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Abstract. Some of the basic developments in the theory of electromagnetic field representa- 
tion in terms of Hertz vectors are reviewed. A solution for the field in an inhomogeneous 
anisotropic medium is given in terms of the two Hertz vectors. Conditions for presentation 
of the field in terms of uncoupled transverse electric and transverse magnetic modes, in a 
general orthogonal coordinate system, are derived when the permeability and permittivity 
tensors have only diagonal components. These conditions are compared with some known 
special cases. 
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Analysis of electromagnetic field in inhomogeneous 
anisotropic media has practical applications in 
antenna, scattering and propagation problems. In 
the analysis of radiation from an oscillating electric 
dipole in free space, Hertz [1] introduced a potential 
of the type which now bears his name. Since that 
time, considerable use has been made of the Hertz 
potentials. Field representation, using electric and 
magnetic Hertzian potentials was investigated by 
Whittaker [2], Debye [3], Bromwich [4] and 
Hansen [5]. Extension of Hansen's work for radially 
inhomogeneous media of constant permeability is 
due to Bremmer [6] and Tai [7]. A general theory 
of the Hertz vectors and the associated gauge 
transformation for inhomogeneous anisotropic 
media was developed by Nisbet [8], [9] and this was 
presented in 4-vector form by McCrea [10]. 
The Whittaker and Debye-Bromwich types of 
representation, which split the field into so-called 
transverse electric (TE) and transverse magnetic 
(TM) parts, have had considerable and fruitful 
applications for homogeneous media. The search 
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for situations giving rise to uncoupled TE and TM 
fields is justified by the fact that, in such cases, the 
calculations involved can be considerably simplified. 
Such situations were investigated in terms of general 
orthogonal coordinates in homogeneous media by 
Bromwich [4], by Nisbet [91 for isotropic in- 
homogeneous media in the presence of sources, and 
by Friedman [11] for inhomogeneous anisotropic 
media when the permeability is constant. Some 
special cases were discussed by Wexler [12] in 
connection with mode uncoupling in inhomo- 
geneously loaded rectangular and circular wave- 
guides and by Uslenghi [13] for the radially inhomo- 
geneous cylinder. The error in the latter work was 
pointed out by Parkinson [14]. Mode uncoupling 
via transformation of coordinates for the radially 
inhomogeneous cylindrical plasma column was 
recently considered by Bisbing [15]. Benenson and 
Zaytsev [16] considered mainly homogeneous an- 
isotropic media and discussed the propagation of 
TEM, TE and TM waves in cylindrical and spherical 
coordinate systems. Mention should also be made of 
contributions by Luneberg [17], Marcuvitz [18], 
Green and Wolf [19], Samaddar [20], and Felsen and 
Marcuvitz [2t]. 
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In spite of these developments, a full treatment of the 
question of mode uncoupling is not yet available 
even for homogeneous media. Although the present 
paper does not resolve this general question, it does 
treat a particular anisotropic model. The media 
under consideration are assumed source free. It is 
known that in many applications, especially when 
mixed boundary conditions are to be applied, mode 
coupling is necessary in order to satisfy such condi- 
tions. These cases are not considered in the present 
work and the possibility of mode uncoupling by 
transformation of coordinates will not be discussed. 
A general solution of Maxwell equations for source- 
free anisotropic inhomogeneous media is presented 
in terms of general orthogonal coordinates. The 
permittivity ~ and permeability/i are tensor functions 
of position, assumed non-singular so that their 
reciprocal exist. The gauge transformations allow for 
field representation in terms of only two scalars 
(components of Hertzian potentials) satisfying certain 
differential equations. These equations are, in general, 
of higher order than the second, but under certain 
conditions they reduce to second order. These 
conditions, which lead to uncoupled TE and TM 
representations, are considered in detail when the 
permittivity and permeability have their principal 
axes in the direction of the coordinate axes. The 
previous works of Bromwich [4], Nisbet [9], Wexler 
[12], Parkinson [14] and Friedman [-11] are special 
cases of the present analysis. 

1. Fie ld  Equat ions  

The electromagnetic field within a stationary non- 
conducting source-free medium satisfies Maxwell's 
equations 

V x E = - B  (1) 

V x H = b (2) 

V. B = 0 (3) 

V' O = 0 (4) 

and the constitutive relations 

D=~, .E  

B = ~ ' H ,  

(5) 
(6) 

where a dot over a function indicates derivative with 
respect to time, and the permittivity ~ and per- 
meability/i  are tensor functions of position and are 

assumed non-singular so that their reciprocals 
exist. 
Since B is a selonoidal vector, one may write 

B = V x ~e (7) 

where r% is a Hertz vector (electric type). Using (7), 
Eqs. (1) to (6) lead to 

D = V x (,~- 1. V x roe) (8) 

and 

,~-/~e + v x ( ,~ - '  - F x rc~)=,~. F %  (9) 

where I[/e is an auxiliary function which provides 
some flexibility in the choice of rc e, according to 
gauge transformation. 
A similar analysis, due to the duality between 
electric and magnetic quantities, yields 

D = - V x ~m (10) 

B = F x ( ~  1 �9 17 x 7s (11) 

and  

/ i  - ri:m + V x ( U ' '  F x =,,,) = / i  �9 V 7J,,,. (12) 

A more general representation of the field may be 
obtained in terms of both electric (he) and magnetic 
(nm) Hertz vectors in the form 

B = [;7 x ~e Jr- V x (~-  1 . [7 x/~m) (13) 

and 

D =  - V x ~, ,+ Vx (/~-1. F x  he). (14) 

The question of generality of the above representa- 
tion was considered by Nisbet [8], [9] who derived 
identical equations starting from a representation 
in terms of scalar and vector potentials. 
It may be pointed out that the introduction of both 
types of Hertzian vectors is for the sake of generality, 
and may facilitate the analysis because of duality 
between electric and magnetic parameters, and 
depending upon the particular problem under 
consideration, one type may be more appropriate 
than the other. The fact that one type leads to the 
other may be made obvious by introducing a new 
Hertz vector H e given by 

~r~le = /~e  Jr- ~ -1  " VN /~rn- (15) 

Upon using (8) and (12), Eq. (14) immediately 
follows. In fact, since the solution of Maxwell's 
equation is uniquely determined by assigning initial 
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values to the six components of E and H at t = 0, 
which in the meantime must satisfy the condition 
V- ~- E = V- t i  H = 0, the "'degree of freedom" in 
essence is reduced to four arbitrary functions [17]. 
By proper choice of the auxiliary functions 7~e in (9) 
and ~g,, in (12), one may represent the field in terms 
of two components of either zc~ and n,, or in terms of 
one component of r~ and another of nm. The second 
possibility is considered in the next section. 
It may be pointed out that the argument given by 
Bromwich [4] that a field in a homogeneous media 
may be represented, in general, in terms of two field 
components is not generally correct. His argument is 
that the field is identically zero if such components 
are zero. This reasoning obviously fails if one takes 
into account TEM wave type. The possibility of 
representing the field in more than one form in terms 
of Hertz potentials has many advantages. Some of 
these forms may yield a faster convergent field 
representation ~han the others [18] or may easily 
lead to some desired asymptotic expressions [22]. 
This aspect of the analysis, though very interesting, 
will not be considered in this work. 

mode since if E , = 0 ( H , = 0 )  implies that D , = 0  
(B .  = 0). 
Consider the representation given by (7) to (9) with 
the Hertz vector having only one component, i.e., 

r~e= nfi 1 (16) 

where ~1 is a unit vector along the coordinate axis q,. 
Substituting (16) into (9) leads to 

el ~/-  h2 h~ hi h2 
(17) 

+~33 ~ ~ 3 ( h l  re) =__hi vl tp 

1 91 ~2(hl 7c) = ~ 92 i/J (18) 
hlh3 

and 

1 
hlh~O, 03(h, rc ) : ~-3 03 7j (19) 

where 9, represents differentiation with respect to the 
coordinate q,. The equation obtained for ~ on 
elimination of 7J is, in general, of higher order than 
the second. If, however, the condition 

2. Special Representations 

As pointed out in the previous section, a proper 
choice of the auxiliary functions ku e and 7~,, in (9) 
and (12), respectively, allows Hertzian vectors to be 
chosen which have four of their six components 
identically zero. In general, the differential equations 
satisfied by the two remaining components are of 
higher order than the second. The conditions 
required for the reduction of the order to the second 
is considered in this section. Let the field be re- 
presented in terms of the orthogonal curvilinear 
coordinates q,(n = 1, 2, 3) defined by the metric 

3 
d s 2 : 2  2 2 h, dq, . 

n=l 

h2/h 3 independent of ql (20) 

holds, (18) and (19) reduce to 

~1 ~ 02(hl re) = h 1 e2 0a ~ (21) 

and 

C) 1 ~hTC~3(hlTc) =hlg303 ~ .  (22) 

Consideration of (21) and (22) leads to three condi- 
tions, in addition to (20), if any of which is valid, 
~P may be determined in terms of a first derivative of 
~z, thus reducing the order of the differential equation 
to be satisfied by rc to the second. 

We assume that at every point of space the permea- 
bility and permittivity tensors have their principal 
axes in the direction of the coordinate axes with 
components/4 and e,, respectively. Besides simplify- 
ing the analysis, this particular choice of/~ and ~ is the 
same as that considered by Friedman [-11] who dealt 
with the constant permeability case, thus allowing the 
comparison with his results. Such a choice also 
eliminates the confusion in the definition of TE(TM) 

Condition (a) 

If (hi e2, hi e3, hi #2 and h i #3) are independent of q2 
and q3, (21) and (22) become 

~312 = c?2(h, ~ 2 7 j) (23) 

(713 (~-2) = 03(hie3 7t ) . (24) 
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Furthermore, if g2 = G3 = e and 122 = 123 = 12, the 
function ~ satisfying (23) and (24) is then given by 

= h ~  Q1 (25) 

and the equation satisfied by rc is then given by 

ex ~C h2 h3 
(26) 

q - ~ 3 { ~ h ~  ~3(h17c)}1 ]~1 ~ 1 { + ~ 1 ( ~ - ) } '  

It may be noted that this case was previously con- 
sidered by Nisbet [-9] for isotropic media. 

when h 1, h a and h3,/i and ~ as well as the solution are 
independent of one coordinate. This class of problems 
can be classified as: 

A) Field is Independent of ql 

In this case 7r satisfies the equation 

e l ii - h a h~ 
(29) 

+ (93 {-122~h3 (?3(ht ~)}] =0"  

This case was previously considered by Nisbet [9] 
with the medium assumed to be isotropic. 

Condition (b) 

If (h 1 e 2 and hi e3) are independent of ql and (122 e3 h~ 
= 123 ~2 h2) is independent of q2 and q3, 7/ is then 
given by 

7 ~=01 -123Ghl ' 

Condition (c) 

The third situation leading to a second order dif- 
ferential equation for ~ results if (ha 122 and hi 123) are 
independent of ql and (122 e3 h~ = 123 e2 h~) is in- 
dependent of q2 and q3 in which case ~ is given by 

1 
I/t__ 122'23h~ ~l(h 1 g).  (28) 

The analogous appearance of permeability and 
permittivity tensor components should be noted and 
it is apparent that this is a result of the duality 
between electric and magnetic quantities. As a 
consequence, the conditions to be satisfied for a 
TM-field representation are identical to those 
required for a TE-field representation. 
It may be noted that Friedman [11] considered the 
present problem of mode decoupling when the 
permeability was assumed to be isotropic and con- 
stant. It appears that his theorem does not cover all 
the possibilities that were implied. In fact, Friedman's 
result corresponds only to case (a) above 1. 
Another class of problems for which rc satisfies a 
second order differential equation may be obtained 

1 The author is indebted to Professor Lewin of the University of 
Colorado, Boulder, Colorado for a useful discussion on this po!nt. 

B) Field is Independent of q2 

In this case, if we let 

h ~  03(hl ~) = F/ (30) 
122 hi h3 

we find that H satisfies the second order differential 
equation 

(31) 

On the other hand, analysis of (18) and (19) leads to 
the following conditions under which rc satisfies a 
second order differential equation 

hlh3 
B-l) If122 hm~-- ~ is independent of ql and 12283 h2 

is a function of qa only, ~ is then given by 

1 
-- 12293h ~ 01(hl ~). 

B-2) If 122 h ~  and e3 
hi h2 

n2 h3 
only, 7/ then has the form 

(32) 

are functions of ql 

h3 ~1 ( hEre I (33) 
hlh283 \ h3122 J" 

B-3) 

is independent of q3 in which case 

h3 (~1( h2g / 
~frJ_ hi h2~33 \h3122J" 

hi h2 If ea ~ is a function of q3 only while #2 e3 h~ 

(34) 
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C) Field is Independent of q3 

In this case, conditions similar to case B follows by 
interchanging the subscripts 2 and 3. 
Contrary to the first case discussed in this paper, 
and due to the two-dimensional character of the 
problem, conditions for TE-field expansion do not 
automatically yield those required for TM-field 
representation. The required conditions for the latter 
representation may be easily obtained by inter- 
changing the components of/~ and ~. 
The discrepancies in the aforementioned theorem of 
Friedman should be obvious by now. In fact, 
condition (20) which is unnecessary for cases B and C 
above, is essential according to his analysis. Accord- 
ing to his theorem under no condition can one 
represent the field in terms of a representation which 
is transverse to 0 in spherical coordinates, which is 

incorrect if the field is independent on q5 [18]. Using 
the same argument, Bromwich's analysis for homo- 
geneous media [4], which is the basis of Friedman's 
theorem, does not cover all the possibilities. 
It may be pointed out that different conditions may 
lead to the same ~u, for example B-2 and B-3, but 
corresponding n is, obviously, different. Depending 
on the coordinate system and the medium, whether 
it is isotropic or of constant /i or ~, the conditions 
derived above are not necessarily independent. 
Limiting our consideration to the cartezian, 
cylindrical and the spherical coordinate systems, 
conditions leading to representations transverse to 
One of the coordinates are given below. 

I) Cartesian Coordinates (x, y, z) 

Representation transverse to x ( T - x )  is possible 
if any of the following conditions are satisfied 

1) ey = e~ = e(x) and #y = #= = #(x) 
2) e, = ey(y, z), e= = e,(y, z) 

and 2 #ye= = #~ey = f ( x )  
3) #~ = #,,(y, z), #= = #~(y, z) 

and #ye s = #=ey = f ( x )  
4) Field,/i and ~ are independent of x, y or z. 

II) Cylindrical Coordinates (r, qs, z) 

a) Representation transverse to r ( T - r )  is 
possible if the field,/i and ~ are independent 
of q5 or z. 

2 In what follows, f, g and f represent arbitrary functions. 

b) ( T - q  S) representation is admissible if any 
of the following conditions are satisfied: 
1) rer=r~=f (qs )  and r#~=r#z  = g(qs) 
2) rer =f (r ,  z), r~ z =g(r, z) 

and rZpr~z = r2 #ze~=f(qs) 
3) r#~ =f(r ,  z), r#~ = g(r, z) 

and r 2 #, ez = r 2 #~ e~ = f (qs) 
4) Field,/? and ~ are independent of r, q5 or z. 

c) ( T - z )  representation is possible under any 
of the following conditions: 
1) ~ = e4, = g(z) and #~ = #~ = #(z) 
2) ~ = ~(r ,  qs), ~2 = ~z(r, qs) 

and #~er = #r r = f ( z )  
3) #~ = #~(r, qs), #~ = #~(r, qs) 

and #r% = #r = f ( z )  
4) Field,/~ and ~ are independent of z or qs. 

III) Spherical Coordinates (r, O, O) 

a) ( T -  r) representation is possible if any of the 
following conditions are met: 
1) t0 = e~ = e(r) and #0 = #~ = #(r) 
2) t0 = t0(0, q5), e~ = e~(0, 4)  

and g0% = #r = f ( r )  
3) #0 =#0( 0, 4), # ,  = # , (0 ,  q5) 

and #0e~ = #r = f ( r )  
4) Field,/i and ~ are independent of qS. 

b) ( T -  0) representation is possible if the field, 
/i and ~ are independent of q5. 

c) (T-q5)  representation is admissible, if any 
of the following conditions are satisfied: 

1) e~ = t0, #r = #0 
r sin 0e~ = f ( r  and r sin 0#~ = g(4) 

2) he r =f ( r ,  0), he o = g(r, 0) 
and h 2 #~ t0 = h 2 #0 e~ = f (q5) 
where h = r sin 0 

3) h#~ =f(r ,  0), hpo=g(r, O) 
and h 2 #reo = h 2 pogr =f(q5) 
where h = r sin 0 

4) Field,/i and ~ are independent of 4. 
It may be pointed out that due to the singularity 
required for the medium parameters, the first three 
conditions of the T - q 5  representation for both 
cylindrical and spherical coordinates are not possible 
to realize. 

3. Conclusion 

This paper dealt with the general representation of 
electromagnetic fields in terms of electric and 
magnetic Hertz vectors. Conditions for uncoupling 
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the TE- and TM-modes were given for media whose 
permeability and permittivity tensors have only 
diagonal elements. Admittedly, some of these condi- 
tions may lead to impractical situations, as far as 
realizability is concerned, in which case one has to 
use a more complicated analysis. Because of our 
assumption with respect to/i and ~, the results do not 
include the most general type of anisotropy and, in 
particular, those of plasma and ferrite media. As 
pointed out before, the condition for mode 
decoupling under a mixed boundary condition as 
well as decoupling via coordinate transformation, 
even for the isotropic case, deserves further investiga- 
tion. When the problem admits more than one 
representation, the relative convergence of one 
representation compared to the other and the 
relative usefulness of such representation as far as 
the derivation of asymptotic behaviors of the field 
were studied only in some particular cases and is 
not yet fully investigated. 
The conditions for separability of coordinates for the 
equation satisfied by Hertz potentials in homo- 
geneous isotropic media are well documented [23]. 
Extension of such study to the inhomogeneous case 
is under investigation. 
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