∣
t>0 = Vr

∫ w̄h(t)

w̄l (t)

w M dw

= Vr 

e−(ψ−1)t

6 a4

{

a (wh − wl)

(

a2 (wh − wl)
2

−3 a (wh + wl)− 6

)

−6 ln
[

1+a wl
1+a wh

]
(1 + wh a) (1 + wl a)

}

.






(26)

Now, we write the BL
∣
∣
t>0 solution as

BL
∣
∣
t>0 = e−(ψ−1) t F (t), (27)
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where,

F(t) = Vr

1

6 a4

{

a (wh − wl)
(
a2 (wh − wl)

2

−3 a (wh + wl)− 6
)

−6 ln
[

1+a wl
1+a wh

]
(1 + wh a) (1 + wl a)

}

.






(28)

Plots of BL against t for various values of ψ are shown in Figure 8. It can be seen
that BL → 0.1 = Vr as t → ∞ when ψ = 0, while for all non-zero values of ψ
the bacterial load eventually decreases. Now, if ψ = 0, then

lim
a→∞(1 + a) F (a) = Vr,

⇒ lim
t→∞ e

t F (t) = Vr,
(29)

as shown in Figure 8(b). On the other hand when ψ > 0,

lim
t→∞ e

−(ψ+t) F (t) ∼ O (
e−ψ t

)
. (30)

Hence, if ψ > 0 then the bacterial load decreases to zero as t → ∞.
From equation (21) we can obtain a lower bound on ψ such that BL

∣
∣
t=0 >

BL
∣
∣
t>0. We require

2 w − 1 − ψ < 0
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Fig. 7. Graph showing the infected macrophage population against the number of intracel-
lular bacteria at different time points. Parameter values are wl = 0.01 and wh = 0.02.
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Fig. 8. Graphs showing how the bacterial load, BL, changes with time, t , and the bacterial
killing parameter, ψ : (a) three-dimensional graph; (b) two dimensional. Parameter values
are wl = 0.01, wh = 0.02 and Vr = 0.1.

and as

max w = 1, ∀t ≥ 0 (31)

this implies there exists a uniform (inw) lower bound onψ such thatBL is decreas-
ing ∀t > 0 and is given as ψ = 1.
We can obtain a more precise lower bound on ψ by analyzing the limit of ∂BL/∂t
at t = 0.0 and finding the value of ψ such that

∂BL

∂t
≤ 0.

For the initial data in equation (22), we find that, in order for ∂BL/∂t
∣
∣
t=0 ≤ 0, ψ

must satisfy

ψ ≥ 1

5

(
5 (wh + wl)− 3

(
w2
h − w2

l

)− 4 wh wl
wh + wl

)

. (32)

Figure 9 shows three of the curves from Figure 8 plus the curves where ψ = 1
and ψ = 0.9846 (which is the approximate value of ψ from equation (32) for the
parameters given in Figure 8). In dimensional terms, ψ is the ratio of the rate of
intracellular bacteria killing to the maximal rate of intracellular bacterial growth.
Therefore, in dimensional terms, we find that if

ψ > 0.9846 β0, (33)

the bacterial load will decrease i.e. ψ/β0 > 1, approximately. We cannot obtain a
similar inequality from the numerical results due to the effects of the other param-
eters in the system (e.g. the rate of phagocytosis, λ) and the fact that the full model
contains intracellular and extracellular bacteria. However, from Figure 1(b,c) we
find that for a fixed λ, ifψ/β0 > 3 (approximately) the granuloma radius decreases.
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Therefore, our estimates of the ratio ψ/β0 in order to ensure infection is controlled
are of the same order of magnitude for both the full and simplified models.

5. Discussion

In this paper we developed a spatio-temporal model of the initial, innate immune
response to tuberculosis.We have extended temporal models ofWigginton and Kirs-
chner [42] and Tran et al. [37] to incorporate spatial effects. Our model consists
of coupled reaction-diffusion-advection equations governing dynamics of macro-
phages (resting and infected), bacteria (extracellular and intracellular) and a bacte-
ria-released chemokine each of which affect the final granuloma size.

In §3 we presented graphs showing the effects of three parameters: λ, the rate
of phagocytosis; ψ , the rate of intracellular bacterial killing and β0, the intracellu-
lar bacterial growth parameter. The numerical simulations show that increasing λ
and ψ decreases the rate of growth of the granuloma radius, while increasing β0
increases granuloma growth (Figure 1). In Figures 3–6, we presented graphs show-
ing the spatial distributions of the macrophage populations, the velocity and the
chemoattractant for the two types of solution found from this model: controlled and
uncontrolled bacterial growth. For the controlled case, the bacteria replicate slowly
enough for the macrophages to phagocytose and kill them before they can dominate
and grow exponentially. In the uncontrolled case, the intracellular growth parameter
has been increased and is so large that the macrophages can no longer phagocytose
and kill the bacteria quickly enough. This same result is seen if the rate of phagocy-
tosis (or intracellular bacteria killing) is decreased below a threshold. In simulations
not presented, we have also investigated the effects of varying diffusion, chemo-
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Fig. 9. Graph showing how the bacterial load,BL, changes with time, t . The two curves that

ensure that ∂tBL
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taxis and flux parameters. Varying these parameters did not lead to any qualitatively
different results. For example, increasing the in-flux of uninfected macrophages at
the granuloma boundary (increasingQM ) initially increased the granuloma size as
more macrophages are present. Granuloma growth then slows due to more macro-
phages present in the granuloma that perform phagocytosis and killing.

In §4 we simplified the full model to examine the total amount of bacteria.
Using this model it is possible to find a lower bound on ψ , the rate of intracellular
bacteria killing, so that the total amount of bacteria decreases and therefore the
infection can be controlled.

It is significant that, in the full model, we have not been able to find a stable
steady state for the granuloma size. For a model that focuses solely on innate immu-
nity this is not surprising. In fact, it is known that for a latent infection, other immune
cells are required [5]. Therefore, a steady state for the granuloma radius should result
from including equations for T cells and activated macrophages. Ongoing work is
addressing these aspects of adaptive immunity.

In our model we assume that macrophages with less than a certain number (κ)
of intracellular bacteria can phagocytose extracellular bacteria. Another approach
to this would be that of Tran et al. [37] who developed a model such that each
macrophage type, Mi, i = 1 . . . N (where i indicates the number of intracellular
molecules), has an associated rate of phagocytosis, λi . They assume that the mac-
rophage rate of phagocytosis decreases with the number of intracellular bacteria
and therefore λ1 > λ2 > . . . > λN . However, this requires estimates for the N
phagocytosis parameters which, using the current literature, is not practical.

Alveolar epithelial cells produce chemokines that attract macrophages and T
cells [19]. This, coupled with the fact that bacteria and macrophages also release
chemokines, implies that there are more chemoattractants produced during Mtb
infection that the bacteria-produced one used in the present model. It would be
relatively simple to incorporate additional chemokines in the model.

In conclusion, our model provides a framework for the development of spatio-
temporal models of the immune response, not just for Mycobacterium tuberculosis.
In particular we are studying the effects of cell-mediated immunity on granuloma
formation with the aim of developing a more complete description of the immune
response to Mtb.
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35. Sozzani, S., Luini, W., Molino, M., Jílek, P., Bottazzi, B., Cerletti, C., Matsushima, K.,
Mantovani, A.: The signal transduction pathway involved in the migration induced by
a monocyte chemotactic cytokine. J. Immunol. 147, 2215–2221 (1991)

36. Stout, R.D., Bottomly, K.: Antigen-specific activation of effector macrophages by IFN-
gamma producing (TH1) t cell clones. failure of IL-4-producing (TH2) t cell clones to
activate effector function in macrophages. J. Immunol. 142, 760–765 (1989)

37. Tran, C.L., Jones,A.D., Donaldson, K.: Mathematical model of phagocytosis and inflam-
mation after the inhalation of quartz at different concentrations. Scand. J. Work Environ.
Health 21, 50–54 (1995)

38. van Crevel, R., Ottenhoff, T.H.M., van der Meer, J.W.M.: Innate immunity to mycobac-
terium tuberculosis. Clin. Microbiol. Rev. 15, 294–309 (2002)

39. Ward, J.P., King, J.R.: Mathematical modelling of avascular-tumour growth. IMA
J. Math. Appl. Med. Biol. 14, 39–69 (1997)

40. Ward, J.P., King, J.R.: Mathematical modelling of avascular-tumour growth ii: Model-
ling growth saturation. IMA J. Math. Appl. Med. Biol. 16, 171–211 (1999)

41. WHO.:WHO Report 2001: Global Tuberculosis Control. Technical report,World Health
Organization, 2001

42. Wigginton, J.E., Kirschner, D.: A model to predict cell-mediated immune regulatory
mechanisms during human infection with mycobacterium tuberculosis. J. Immunol.
166, 1951–1967 (2001)

43. Wodarz, D., Lloyd, A.L., Jansen, V.A.A., Nowak, M.A.: Dynamics of macrophage and
T cell infection by HIV. J. theor. Biol. 196, 101–113 (1999)


