

© Springer-Verlag New York Inc. 1992

Mouse Chromosome 3

Miriam H. Meisler,^{1,*} John A. Todd,² Nanda Rodrigues,² Edward K. Wakeland,³ and Michael F. Seldin⁴

¹Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-0618, USA; ²Nuffield Department of Surgery, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK; ³Department of Pathology and Laboratory Medicine, J. Hillis Miller Health Center, Box J-275, Gainesville, FL 32610-0275, USA; ⁴Departments of Medicine and Microbiology, Box 3380, Duke University Medical Center, Durham, NC 27710-3380, USA

Received March 30, 1992

Introduction

This report provides an update to the first Chromosome (Chr) 3 report (Meisler and Seldin 1991), which should be consulted for descriptions of mutant genes and conserved linkage groups. We have included an expanded locus list with 17 new loci, strain distribution patterns (SDPs) for Chr 3 loci which have been typed in recombinant inbred (RI) lines, chromosome maps derived from three multilocus backcrosses, and primer sequences for 39 polymorphic markers that can be detected by the polymerase chain reaction (PCR).

Locus table and composite map

The approximate positions of Chr 3 loci are presented in the locus list (Table 1) and are graphically represented on the composite map in Fig. 1. Map positions were calculated by Seldin, using the methods previously described (Meisler and Seldin 1991; Seldin et al. 1991). Entries that have been added or changed since the previous report are marked with an asterisk. It is important to be aware of the uncertainty associated with these map positions, which are composites based on a large number of measurements. The 95% confidence intervals for the primary data are in most cases greater than 2 cM, and those for the composite data greater than 5 cM. As discussed in the previous report, there may be errors in the indicated gene orders for closely linked loci that have not been mapped in the same cross. More precise information about the confidence of relative map positions between different loci can be obtained from the notes and references cited in Table 1.

Anchor loci

Six loci with well-established locations and readily available probes have been selected as anchors for Chr 3 (Table 1). The order and estimated distances between anchor loci are: centromere-5-Car-2-14-Il-2-28-Gba-4-Tshb-3-Amy-1-18-Adh-1. In addition, D3Mit19 will provide a valuable terminal marker when its apparent location 20 cM distal to Adh-1 (Fig. 2) is confirmed. These anchor loci can be detected either by RFLV or by PCR with the primers described in Table 2. Inclusion of these loci in future crosses is recommended to facilitate integration of new genetic data with the current map.

Multilocus backcrosses

Reliable information about gene order can be obtained from multilocus backcrosses in which many genes are typed in the same individuals (reviewed in ref. 21a). Chr 3 maps that were generated from three large backcrosses are presented in Fig. 2. Two of these are interspecific crosses with *Mus spretus*. Gene order is consistent for loci that were typed in more than one cross, while some variation in distance between pairs of loci is observed in different crosses.

PCR primers for Chr 3 loci

The development of PCR-based assays that detect genetic variation has greatly reduced the time and effort required for genotyping, as well as the amount of genomic DNA required per assay. PCR primers amplify products of different lengths as a result of variation in simple sequence repeat length. Published gene sequences have been used to derive primers that detect variation at known loci. In addition, a large number of

^{*}Chair of Committee for Mouse Chromosome 3

New	Locus	Gene name	A	M (cM) T	Μ	ethod H. symbo	I H. location	Notes	Reference
	Acrb-2	acetylcholine receptor beta 2 neural		39.6	D	L			3	8
	Acts	skeletal alpha actin		х	D	S,	R ACTA	1p21-gter	3.7	23
	Adh-I	alcohol dehydrogenase-1	1	72.1	B.D	L	R ADHI	4a21-a23	-,-	11.15.16.38.48
	Adh-1ps	alcohol dehydrogenase-1 pseudogene	-	56.0	D	R		421 42 5		15
	Adh-]1	alcohol dehvdrogenase-temporal		72.1	B	T.			8	3 51
	Adh-3	alcohol dehydrogenase-3		72.1	B	R	L ADH3	4021-023	7	31 47 48 49 52 73 81
	Adh-3t	alcohol deh vdrogenase-3-tempora)		72 1	Ř	T,		~qz1~qz3	7	A6 40
	Adh-5	alcohol dehydrogenase-5		X	R	ŝ	4045	4021.025	'	37.
	Ahr-1	aldehyde reductase-1		72 1	ц ц	ъ	1	4921425	7	21
	Ampdal	AMP desminase-1 (muscle form)		511	D D	т, т		1-12	;	51
	Amnd.7	AMP deaminase 7 (nonmuscle form)		51.4	D D	Ť	AMIDI	1013	1	55 70
	Amy_I	amulasa saliyan	1	596				1 01	1	12
	Amy 2		1	55.0	ם,ם	L.,		1021	3,3,7	9,11,33,59,80,101
	A=7	amyrase, panerealie		33.0	в,р	L,	K AMY2	1p21	1,2	9,10,70,80
	npz Amut	adipocyte protein ar2		4.6	в	R				42
		aryl hydocarbon receptor nuclear translator		X	в	S	ARNT	lpter-q12		12
	Alpiai	Na, K Al Pase alpha-1		51.3	D	L	ATPIAI	lp13	1,8	54,55,70
	Alpa-I	alternative symbol for Atplal								
	Bmn	Beta-mannosidase activity (liver, kidney)		72.1	В	R				64
	Cacy	calcyclin		46.9	D	L	CACY	iq21-q25	1	28,55,70
	Cal]]	calpactin I light chain		46.9	D	R				87,97
	Calla	alternative symbol for Mme								
	Capl	calcium binding protein, placental		46.9	D	R	CAPL	1q12-q22		28,97
	Car-1	carbonic anhydrase-1		4.6	в	L	CAI	8q13-q22	8	32
	Car-2	carbonic anhydrase-2	1	4.6	B.D	LJ	R CA2	8a13-a22	1.3.8	11.21.32.34a.70.77.80.101
	Car-3	carbonic anhydrase-3		7.0	D	L	CA3	8a13-a22	8	6
	Cdl	cluster designation 1		47.9	D	L	CDI	1022-23	1	72
	Ca2	cluster designation 2		50.4	D	L	CD2	1q22 20	1	55 70
	Cd10	alternative symbol for Mme			_	_	000	-P15	•	55,10
	cd m	cadmium resistance		65.6	v	R				95.96
	Cno-2	cvclic nucleotide phosphodiesterase-2		478	'n	P				9J, 90a 7
*	Cnx40	connexin		42.5	D	T				1
	coa	COCOR		47.5	D V	т. Т			0	41
	Crfm	colony stimulating factor magnethean (alternative for a)		6.J	v DDJ	. L			8	77,92
*	C3jm D311	DNA comment Chr.2. Lockers Leb 1		52.4	B,D,V	/ L	CSFI	5q33	2,3	13, 38, 59, 108
*	0371	DNA segment, Chr 3, Jackson Lab 1		46.3	D	L				75
*	D312	DNA segment, Chr 5, Jackson Lab 2		69.6	D	L				75
-	D3J3	DNA segment, Chr 3, Jackson Lab 3		56.6	D	L				75
	DIMILIY	DNA segment, Chr 3, MIT 19		92.5	D	L			9	Fig. 2
	D3Nds1	DNA segment, Chr 3, Nottingham Dept. Surgery		33.3	D	L			4	Fig. 2
	D3Sell	DNA segment, Chr 3, Seldin 1		52.1	D	L				105
*	D3Sel2	DNA segment, Chr 3, Seldin 2		34.1	D	L				105
	D3Tu33	DNA segment. Chr 3 Tubingen-33		61.9	D	R				99
	D3Tu51	DNA segment, Chr 3 Tubingen-51		46.9	D	L,I	2		1	99
	de	droopy ear		52.4	v	L			7,8	22.48.59.60
	Egf	epidermal growth factor		66.1	D	L,F	R EGF	4925	1	70.73.109
	Emv-27	endogenous ecotropic MuLV-27		53.6	D	L		•	8	96
	Es-16	esterase-16		12.1	в	L			7	100 101 103
	Es-26	esterase-26		37.3	B	Ē.			7	77 100 101 102
	Es-27	esterase-27, serum cholinesterase		27.3	R	ĩ			2	102 102
	Evi-1	ecotropic viral integration site-1		14.2	D	TE	- EVII	2-24 -29	10	102, 105
	Fabri	fatty acid binding protein intestinal		56.6	D	. с.,г р	EADDO	5q24-q28	1,2	20,21,38,70,73
	Fcorl	high affinity EC gamma recentor		16.0	D	r r	FADP2	4q28-q31		93
	Fath	fibroblast growth factor basis		40.9	D	ւ ,			1	79
	Fac	noronast growth factor basic		19.7	D	L		4q25-27	1	M. Seldin, unpublished
	F 88	ganna nonnogen		46.3	D	ĸ	FGG	4q28		9
*	Employed	Friend Mul. V integration site-3		14.2	D	L	FIM3	3q27	3	20,38,90
	r psi-rsi	ramesyl pyrophosphale synthetase - like 1		46.6	D	L	FPSL	1q24-q31		105
	ji av	flaky tail		46.4	v	L				58,59
	Gba	beta glucocerebrosidase	1	46.6	B,D	L	GBA	lq21	1	70,78
	Gbp-1	guanine nucleotide-binding protein-1		68.3	D	L,F	2		7	81
*	Glut-2	glucose transporter 2		16.0	D	L	GLUT2	3q26	9	Fig. 2
*	Gnai-2	guanine nucleotide binding protein, alpha inhibiting activity-2		52.0	D	L	GNAI2	-	9	107a
*	Gnai-3	guanine nucleotide binding protein, alpha inhibiting activity-3		52.0	D	L	GNAI3		9	107a
	H-23	histocompatibility-23		63.6	в	L,R	t		7	1b.67
	H-28	histocompatibility-28		83.3	в	LR	2		7	1b 67
	H-37	histocompatibility-37		(\mathbf{X})	В	R			•	16
	Hao-2	hydroxyacid oxidase-2 (kidney)		44.0	B	T.			37	38 44 45
	HisQ	histone gene (2)		x	Ď	ŝ			5,7	20, , ,45
	Hnl	hypothalamic norepinephrine level		63.6	v	J T				37 24
*	Hsdb3	3-beta-hydroxy steroid dehydrogenase		40.0	'n	ī	1100.02	1-11-12	0	2 4
*	Hsp86-ne?	heat shock protein 86 - neudorene 2		-17.U	D D	L 6 T	USDRS	1p11-p13	9	<i>L</i>
	Idd-3	insulin dependent dishetes 3		23.3	ע V	ം,L 1				68,69
	If-1	interferon inducibility lows		A .	v V	L 			_	965
*	n.?	interleakin ?		55.0 10.0	V D	L,R	** -		7	26,67
*	n_7	interleukilt 2	1	19.0	D D	S,L	IL2	4q26-q27	1,4	35; Fig. 2
	la=7 Laf.)	humphoid anhance bin 1 for t		0.8	R'D	-				89
	uej-1	symption ennancer-binding factor 1		х	D	R,S	LEF 1	4q23-q25		66a

Continued on next page

Table 1. Continued.

New	Locus	Gene name	Α	M (cM)) T	Method	i H. symbol	H. location	Notes	Reference
	Ly-37	alternative symbol for Cd2								
	Ly-38	alternative symbol for Cd1								
	ma	matted		44.4	v	L			5,7	58,59,60,67
*	Mme	membrane metallo-endo peptidase (neutral endopeptidase)		34.1		L	MME	3q21-27		17
	Mmv-2	MCF endogenous virus-2		х	D	S				43
	Mmv-12	MCF endogenous virus-12		х	D	S				43
	Mov-10	Moloney leukemia virus-10		х	D	S				53,74
	Mpmv-9	modified polytropic murine leukernia virus-9		92.2	D	L,R			6	37
	Mpmv-20 Mtv-48	modified polytropic murine leukemia virus-20		11.3	D	R				37
	my	blebs		34.4	v	L			5	14,25,33
	Ngfb	nerve growth factor beta		51.4	D	L			1,2	13,30,55,110
	Nras	Nras oncogene		51.4	D	L	NRAS	1p13	1,2	13,84
*	Oat-rs2	ornithine aminotransferase related sequence 2		56.4	D			-		83
	Odc-3	omithine decarboxylase-3		х	D	R				82
	op	osteopetrosis (alternative for Csfm)								
*	Otf-3c	octamer transcription factor - 3c		4.8	D	L				89
*	Oif-3d	octamer transcription factor - 3d		66.7	D	L				89
	Oua-1	ouabain resistance-1		х	v	S				57
	Pgk-1ps3	phosphoglycerate kinase-1 pseudogene 3		9.4	D	S,R				1
	Pk-1	pyruvate kinase (may be the same as Pklr)		37.6	в	L	PKLR	1q21	3	38,90
	Pklr	pyruvate kinase liver, red blood cells (see Pk-1)		46.6	D	L			1	Unpublished data
	Pmv-26	polytropic murine virus-26		75.8	D	R				36
	Pmv-28	polytropic murine virus-28		46.9	D	R				36
	Pmv-38	polytropic murine virus-38		47.1	D	R				36
	Pmv-39	polytropic murine virus-39		57.8	D	R				36
*	Rapla	member of RAS oncogene family		51.4	D	L	RAPIA	1p12-p13		29
	rcm	rostral cerebellar malformation		69.4	v	L			7	62
	Rnulb-1	U1b1 small nuclear RNA		46.7	D	R	RNU1	1p36.1		63
	Rnulb-3	U1b3 small nuclear RNA		46.9	D	R		-		9,63
	soc	soft coat		47.4	v	L			5	33, 91
	spa	spastic		41.4	v	L			5	58,59
	suc-l	alternative symbol for Suc-1r								
	Suc-1r	sucrase-isomaltase, regulatory		37.3	в	L				8a
	Suc-1s	sucrase-isomaltase, structural		37.3	D	R	SI	3q25-26		8a
	sul	subtle gray		16.2	v	L			7	61
	Tmevd-2	TMEV induced demyelinating disease susceptibility		8.8	v	R				66
	Tshb	thyrotropin stimulating hormone beta subunit	1	51.4	D	L	TSHB	1p13	1	30,55,56,70,76
	Va	varitint-waddler		75.6	v	L			5,7	22,31,33,47,48,59,60,67
	Xmmv-22	xenotropic-MCF leukemia virus - 22		46.3	D	R				9
	Xmmv-47	xenotropic-MCF leukemia virus - 47		35.0	D	R				106
	Xmmv-65	xenotropic-MCF leukemia virus - 65		46.3	D	L,R			7	106

The Chr 3 map positions are based at the centromere (25). Since recombination frequencies may vary depending on the specific cross, composite map positions may distort gene order when loci have not been mapped in an individual backcross. In deriving the composite map, RI strain data was used to determine gene position only as a supplement to backcross data. RI data is included in Fig. 3 of this report. For a fuller discussion of the generation of map positions, see text and (84a). Data used to derive map positions, in addition to the references, is described in "Notes." (1) Complete haplotypes in 114 and incomplete haplotypes in 338 interspecific backcross mice (references and M.F. Seldin, unpublished data; Fig. 2); (2) complete haplotypes in

primers that detect (CA)n repeat length variation have been developed from anonymous genomic clones by the Mouse Genome Center at MIT (Dietrich et al. 1992). Primer sequences for Chr 3 loci of both types are presented in Table 2.

RI lines

Like multilocus backcrosses, RI lines provide a cumulative mapping resource. New loci can be mapped by typing the existing RI lines and comparing strain distribution patterns with the corresponding data for previously typed markers. Strain distribution patterns for 83-198 interspecific backcross mice (specific references); (3) incomplete haplotypes in 38-74 interspecific backcross mice (specific references); (4) complete haplotype data in 92-299 interspecific backcross mice (J. Todd, unpublished data; Fig. 2); (5) included in nine overlapping three- or four-point crosses that derive from analysis of 125-500 meiotic events in each of multiple individual crosses (specific references); (6) haplotype data in 75 interspecific backcross mice (W.N. Frankel, unpublished data); (7) three-point mapping data (see specific references in table for data); (8) two-point mapping data (see specific references in table for data); and (9) location has not been integrated with the rest of the map.

Chr 3 loci that have been typed on Recombinant Inbred lines are presented in Fig. 3.

Disease-related genes

A gene (or genes) that controls the development of autoimmune insulitis and insulin-dependent diabetes in the nonobese diabetic (NOD) mouse has been mapped to the *Il-2-Tshb* interval in two reciprocal backcrosses of (NOD × C57BL/10)F₁ × NOD and NOD × (NOD × C57BL/10)F₁ (Todd et al. 1991). The NOD allele is not fully recessive and also appears to segregate in crosses of NOD with NON (nonobese

Fig. 2. Analysis of Chr 3 loci in multilocus backcrosses. Cumulative data are presented for three backcrosses. (A) Data from an interspecific backcross [(C3H/HeJ-gld/gld × M. spretus) $F_1 \times C3H/HeJ$ -gld/gld] that has been characterized for more than 400 genetic markers in the laboratory of M.F. Seldin. (B) Data from the cross [(NOD/Uf × C57BL/6J)F₁ × NOD/Uf] from the laboratory of E.K. Wakeland. In this cross, the RAPD polymorphism Go6 is detected with the primer GTGCCTAACC, and Rp 154 a is detected with the primer TGCTCACTGA. (C) Data from the laboratory of J.A. Todd for the European Collaborative Interspecific Backcross [(C57BL/6 × SPR)F₁ × SPR] produced by the United Kingdom's Human Genome Mapping Project, with the support of the Medical Research Council.

nondiabetic) and B6.PL (J. Todd, unpublished data). *Idd-3* appears to be a major gene in the development of autoimmune diabetes in mice, second only to the susceptibility determinants encoded by the MHC on Chr 17.

Conserved linkage groups

In addition to the previously described conserved linkage groups on human Chrs 1, 4, and 8, five loci on

Fig. 1. Composite map of mouse Chr 3. Loci are positioned according to their approximate location, based on the information in Table 1. For genes separated by less than 2 cM, order is not specified on this map. *Loci within the bracket are found within the 2-cM region from 46-48 cM.

ATTAINTAL ATTA	DI) ANCT .CA), DURANT de (er), and this is ("Tubody.	(n)() nm (a)=) aas tast amo		
Sequence	Locus	Primer forward (5'-3')	Primer reverse (5'-3') P	CR product siz	: Size variation
MMLBPA	Ap2	TCCATAGCATTCATGCGTGCA	GICTGTTGCTTACTATGTGC 1	46	NON>CBA>B10/W=B6PL=NOD=SPE=B6/J>DBA/2J
MMNGFBA	Ngħ	AGGTTCATCCGGATAGACACA	TTCGGTATACAGGATGCTTTG 2	32	NOD=B10/W=NON=SPE=B6/J=DBA/21
MUSTSHBA	J Tshb	TCTGAAGAGTTGTCCTCATC	TGAATAAAGGACICCTGAGCT	45	NOD-AKR/J>>NON-B10/J-B6/J-DBA/ZI>>SPE
AMYI	Amy-I	ATGAACATATGTGTGTAAGTAAAATG	AAATAAAAAGGCCACTATTTGA	53	CBA=MOLD=YBR=C3H=NOD>BRedJ>AKR>SPE (B6/I=BLANK)
AMY1	Amy-I	GAACATATGTGTAAGTAAAATGTAC	GAITITTAATTCATTAATTAAGGGTTAG 1	8	CBA=MOLD=YBR=C3H=NOD>BRcdJ>AKR>SPE (B6/I=BLANK)
Cloned	Gba	GAAGGAAAGGACTTAGTCTACC	GGCCTTGGCTCTGTTATTCTGT 1	8	SPE(2)>>NOD=B10.H-2NOD=B6.PL=B6/J=DBA/2J
WMIT 01	11-2	GTGCTCCTTGTCAACAGGGGCA	CICCTGTAGGCTCTGTTATTCTGT 1	29	NOD=B10/W=B6/J=B6.PL=NON=DBA/2=AKR>>SPE
MMIL2A3	11-2	TGTACCTCCTGCTTACAACAC	TACCTACACATGATATTTAAC	24	NOD=B10/M=B6/J=NON=DBA/ZJ=SP
MMLBPA	Ap2	TATAAGATTCCAGAACACATT	GATAAGAGCATGGATTTAACT 1	33	NOD=B10/W=B6.PL=B6/J=DBA/2J=NON>SPE
CA72	D3Nds1	GGATCTGGCACCTCCAGGG	TATGTTGCCTTGGCAAATAGATG 9	0	NOD=NON>>AKR/J>B10/W=B6.PL=B6/J=DBA/2 (SPE=BLANK)
GT3	D3Nds2	ACACATTGGAGATGCACAGCG	TCTGCATGCCAGGGTTGTGAT	28	SPE>>DBA/21>>NOD=NON=B10/W=B6.PL=B6/J=AKR/J
TJT14	D3Nds3	CTGTGAAATTTGCCATCAACT	CATAATATTCATATATAATGC 1	65	NOD=NON=B10/W=B6.PL=B6/J=AKR/J>>DBA/2J>>SPE
П.2		GTGGGAGTGTGTGCAAAAGAC	AAGTATGGGTCAGAGTTGTGTGGGG	70	SPE>B6.PL=B10/W=B6/1>NON>AKR/I>DBA/2J>NOD
SGT8	D3Nds4	ATITTAAATATICATICATTCGGG	CTCACAAATACCTTCAGAGGA	10	NON>B6/J=B10/W=B6PL>DBA/2J>NOD
	Ly-38	GTGTAAAATCAACACCAACAGTAT	GCCAGGTTTGATTCTAAGGTAG	66	NOD=B10/W=B6.PL=B6/J=NON=DB2/J=AKR/J=SPE
	Ly-38	GGGGTTTTGTTTGCTGGTTAGT	GGACAGCCAGGACTATACAGA 1	2	NOD=B10/W=B6.PL=B6/J=NON=DBA/2=AKR/J>>SPE
Publ	П-2	ACTAGCAAGAGTTGGTCTCTG	ATTITATATGTCTCTAGTTGCAC 2	32	NOD=B10/W=B6.PL=B6/J=NON=SPE=DBA/2
R78	D3Nds5	AGCATTATTITTAAACATCTGAATAG	TGGAGTCACCTTCTTGAGTTC	48	NOD>>DBA2/J=AKR/J=NON>B10.H-2g7=B6.PL=B6/J (SPE doublet)
	Cacy/Cap	I CACAGTGAGACCAAACTC	CITGGCTCTTATAGTGTTTG	17	SPR>>C571_/1>>SWR/J=C57BR=SJL_J1=B10.H-2&7=NON> C3H/Hc1=AJ1=AKR/J>>CBA=BALB/cByJ=NOD>>DBA=PLJ1

Table 2. PCR primers for amplification of polymorphic loci on Chr 3. Mg^{2+} concentrations and annealing temperatures should be established in individual laboratories, based on the guidelines in the references. Tshb (1a); D3Mit1-22 (27); and Amy^{-1} (41a, 65a). For other loci see (21b) and (41a).

	Adh-1	CITACTGGGTGACATAGACG	CCITTCATCCATGTACATATAC	330	B10/1=B10.BR>NOD>A=C58=MEV;SPE=B10/W.NOD.B6.PL>NON
L8	D3Mid3	CCT1TCTGATTATGT666CT	CCACTGAAGGATAACCACAG	220-240	LP=Spr>NOD=Cast>>OB=B6=DBA=C3H=BALB=AKR=NON /A.
L37	D3Mirl3	TITCIGCATTATGIGGGCIT	AACCACAGATGACAATTGAA	220-237	LP>Spr2NOD>>Cast>>OB=B6=DBA=C3H=BALB=AKR=NON
1.40	DЗМін	TGTGCCTGCAAGTTGTTCTT	CTACAGTGGGGGCAGAAGGT	140-150	Cast>Spr>>OB=B6=DBA=A=C3H=BALB=AKR=NON=NOD=LP
M149	D3Min6	AACTTCAACATGTGAGGGGC	CCTGAAACAAGCAACAGCA	125-147	LP=B6>OB>>DBA=A>C3H=BALB=AKR=NON=NOD>Cast>>Spr
M141	6 INIMECI	CAGCCAGAGAGGAGCTGTCT	GAACATTGGGGTGTTTGCTT	210-238	Cast=DBA=A=C3H=BALB=AKR=N0D>>0B=B6=N0N>LP>>Spr
L38	D3Mid1	CCAACCACAGTAACACATGT	TGGAGACCAATGCGAACAAC	147-204	Cast>AKR=BALB=C3H=A>NON>>Spt>OB=B6=DBA=NOD=LP
M28	D3Micl	TGTGCACAGGGGTACATACA	TCATTITICTTCCTCCCCCTC	118-145	OB>LP>>NOD=BALB>B6=DBA=A=C3H=AKR=NON>Cast/Spr, -
M250	DJMED	CCTTTTGAGGCAAAGCTCC	CTAAGTCCTGCACCTGCCTC	88-200	Cast=DBA=BALB=AKR>>NOD>>NON=OB=B6>>LP=C3H>A>>\$pr
M123	SiMEO	AGCCCTTCCAAGTGTCTCT	GGTTTCGGAATGAGATGAGC	178-188	OB=DBA=A=C3H=BALB=AKR=NON=NOD>>LP=Cast=B6>>Spt
M74	D3MiC	ATGCAACTAACTTTATTGAAAATC	TACAATTATCCGGGGGGGCTA	142-147	OB=B6=SPR=DBA>>Cast=AC3h=BALB=Akr=NON=NOD=LP
A 85	BiMED	AACTTCATTTGCTTGGAAACTACC	TGTTTTATATTGCCCTGTATGTGC	214-238	CAST>>OB=B6>>DBA>LP>NOD>A=BALB>Sp=AKR>>NOD /C3H;
D122	D3MiQ2	AAGGATTGAAGAATGGTTGGG	AATCAGCGATTTCAGCACG	207-265	Cast>>A>>NOD>>NON=C3H=B6=OB>DBA=AKR>>LP=BALB>>Spi
A60	D3Mitt2	TAGACCAATCITGGGAGTGTCC	GGAAAAGCATAAGAAACAACCG	120-157	LP=AKR=A=>0B=B6=C3H=BALBDBA=NON=NOD>>Cast /Spr,-
M206	D3Mii14	ATTGCGGTTAAAGTTTGCTT	TCCTGCAAATTGTCCTCTGA	140-147	DBA=A=C3H=BALB=AKR=NON=NOD>>LP=OB=B6>>Spr>Cast
A55	D3Min15	AATTTGCATTCCAGGACCAC	AGGAAGTGACGTTGGGTTTG	212-145	DBA>>Cast>>Spr>>OB=B6=A=C3H=AKR=BALB=NON=NOD /LP;-
M159	D3Mill6	TGCTTGTCCTGTGITAATGA	TGAGAATGGAGGTGAACAGC	186-220	Spr>>Cast>>OB=B6>A=C3H=BALB=NON=NOD=LP/AKR;-JDBA;-
M235	D3Mii17	CATGGCICCATGGTTCTFG	CCACGGAGAACAACTGAAGA	180-208	OB=B6=NOD>>Cast>>LP>>DBA=A=C3H=BALB=AKR=NON /\$pr
A96	D3Miul8	GAACAGTTCCCAGGTCCTCA	CTGCCTTTAAATTCTGTCACCC	192-242	Cast>>NOD=DBA=OB=B6>>LP=NON=AKR=BALB=C3H=A>>Spr
D122	D3MiQ1	AAGCTCIACAGCGGAAGCAC	CTGGGGAGTTTCAGGTTCCT	208-236	OB=B6=NON=BALB>>LP=NOD=AKR=C3H=A=DBA>Cast>>Spr
АЗИ	D3Min10	CTGGC11GGTGGAGTCCT	CCTAAGCCAGCTACCACCAC	121-158	Cast>OB=B6>>DBA>LP>NON>BALB>Spr=AKR>>NOD /C3H.

Ref. _ _ _ _ _

1a

21a

21a

1a

Locus	BXD Lines	Ref.	Locus	AXD Lines			Re
	111111122222222333			111111	111222	222222	
	12568912345689012345789012			123456789012349	678012	345678	
Car-2	DDDBDBDDDDBBDDBBBBBBDBDDBB	80	Mpmv-20	DDA AAADAAADA -	A-AADD	DADADA	37
Ap2	DODBD8DDDDBBD-BBBBBBBDBDDDD	42	11-2	ADA AAADAAADAE	XA-AAAD	ADAADA	41
Il-2	DDBBDBDDDDDBDDBDBBBBBDDBDDB	41a	Cnp-2	ADAAADAAADAAL	XA-AAAD	ADAAAA	
Evi-1	DOBBDBBDBBBBBBBBDBDBBBBBDDDDDB	73	D3Nds1	ADAAADAAADAAL	XA-AAAD	ADAAAA	- 21
Cnp-2	BBDBBDDDBBDBBBBBDDBBDDBBDBB		<i>Pm</i> v-28	DDAAADDAADAAL	ADAAAD	ADDDAA	36
Xn m v-65	BBDBBBDBBBDBBBBDDBBDBDBDBDB	106	Pmv-38	DDAAADDAADAAD	ADAAAD	DDDDDAA	36
Fgg	BBDBBBDBBBDBBBBDDBBDBDBDBDBB	9	Ishb	DDAAADAAADADL	A - A A A A	DDDDDAA]
Pmv-38	BBBBBBDBBBDBBBBDDBBDBDBDBBB	36	Pmv-39	DODDDDAADDADL	ADADDA	DDDDDAD	36
Capl	BBBBBBDB-BDBBBD-BDBDBDBB	28	D3Nds2	DDDDADAADDADD	A-ADDA	ADDDAD	Ζ.
Calll	BBBBBBBBBBBBBBBBBDBBDBDBBBBBBBBBBBBB	87	Egt	DDDADDADADDDADC	ADDDDA	ADDDAD	- 7.
D3Tu51	BBBBBB-BDBDBBB-DDBB-BDBD	99					
Amy	BDBBDBDDDBDBBBBBDDBBDBDBBBBB	80	Locus	AXI lines		Ref	
Amy CB	BDBBDBDDDBDBBBBBDDBBDBDBDBBB	9	20040				
Adh-1ps	BDBBDBDDDBDBBBBDDDBDBBBBD	15		1111112722	233	•••==••••	
Fabpi	BDBBDBDDDBDBB-DDDBB-BDBBBD	93		567892346791458	978		
cdm	BDBBDBDDDDBBDBDDDBBDBDBBBB	95	Car-2			80	
Pmv-39	BOBBOBODDBOBOBODOOBDBOBBBD	36	An7		ί Ι Δ	42	
Egf	BDBBDBDDDBBBDDDDBDBDBDBBBBD	73	Apz Evi-1			72	
Adh-3	BDBBDBDD-BBBDDDDBDBDBDBBBD	73	EVI=1 Mount - 20			73 37	
Adh-3 RH	BDBBDBDD-BBBDD-DBDBDBDBBBD	52	Mprilv-20 Vinni A7		LLL 	106	
Adh-1	BDBBDBDDDBBBDDDDBDBDBDBBBBD	15	XIIIIV-47 Vome CE			100	
D3Nds3	BDBBDBDDDBBBDDDDBDBDBDBBBD	21a	AIMIN-03			26	
Bmn	BDBBDBDD-BBBDD-DB-BDBDB-BD	64	PMV-28			30	
D3Jknl	BDBBDBDDDBBBDDDDBDBDBDBBBBB	64a	027.51			00	
Pmv-26	BDBBDDDDDBBBDDDDBBBDBDBBBD	36	051051			22	
	AVD Lánaz	Pof	Amy			00	
Locus	AXB Lines	Ref.	031033			99 20	
	11111111222222		P11N-20	AAAAALALLLAAALA	LA	50	
	123456780012345780012345						
Car 3		73		DV(1, 1, 1)			
Lur-z		73	Locus	BAH Lines	кет.		
EVI-1		, <u>,</u>					
Fgg		á					
ULD 117 12		9		2345678901249	00		
011-13		63	Car-2	HRH-RHRRRRRRR	80		
		05	Pgkps9	HRH-RHRRRRHRR	-72		
Amy~1,2		73	Ev1-1	HRHRRHRRRHHRR	73		
Egr		, <u>,</u>	Rnu1b3	BRB-BHBBHHHBB	9		
Adn-3		27	Calll	RRR-RHRRHHHRR	87		
Mpmv-9	RAABAABAABAAAAAA-ABAABA	57	D3Tu51	RBR-RHRRHHHHR	99		
locus	BXA Lines	Ref.	Amy	BBB-BHBHHHBBB	80		
			Odc-3	HBH-BHBHBHBBB	82		
	111111111222222		Egf	ВВВНВНВНННВНВ	/3		
	1234567890123456789012345		Adh-3	BBB-BHBBHHBBB	81		
(ar-2	AABB-ABAA-BAABBBAAAABA	73	Gbp-1	BBB-BHBBHHBBB	81		
Evi-1	AA-B-R-AABBAABBBAABB	73	Mpmv-9	BBB-BBBBBHBHB	37		
m/11h3	AB-A-BABBABABBBAAAA-ABB	63					
Rnulh	A-AABB-BB-BA-BAAA-B	9	<u></u>	CVD 1 2	~		
Faa	Δ_ABBB_BBABA_BΔB	9	Locus	CXB Lines Re	t.		
гуу 11Т 13	A_AABRR_BA_RAAAA-R	9					
U11-15 U16	A_AABB_BBABA_BAAAA-B	9		1234567			
010 Amm, 17	A ADDD DDADA-DAAA D	9	Car-2	CCBBCCB 34	a		
nmy−⊥,∠ Eaf	$\Lambda \Lambda_{-}\Lambda_{-}RRR \Lambda \Lambda \Lambda R \Lambda_{-} - \Lambda \Lambda_{-} - \Lambda$	73	Xmmv-65	BCBBCBC 106	, 1		
Abd 3	$\Delta \Delta \Delta \Delta R \Delta R R R A R R A R R A R R$	9	H-37	RURCRU 1	D		
HIU-J Mome O		37	Amy	CCCBCCB 80			
mpmv-9		2.	H-23	CCCCCCB 1	b		
Locus	SXL Lines Ref.		Adh-3	CCCBCCB 31			
			Ahr-1	CCCBCCB 31			
	11111		Gbp-1	CCCBCCB 81			
	4724567		H-28	CCBBCCB 1	Ь		
Cal1l	SLLLSSL 87		If-1	CCBBCCB 26			
Amy	LLLLSSL 80		Mpmv−9	BCBBCCB 37			
-							

Fig. 3. SDPs for Chr 3 loci in RI strains. Data were obtained from files maintained by B. Taylor at The Jackson Laboratory. Data for the AXB and BXA lines were provided by B. Paigen.

proximal Chr 3 are now known to have homologs in human chromosome region 3q21-28: *Evi-1*, *Fim-3*, *Glut-2*, *Mme*, and *Suc-1s*. These loci are divided into two groups by a region containing at least two genes with homologs on human chromosome 4q25-27, *Il-2* and *Fgfb*.

Acknowledgments. We thank the many individuals who contributed unpublished data so that this report could be as complete as possible. We would appreciate receiving information from readers regarding corrections and additions. We are grateful to Dr. Benjamin Taylor for providing the RI SDPs, and to Dr. Beverly Paigen for data on the AXB and BXA lines. Information on human homologs was contributed by Dr. Muriel Davisson. Jane Santoro provided invaluable assistance in preparation of the tables and figures.

References

- Adra, C.N., Ellis, N.A., and McBurney, M.W.: The family of mouse phosphoglycerate kinase genes and pseudogenes. Somatic Cell Mol Genet 14: 69-81, 1988.
- Aitman, T.J., Hearne, C.M., McAleer, M.A., and Todd, J.A.: Mononucleotide repeats are an abundant source of length variants in mouse genomic DNA. *Mammalian Genome* 1: 206– 210, 1991.
- Bailey, D.W.: Genetics of histocompatibility in mice. I. New loci and congenic lines. *Immunogenetics* 2: 249–256, 1975.
- Bain, P., Meisler, M.H., and Payne, A.: Mapping of Amy-1, Tshβ and Hsd3β in an interspecific backcross. Unpublished observation.
- Balak, K.J., Keith, R.H., and Felder, M.F.: Genetic and developmental regulation of mouse liver alcohol dehydrogenase. *J Biol Chem* 257: 15000–15007, 1982.
- 4. Bradbury, A., Milstein, C., and Kozak, C.A.: Chromosomal localization of *Cd1d* genes in the mouse. *Somatic Cell Mol Genet* 17: 93–96, 1991.
- 5. Beechey, C.V. and Searle, A.G.: Position of Va and ma on Chr 3. *Mouse News Lett* 62: 52, 1980.
- Beechey, C., Tweedie, S., Spurr, N., Ball, S., Peters, J., and Edwards, Y.: Mapping of mouse carbonic anhydrase-3, Car-3; another locus in the homologous region of mouse chromosome 3 and human chromosome 8. *Genomics* 6: 692–696, 1990.
- Bernier, L., Coleman, D.R., and D'Eustachio, P.: Chromosomal locations of genes encoding 2', 3' cyclic nucleotide 3'phosphodiesterase and glial fibrillary acidic protein in the mouse. J Neurosci Res 20: 496-504, 1988.
- Bessis, A., Simon-Chazottes, D., Devillers-Thiery, A., Guénet, J.-L., and Changeux, J.P.: Chromosomal localization of the mouse genes coding for alpha2, alpha3, alpha4, and beta2 subunits of neuronal nicotinic acetylcholine receptor. *FEBS Lett 264*: 48-52, 1990.
- Birkenmeier, E.H., Rowe, L.B., Leeper, L.L., and Henning, S.J.: Sucrase-isomaltase gene (*Suc-1s*) and a regulatory gene (*Suc-1r*) are closely linked to esterase 26 (*Es-26*) on mouse Chr 3. American Gastroenterological Association. Abstract, 1991.
- Blatt, C., Saxe, D., Marzluff, W.F., Lobo, S., Nesbitt, M.N., and Simon, M.T.: Mapping and gene order of U1 small nuclear RNA, endogenous viral env sequence, amylase, and alcohol dehydrogenase-3 on mouse chromosome 3. Somatic Cell Mol Genet 14: 133-142, 1988.
- Bloor, J.H. and Meisler, M.H.: Additional evidence for the close linkage of Amy-1 and Amy-2 in the mouse. J Hered 71: 449-451, 1980.
- Bonhomme, F., Bemehdi, F., Britton-Davidian, J., and Martin, S.: Analyse genetique de croisement interspecifiques Mus musculus L. × Mus spretus Lataste: liaison de Adh-1 avec Amy-1 sur le chromosome 3 et de Es-14 avec Mod-1 sur le chromosome 9. DR Acad Sci Paris 289: 545-548, 1979.
- 12. Brooks, B., Johnson, B., Heinzmann, C., Mohandas, T., Sparkes, R., Jones, S., Bennett, P., Balacs, T., Moore, G.,

Conley, L., and Hankinson, O.: Localization of a gene required for the nuclear translocation of the dioxin receptor to human chromosome I and mouse chromosome 3 and a human RFLP with mSP I (abstract). Am J Hum Genet 45: 132, 1989.

- Buchberg, A.M., Jenkins, N.A., and Copeland, N.G.: Localization of the murine macrophage colony-stimulating factor to chromosome 3 using interspecific backcross analysis. *Genomics* 5: 363–367, 1989.
- 14. Carter, T.C.: Genetics of the little and Bagg X-rayed mouse stock. J Genet 54: 311-326, 1956.
- Ceci, J.D., Zheng, Y.-W., and Felder, M.R.: Molecular analysis of mouse alcohol dehydrogenase: nucleotide sequence of the *adh-1* gene and genetic mapping of a related nucleotide sequence to Chromosome 3. *Gene* 59: 171-182, 1987.
- Chapman, V.M., Blaird, R.J., Murawski, M., and Quarantillo, B.A.: Electrophoretic variation for alcohol dehydrogenase ADH-1. *Mouse News Lett* 61: 60, 1979.
- Chen, C.-Y., Salles, G., Seldin, M.F., Kister, A.E., Reinherz, E.L., and Shipp, M.A.: Murine common acute lymphoblastic leukemia antigen (CALLA, CD10 neutral endopeptidase 24.11): molecular characterization, chromosomal localization and modelling of the active site. J Immunol in press, 1992.
- Cheng, I.C., Muralidharan, K., She, S.-X., Winter, W.R., and Wakeland, E.K.: Polymorphisms of the glucose transporter-2 gene are associated with susceptibility to insulitis and diabetes in NOD mice. Manuscript in preparation.
- Clayton, L.K., Ramachandran, H., Pravtcheva, D., Chen, Y.-F., Diamond, D.J., Ruddle, F.H., and Reinherz, E.L.: The gene for T11 (CD2) maps to chromosome 1 in humans and to chromosome 3 in mice. J Immunol 140: 3617-3621, 1988.
- Copeland, N.G., Buchberg, A.M., Gilbert, D.J., and Jenkins, N.A.: Recombinant inbred mouse strains: models for studying the molecular genetic basis of myeloid tumorigenesis. *Curr Top Microbiol Immunol 149:* 45-56, 1989.
- Copeland, N.G. and Jenkins, N.A.: Retroviral integration in murine myeloid tumors to identify Evi-1, a novel locus encoding a zinc-finger protein. Adv Cancer Res 54: 141-157, 1990.
- Copeland, N.G. and Jenkins, N.A.: Development and applications of a molecular genetic linkage map of the mouse genome. *Trends Genet* 7: 113-118, 1991.
- 21b. Cornall, R.J., Aitman, T.J., Hearne, C.M., and Todd, J.A.: The generation of a library of PCR-analyzed microsatellite variants for genetic mapping of the mouse genome. *Genomics* 10: 874–881, 1991.
- Curry, G.A.: Genetical and developmental studies on droopyeared mice. J Embryol Exp Morphol 7: 39-65, 1959.
- 23. Czosnek, H., Nudel, U., Shani, M., Barker, P.E., Pravtcheva, D.D., Ruddle, F.H., and Yaffe, D.: The genes coding for the muscle contractile proteins, myosin heavy chain, myosin light chain 2, and skeletal muscle actin are located on three different mouse chromosomes. *EMBO J 1*: 1299–1305, 1982.
- 24. Czosnek, H., Nudel, U., Mayer, Y., Barker, P.E., Pravtcheva, D.D., Ruddle, F.H., and Yaffe, D.: The genes coding for the cardiac muscle actin, the skeletal muscle actin and the cytoplasmic b-actin are located on three different mouse chromosomes. *EMBO J 2*: 1977–1979, 1983.
- Davisson, M.T., Eicher, E.M., and Green, M.C.: Genes on chromosome 3 of the mouse. J Hered 67: 155-156, 1976.
- DeMaeyer, E., DeMaeyer-Guignard, J., and Bailey, D.W.: Effect of mouse genotype on interferon production. I. Lines congenic at the If-1 locus. *Immunogenetics* 1: 438-443, 1975.
- Dietrich, W., Katz, H., Lincoln, S.E., Shin, H.-S., Friedman, J., Dracopoli, N., and Lander, E.S.: A genetic map of the mouse suitable for typing intraspecific crosses. *Genetics*, in press, 1992.
- Dorin, J.R., Emslie, E., and van Heyningen, V.: Related calcium-binding proteins map to the same subregion of chromosome 1q and to an extended region of synteny on mouse chromosome 3. *Genomics* 8: 420-426, 1990.
- Dower, N.A., Seldin, M.F., Pugh, S., and Stone, J.C.: Organization and chromosomal locations of Rap1a/Krev sequences in the mouse. *Mammalian Genome*, in press, 1992.
- Dracopoli, N.C., Rose, E., Whitfield, G.K., Guidon, P.T., Jr., Bale, S.J., Chance, P.A., Kourides, I.A., and Housman, D.E.: Two thyroid hormone regulated genes, the beta-subunits of

nerve growth factor (NGFB) and thyroid stimulating hormone (TSHB), are located less than 310 kb apart in both human and mouse genomes. *Genomics 3:* 161–167, 1988.

- Duley, J.A. and Holmes, R.S.: Biochemical genetics of aldehyde reductase in the mouse: *Ahr-1*—a new locus linked to the alcohol dehydrogenase gene complex on chromosome 3. *Biochem Genet* 20: 1067–1083, 1982.
- 32. Eicher, E.M., Stern, R.H., Womack, J.E., Davisson, M.T., and Roderick, T.H.: Evolution of mammalian carbonic anhydrase loci by tandem duplication: close linkage of *Car-1* and *Car-2* to the centromere region of chromosome 3 of the mouse. *Biochem Genet* 14: 651–660, 1976.
- Eicher, E.M. and Lane, P.W.: Assignment of LGXVI to chromosome 3 in the mouse. J Hered 71: 315–318, 1980.
- Eleftheriou, B.E.: A gene influencing hypothalamic norepinephrine levels in mice. *Brain Res* 70: 538-540, 1974.
- 34a. Elliott, R.W.: Use of two-dimensional electrophoresis to identify and map new mouse genes. *Genetics* 91: 295-308, 1979.
- 35. Fiorentino, L., Austen, D., Pravtcheva, D., Ruddle, F.H., and Brownell, E.: Assignment of the interleukin-2 locus to mouse Chromosome 3 in a region homologous to human chromosome 4q. *Genomics* 5: 651–653, 1989.
- Frankel, W.N., Stoye, J.P., Taylor, B.A., and Coffin, J.M.: Genetic identification of endogenous polytropic proviruses by using recombinant inbred mice. J Virol 63: 3810–3821, 1989.
- Frankel, W.N., Stoye, J.P., Taylor, B.A., and Coffin, J.M.: A linkage map of endogenous murine leukemia proviruses. *Genetics* 124: 221–236, 1990.
- 37a. Giri, P.R., Krug, J.F., Kozak, C., Moretti, T., O'Brien, S.J., Seuanez, H.N., and Goldman, D.: Cloning and comparative mapping of a human class III (chi) alcohol dehydrogenase cDNA. Biochem Biophys Res Commun 164: 453-460, 1989.
- Gisselbrecht, S., Sola, B., Fichelson, S., Bordereaux, D., Tambourin, P., Mattei, M.-G., Simon, D., and Guénet, J.-L.: The murine M-CSF gene is localized on chromosome 3. *Blood* 73: 1742–1745, 1989.
- Graves, R.A., Wellman, S.E., Chiu, I.-M., and Marzluff, W.F.: Differential expression of two clusters of mouse histone genes. J Mol Biol 183: 179–194, 1985.
- 40. Green, M.C.: Catalog of mutant genes and polymorphic loci. In M.F. Lyon and A.G. Searle (eds.); Genetic Variants and Strains of the Laboratory Mouse, 2nd edition, pp. 12–403, Oxford University Press, New York, 1989.
- Haefliger, J.-A., Bruzzone, R., Jenkins, N.A., Gilbert, D.J., Copeland, N.G., and Paul, D.L.: Four novel members of the connexin family of gap junction proteins: molecular cloning, expression and chromosome mapping. Submitted, 1992.
- 41a. Hearne, C.M., McAleer, M.A., Love, J.M., Aitman, T.J., Cornall, R.J., Ghosh, S., Knight, A.M., Prins, J.-B., and Todd, J.A.: Additional microsatellite markers for mouse genome mapping. *Mammalian Genome 1*: 273–282, 1991.
- Heuckeroth, R.O., Birkenmeier, E.H., Levin, M.S., and Gordon, J.I.: Analysis of the tissue-specific expression, developmental regulation, and linkage relationships of a rodent gene encoding heart fatty acid binding protein. J Biol Chem 262: 9709-9717, 1987.
- Hoggan, M.D., O'Neill, R.R., and Kozak, C.A.: Nonecotropic murine leukemia viruses in BALB/c Bxv-1 provirus and the single NFS endogenous xenotrope. J Virol 60: 980–986, 1986.
- 44. Holmes, R.S.: The genetics of alpha-hydroxy acid oxidase and alcohol dehydrogenase in the mouse: evidence for multiple gene loci and linkage between *Hao-2* and *Ahd-3*. *Genetics 87*: 709-716, 1977.
- Holmes, R.S.: Genetics of hydroxyacid oxidase isozymes in the mouse. Localisation of *Hao-2* on linkage group XVI. *Heredity* 41: 403–406, 1978.
- 46. Holmes, R.S.: Genetics and ontogeny of alcohol dehydrogenase isozymes in the mouse: evidence for a cis-acting regulator gene (Adt-1) controlling C2 isozyme expression in reproductive tissues and close linkage of Adh-3 and Adt-1 on chromosome 3. Biochem Genet 17: 461–472, 1979.
- Holmes, R.S., Albanese, R., Whitehead, F.D., and Duley, J.A.: Mouse alcohol dehydrogenase isozymes: products of

closely localized duplicated genes exhibiting divergent kinetic properties. J Exp Zool 217: 151–157, 1981a.

- Holmes, R.S., Andrews, S.J., and Beechey, C.V.: Genetic regulation of alcohol dehydrogenase C2 in the mouse. Developmental consequences of the temporal locus (Adh-3t) and positioning of Adh-3 on chromosome 3. Dev Genet 2: 89–98, 1981b.
- Holmes, R.S., Andrews, S.J., and Beechey, C.V.: Alcohol dehydrogenase C2 (stomach enzyme). *Mouse News Lett 64:* 54, 1981c.
- 50. Holmes, R.S. and Duley, J.A.: Alcohol dehydrogenase isozymes (Adh-1 and Adh-3 on chromosome 3). Mouse News Lett 66: 60, 1982.
- Holmes, R.S., Duley, J.A., and Imai, S.: Alcohol dehydrogenase temporal locus (Adh-1t). *Mouse News Lett* 68: 67, 1983.
- 52. Holmes, R.S., Mather, P.B., and Duley, J.A.: Gene markers for alcohol-metabolizing enzymes among recombinant inbred strains of mice with differential behavioural responses toward alcohol. *Anim Blood Groups Biochem Genet* 16: 51-59, 1985.
- Jaenisch, R., Jahner, D., Nobis, P., Simon, I., Lohler, J., Harbers, K., and Grotkopp, D.: Chromosomal position and activation of retroviral genomes inserted into the germ line of mice. *Cell* 24: 519-529, 1981.
- 54. Kent, R.B., Fallows, D.A., Geissler, E., Glaser, T., Emanuel, J.R., Lalley, P.A., Levenson, R., and Housman, D.E.: Genes encoding alpha and beta subunits of Na, K-ATPase are located on three different chromosomes in the mouse. *Proc Natl Acad Sci USA 84:* 5369–5373, 1987.
- 55. Kingsmore, S.F., Moseley, W.S., Watson, M.L., Sabina, R.L., Holmes, E.W., and Seldin, M.F.: Long-range restriction site mapping of a syntenic segment conserved between human chromosome 1 and mouse chromosome 3. *Genomics* 7: 75–83, 1990.
- 56. Kourides, I.A., Barker, P.E., Gurr, J.A., Pravtcheva, D.D., and Ruddle, F.H.: Assignment of the genes for the alpha and beta subunits of thyrotropin to different mouse chromosomes. *Proc Natl Acad Sci USA 81*: 517–519, 1984.
- 57. Kozak, C.A., Fournier, R.E.K., Leinwand, L.A., and Ruddle, F.H.: Assignment of the gene controlling cellular ouabain resistance to *Mus musculus* chromosome 3 using human/mouse microcell hybrids. *Biochem Genet* 17: 23-34, 1979.
- Lane, P.W.: Two new mutations in linkage group XVI of the house mouse. Flaky tail and vartint-waddler-J. J Hered 63: 135-140, 1972.
- Lane, P.W. and Eicher, E.M.: Gene order in linkage group XVI of the house mouse. J Hered 70: 239–244, 1979.
- 60. Lane, P.W.: Chromosome 3 position of de. *Mouse News Lett* 62: 56, 1980.
- 61. Lane, P.W.: [Subtle gray (sut); small with kinky tail (skt).] Mouse News Lett 80: 165, 1988.
- Lane, P.W., Bronson, R., and Spencer, C.: Rostral cerebellar malformation. *Mouse Genome 86*: 237, 1990.
- 63. Lund, E. and Nesbitt, M.N.: The embryonic and adult mouse U1 snRNA genes map to different chromosomal loci. *Somatic Cell Mol Genet 14*: 143–148, 1988.
- Lundin, L.-G.: A gene (Bmn) controlling beta-mannosidase activity in the mouse is located in the distal part of chromosome 3. Biochem Genet 25: 603-610, 1987.
- 64a. Macleod D.T. and Jackson, I.J.: An insertion into ES cells defines a DNA segment, *D3Jknl*, mapping to distal chromosome 3. *Mouse Genome* 89: 277, 1991.
- Marks, S.C., Jr. and Lane, P.W.: Osteopetrosis, a new recessive skeletal mutation on chromosome 12 of the mouse. J Hered 67: 11-18, 1976.
- 65a. Meisler, M.H. and Seldin, M.F.: Mouse Chromosome 3. Mammalian Genome 1 (Suppl): S42–S50, 1991.
- 66. Melvold, R.W., Jokinen, D.M., Miller, S.D., Dal Canto, M.C., and Lipton, H.L.: Identification of a locus on mouse chromosome 3 involved in differential susceptibility to Theiler's murine encephalomyelitis virus-induced demyelinating disease. J Virol 64: 686–690, 1990.
- 66a. Milatovich, A., Travis, A., Grosschedl, R., and Francke, U.: Gene for lymphoid enhancer-binding factor 1 (LEF1) mapped to human Chromosome 4 (q23–q25) and mouse Chromosome 3 near Egf. Genomics 11: 1040–1048, 1991.

- Mobraaten, L., Bunker, H.P., DeMaeyer-Guignard, J., De-Maeyer, E., and Bailey, D.W.: Location of histocompatibility and interferon loci on chromosome 3 of the mouse. *J Hered* 75: 233–234, 1984.
- Moore, S.K., Appella, E., Villar, C.J., and Kozak, C.A.: Mapping of the mouse 86-kDa heat-shock protein expressed gene (*Hsp86-1*) on chromosome 12 and related genes on chromosome 3, 4, 9, and 1. *Genomics 10:* 1019–1029, 1991.
- Moore, S.K., Kozak, C., Robinson, E.A., Ullrich, S.J., and Appella, E.: Murine 86 and 84 kDa heat shock proteins, cDNA sequences, chromosome assignments and evolutionary origins. *J Biol Chem* 264: 5343-5351, 1989.
- Moseley, W.S. and Seldin, M.F.: Definition of mouse chromosome 1 and 3 gene linkage groups that are conserved on human chromosome 1: evidence that a conserved linkage group spans the centromere of human chromosome 1. *Genomics 5:* 899– 905, 1989.
- Moseley, W.S., Watson, M.L., Kingsmore, S.F., and Seldin, M.F.: CD1 defines conserved linkage group border between human chromosomes 1 and mouse chromosomes 1 and 3. *Immunogenetics 30*: 378–382, 1989.
- 72. Moseley, W.S., Morisaki, T., Sabina, R.L., Holmes, E.W., and Seldin, M.F.: *Ampd-2* maps to distal mouse chromosome 3 in linkage with *ampd-1*. *Genomics* 6: 572–574, 1990.
- Mucenski, M.L., Taylor, B.A., Copeland, N.G., and Jenkins, N.A.: Chromosomal location of *Evi-1*, a common site of ecotropic viral integration in AKXD murine myeloid tumors. *Oncogene Res* 2: 219–233, 1988.
- Munke, M., Harbers, K., Jaenisch, R., and Francke, U.: Chromosomal mapping of four different integration sites of Moloney murine leukemia virus including the locus for alpha(I) collagen in mouse. Cytogenet Cell Genet 43: 140–149, 1986.
- Nadeau, J.H., Bedigian, H.G., Bouchard, G., Denial, T., Kosowsky, M., Norberg, R., Pugh, S., Sargeant, E., and Paigen, B.: Multilocus markers for mouse genome analysis: PCR amplification based on single primers of arbitrary nucleotide sequence. *Mammalian Genome* 3: 55-64, 1992.
- Naylor, S.L., Sakaguchi, A.Y., McDonald, L., Todd, S., Lalley, P.A., Shows, T.B., and Chin, W.W.: Mapping thyrotropin beta subunit gene in man and mouse. *Somatic Cell Mol Genet 12*: 307-311, 1986.
- 77. Novak, E., Sweet, H.O., Prochazka, M., Parentis, M., Sobel, R., Reddington, M., Cairo, A., and Swank, R.T.: Cocoa: a new mouse model for platelet storage pool deficiency. Br J Hematol 69: 371-378, 1988.
- O'Neill, R.R., Tokoro, T., Kozak, C.A., and Brady, R.O.: Comparison of the chromosomal localization of murine and human glucocerebrosidase genes and the deduced amino acid sequences. *Proc Natl Acad Sci USA 86:* 5049–5053, 1989.
- Oakey, R.J., Howard, T.A., Hogarth, P.M., Tani, K., and Seldin, M.F.: Chromosomal mapping of the high affinity Fcγ receptor gene. *Immunogenetics*, in press, 1992.
- Paul, P.R. and Elliott, R.W.: Analysis of the mouse Amy locus in recombinant inbred mouse strains. *Biochem Genet* 25: 569– 579, 1987.
- Prochazka, M., Staehelin, P., Holmes, R.S., and Haller, O.: Interferon-induced guanylate-binding proteins: mapping of the murine *Gbp-1* locus to chromosome 3. *Virology* 145: 273–279, 1985.
- 82. Richards-Smith, B. and Elliott, R.: Mapping of a family of repeated sequences in the mouse genome. *Mouse News Lett* 71: 46-47, 1984.
- Ramesh, V., Cheng, S.V., Kozak, C.A., Herron, B.J., Shih, V.E., Taylor, B.A., and Gusella, J.F.: Mapping of ornithine aminotransferase gene sequences to mouse Chromosomes 7, X, and 3. *Mammalian Genome 3:* 17-22, 1992.
- Ryan, J., Hart, C.P., and Ruddle, F.H.: Molecular cloning and chromosome assignment of murine N-ras. *Nucleic Acids Res* 12: 6063–6072, 1984.
- 84a. Seldin, M.F., Roderick, T.H., and Paigen, B.: Mouse Chromosome 1. Mammalian Genome 1 (Suppl): S1-S17, 1991.
- Siracusa, L.D., Rosner, M.H., Vigano, M.A., Gilbert, D.J., Staudt, L.M., Copeland, N.G., and Jenkins, N.A.: Chromo-

somal location of the octamer transcription factors, Otf-1, Otf-2, and Otf-3, defines multiple Otf-3-related sequences dispersed in the mouse genome. Genomics 10: 313-326, 1991.

- Samuelson, L.C., Wiebauer, K., Snow, C.M., and Meisler, M.H.: Retroviral and pseudogene insertion sites reveal the lineage of human salivary and pancreatic amylase genes from a single gene during primate evolution. *Mol Cell Biol 10:* 2513– 2520, 1990.
- Saris, C.J.M., Kristensen, T., D'Eustachio, P., Hicks, L.J., Noonan, D.J., Hunter, T., and Tack, B.F.: CNDA sequence and tissue distribution of the mRNA for bovine and murine p11, the S100-related light chain of the protein-tyrosine kinase substrate p36 (Calpactin I). J Biol Chem 262: 10663-10671, 1987.
- Sewell, W.A., Brown, M.H., Owen, M.J., Fink, P.J., Kozak, C.A., and Crumpton, M.J.: The murine homologue of the T lymphocyte CD2-antigen: molecular cloning, chromosome assignment and cell surface expression. *Eur J Immunol 17:* 1015– 1020, 1987.
- Siracusa, L.D., Rosner, M.H., Vigano, M.A., Gilbert, D.J., Staudt, L.M., Copeland, N.G., and Jenkins, N.A.: Chromosomal location of the octamer transcription factors, *Otf-1*, *Otf-*2, and *Otf-3*, defines multiple *Otf-3*-related sequences dispersed in the mouse genome. *Genomics* 10: 313–326, 1991.
- 90. Sola, B., Simon, D., Mattei, M.-G., Fichelson, S., Bordereaux, D., Tambourin, P.E., Guénet, J.-L., and Gisselbrecht, S.: Fim-1, Fim-2/c-fms, and Fim-3, three common integration sites of Friend murine leukemia virus in myeloblastic leukemias, map to mouse chromosomes 13, 18, and 3, respectively. J Virol 62: 3973-3978, 1988.
- 91. Southard, J.L.: (Soft coat and hemimelic extra toes.) Mouse News Lett 45: 29, 1971.
- 92. Sweet, H.O. and Prochazka, M.: Cocoa(coa). Mouse News Lett 73: 18, 1985.
- 93. Sweetser, D.A., Birkenmeier, E.H., Klisak, I.J., Zollman, S., Sparkes, R.S., Mohandas, T., Lusis, A.J., and Gordon, J.I.: The human and rodent intestinal fatty acid binding protein genes. A comparative analysis of their structure, expression, and linkage relationships. J Biol Chem 262: 16060–16071, 1987.
- 94. Tashian, R.E., Venta, P.J., Nicewander, P.H., and Hewett-Emmett, D.: Evolution, structure, and expression of the carbonic anhydrase multigene family. In Isozymes: Structure, Function, and Use in Biology and Medicine, pp. 159-175, Wiley-Liss, Inc., New York, 1990.
- Taylor, B.A., Heiniger, H.J., and Meier, H.: Genetic analysis of resistance to cadmium-induced testicular damage in mice. *Proc Soc Exp Biol Med* 143: 629–633, 1973.
- Taylor, B.A. and Rowe, I.: A mouse linkage testing stock possessing multiple copies of the endogenous ecotropic murine leukemia virus genome. *Genomics* 5: 221–232, 1989.
- 96a. Taylor, B.A.: Linkage of the cadmium resistance locus to loci on mouse Chromosome 12. J Hered 67: 389–390, 1976.
- 96b. Todd, J.A., Aitman, T.J., Cornall, R.J., Ghosh, S., Hall, J.R., Hearne, C.M., Knight, A.M., Love, J.M., McAleer, M.A., Prins, J.B., et al.: Genetic analysis of autoimmune type 1 diabetes mellitus in mice. *Nature 351:* 542–547, 1991.
- 97. van Heyningen, V., Emslie, E., and Dorin, J.F.: Related calcium binding proteins map to the same sub-region of chromosome 1q and to a probable region of homology on mouse chromosome 3. Cytogenet Cell Genet 51: 1095, 1989 (Abstr.).
- Venta, P.J., Montgomery, J.C., Hewett-Emmett, D., Wiebauer, K., and Tashian, R.E.: Structure and exon to protein domain relationships of the mouse carbonic anhydrase II gene. *J Biol Chem 260*: 12130–12135, 1985.
- Vincek, V., Kawaguchi, H., Mizuno, K., Zaleska-Rutczynska, Z., Kasahara, M., Forejt, J., Figueroa, F., and Klein, J.: Linkage map of mouse chromosome 17: localization of 27 new DNA markers. *Genomics* 5: 773–786, 1989.
- von Deimling, O.H. and Otto, J.: Esterase-16 on chromosome
 Mouse News Lett 64: 52, 1981.
- 100a. von Deimling, O.H., Schupp, P., and Otto, J.: Esterase-16 (*Es-16*): characterization, polymorphism and linkage to chromosome 3 of kidney esterase locus of the house mouse. *Biochem Genet* 19: 1091-1099, 1981.

- 101. von Deimling, O.H., Wassmer, B., and Muller, M.: Esterase-26 (ES-26): characterization and genetic location on chromo-some 3 of an eserine-sensitive esterase of the house mouse (Mus musculus). Biochem Genet 22: 1119–1126, 1984.
- 102. von Deimling, O.H.: EST-A. Mouse News Lett 73: 15, 1985.
- 103. von Deimling, O.H.: Esterase 27. Mouse News Lett 74: 89, 1986.
- 104. Watson, M.L., D'Eustachio, P., Mock, B.A., Steinberg, A.D., Morse III, H.C., Oakey, R.J., Howard, T.A., Rochelle, J.M., and Seldin, M.F.: A linkage map of mouse chromosome 1 using an interspecific cross segregating for the gld autoimmunity mutation. Mammalian Genome 2: 158–171, 1992.
- 105. Watson, M.L. and Seldin, M.F.: Unpublished observation.
- 106. Wejman, J.C., Taylor, B.A., Jenkins, N.A., and Copeland, N.G.: Endogenous xenotro pic murine leukemia virus-related sequences map to chromosomal regions encoding mouse lymphocyte antigens. J Virol 50: 237–247, 1989.
- 107. Wiebauer, K., Gumucio, D.L., Jones, J.M., Caldwell, R.M., Hartle, H.T., and Meisler, M.H.: A 78-kilobase region of mouse chromosome 3 contains salivary and pancreatic amy-

lase genes and a pseudogene. Proc Natl Acad Sci USA 82: 5446-5449, 1985.

- 107a. Wilkie, T.M., Gilbert, D.J., Olsen, A.S., Chen, X.N., Amatruda, T.T., Korenbog, J.R., Trask, B.J., de Jong, P., Reed, R.R., Simon, M.I., Jenkins, N.A., and Copeland, N.G.: Chromosomal evolution of the G protein alpha subunit multigene family. *Nature Genet*, in press, 1992.
- 108. Yoshida, H., Hayaski, S.-I., Kunisada, T., Ogawa, M., Nishikawa, S., Okamura, H., Sudo, T., Shultz, L.D., and Nishikawa, S.-I.: The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. *Nature* 343: 442–443, 1990.
- 109. Zabel, B.U., Eddy, R.L., Lalley, P.A., Scott, J., Bell, G.I., and Shows, T.B.: Chromosomal locations of the human and mouse genes for precursors of epidermal growth factor and the beta subunit of nerve growth factor. *Proc Natl Acad Sci USA* 82: 469-473, 1985.
- 110. Zabel, B.U., Sakaguchi, A.Y., Lalley, P.A., Scott, J., and Naylor, S.L.: The nerve growth factor (Ngf) gene is on mouse chromosome 3 (abstract). Cytogenet Cell Genet 37: 614, 1984.