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Abstract Insulin has been shown to influence intestinal
structure and absorptive function. The purpose of the
present study was to evaluate the effects of parenteral
insulin on structural intestinal adaptation, cell prolifer-
ation, and apoptosis in a rat model of short bowel
syndrome (SBS). Male Sprague-Dawley rats were
divided into three experimental groups: sham rats
underwent bowel transection and reanastomosis, SBS
rats underwent a 75% small bowel resection, and SBS-
INS rats underwent a 75% small bowel resection and
were treated with insulin given subcutaneously at a dose
of 1 U/kg, twice daily, from day 3 through day 14.
Parameters of intestinal adaptation, enterocyte prolif-
eration, and enterocyte apoptosis were determined on
day 15 following operation. SBS rats demonstrated a
significant increase in jejunal and ileal bowel and
mucosal weight, villus height and crypt depth, and cell
proliferation index compared with the sham group. SBS-
INS animals demonstrated higher jejunal and ileal bowel
and mucosal weights, jejunal and ileal mucosal DNA
and protein, and jejunal and ileal crypt depth compared
with SBS animals. SBS-INS rats also had a greater cell
proliferation index in both jejunum and ileum and a
trend toward a decrease in enterocyte apoptotic index in
jejunum and ileum compared with the SBS untreated
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group. In conclusion, parenteral insulin stimulates
structural intestinal adaptation in a rat model of SBS.
Increased cell proliferation is the main mechanism
responsible for increased cell mass.
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Introduction

Short bowel syndrome (SBS) is defined as an intestinal
failure following a loss of intestinal length below the
minimal amount necessary for the absorption of nutri-
ents and a normal nutritional status. SBS is a common
problem in pediatric surgery and occurs in newborns
and infants suffering from necrotizing enterocolitis,
intestinal atresia, and volvulus requiring massive intes-
tinal resection [1]. Despite the availability of total par-
enteral nutrition (TPN), advances in resuscitation,
availability of potent antibiotics, and modern techniques
of organ support, SBS remains a significant cause of
infant morbidity and mortality [2].

Although intestinal transplantation has emerged as a
feasible alternative in the treatment of children with SBS
in the last two decades, intestinal adaptation remains the
only chance for survival in a subset of these patients.
Throughout the process of adaptation, the small intes-
tine increases its absorptive performance and its func-
tional capacity in an attempt to meet the body’s
metabolic and growth needs [3]. Over the past decades,
considerable research has focused on identifying those
trophic factors that may augment and accelerate bowel
regrowth in patients with SBS. These include nutrients
and other luminal constituents, gastrointestinal secre-
tions, hormones, and peptide growth factors [4].

The insulin-like growth factor (IGF) family includes
three peptides: insulin, insulin-like growth factor I (IGF-
I), and insulin-like growth factor II (IGF-IT) [5]. The
recent evidence suggests that both IGF-I and IGF-II are



involved in modulation of growth and differentiation of
normal small bowel [6]. Olanrewaju and coworkers [7]
have shown that infusion of IGF-I into the rodent ileum
resulted in a twofold increase in mucosal weight and
other parameters of bowel growth. Although a positive
role for IGF system in postresection intestinal hyper-
plasia has been reported by many investigators [8, 9],
little evidence exists that insulin may affect intestinal
growth following bowel resection. Recent experimental
and clinical studies suggest a possible role for insulin in
normal intestinal physiology. In a recent study, we have
demonstrated that oral insulin promotes adaptive
growth of small bowel in a rat model of SBS (unpub-
lished data). The effect of systemic (parenteral) admin-
istration of the insulin has never been described
previously. Systemic administration of exogenous hor-
mone or growth factor may not mimic its local effect
within the small bowel because of the complexities of the
in vivo system [8]. The present study was undertaken to
explore the effects of insulin given subcutaneously on the
adaptive changes in the mucosa following massive small
bowel resection in a rat.

Materials and methods
Animals

All studies were conducted in compliance with the
guidelines established by the “Guide for the Care and
Use of Laboratory Animals,” Rappaport Faculty of
Medicine, Technion (Haifa, Israel). Sprague-Dawley
rats weighing 250-320 g were housed in individual cages
and were acclimated to laboratory conditions (22°C with
12-h light/dark cycle) for 3 days.

Twenty-four Sprague-Dawley rats were randomly
assigned to three experimental groups. In group A, sham
male animals underwent bowel transection and reanas-
tomosis (sham, n=_8); in group B, rats underwent 75%
bowel resection (SBS, n=38); and in group C, rats
underwent a 75% small bowel resection and were treated
with insulin given subcutaneously at a dose of 1 U/kg,
twice daily, from day 3 through day 14 (SBS-INS, n=38).

Surgical procedure

After an overnight fast, animals were anesthetized with
sodium pentobarbital (45 mg/kg) administered intra-
peritoneally. Using sterile technique, the abdomen was
opened using a midline incision. For sham animals, the
intestine was divided and reanastomosed without
resection at a point 15 cm proximal to the ileocecal
valve. For SBS rats, a 75% resection was performed
from 5 cm distal to the ligament of Treitz to 15 cm
proximal to the ileocecal valve. Anastomoses were per-
formed using interrupted sutures of 6-0 silk. In all ani-
mals the abdomen was closed in two layers with a
running suture of 3-0 Dexon (Davis and Geck, NY,
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USA). Postoperatively, animals were allowed water ad
libitum immediately after operation and normal chow at
the beginning of the 1st postoperative day.

Parameters of intestinal adaptation

All animals were sacrificed on the 15th postoperative
day. The small intestine from the pylorus to the ileocecal
valve was removed and divided into two segments:
jejunum proximal to anastomosis and terminal ileum.
Each segment was weighed and cut longitudinally.
Mucosa was scraped using a glass slide, collected, and
weighed. Bowel and mucosal weight was calculated per
cm of bowel length per 100 g of body weight as
described previously [10]. DNA and protein were
extracted using TRIzol reagent as described by Chom-
czynski [11]. The DNA concentrations were recorded
spectrophotometrically and calculated per cm of bowel
length. Final protein concentration was measured spec-
trophotometrically using a commercially available kit
(Bio-Rad, Protein Assay) and was calculated per cm of
bowel length.

Histological examination

Intestinal samples from the proximal jejunum and distal
ileum were fixed in 10% formalin, dehydrated in pro-
gressive concentrations of ethanol, cleared in xylene, and
embedded in paraffin wax. Deparaffinized 5-pum sections
were stained with haematoxylin and eosin. Villus height
and crypt depth were measured using a graded eye piece
at 10 times magnification by a pathologist blinded to the
tissue origin.

Enterocyte proliferation and apoptosis

Crypt cell proliferation determination was assessed
using biotinylated monoclonal anti-BrdU antibody sys-
tem provided in a kit form (Zymed Laboratories, San
Francisco, CA, USA), and TUNEL assay for apoptotic
cell detection was performed using the 1.S. Cell Death
Detection kit (Boehringer Mannheim GmbH, Mann-
heim, Germany). An index of proliferation was deter-
mined as the ratio of crypt cells staining positively for
BrdU per 10 crypts. The apoptotic index (AI) was
defined as the number of apoptotic TUNEL-positive
cells per 10 villi. A qualified pathologist blinded to the
source of intestinal tissue performed all measurements.

Statistical analysis

The data are expressed as the mean + SEM. Statistical
analysis of parameters of adaptation, enterocyte prolif-
eration, and apoptosis was performed using the non-
parametric Kruskal-Wallis ANOVA test, followed by
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the corrected Mann—Whitney test, with P less than 0.05
considered statistically significant.

Results
Body weight

The sham-operated control rats’ body weight remained
unchanged during the first 4 days, followed by a gradual
increase in weight throughout the next 10-day observa-
tion period (Fig. 1). Bowel resection (group B) caused a
significant reduction in weight during the first 4 days,
followed by a gradual increase in weight during the next
10 days. However, body weight was significantly lower
in SBS rats compared with sham animals. Administra-
tion of subcutaneous insulin did not significantly change
body weight gain compared with SBS untreated animals.

Overall intestinal and mucosal weights

Overall total intestinal weights expressed as g/cm of
length/100 g body weight significantly increased in
jejunum (threefold, P <0.05) and ileum (twofold,
P<0.05) in SBS rats (group B) compared with sham
(group A) animals (Fig. 2). SBS-INS rats showed higher
jejunal (31%, P<0.05) and ileal (22%, P <0.05)
intestinal weight compared with SBS untreated animals.
Mucosal weights showed similar changes. Resected
animals (group B) showed greater mucosal weight per
centimeter of bowel in jejunum (threefold, P <0.05) and
ileum (twofold, P <0.05) compared with sham (group
A) rats (Fig. 2). Subcutaneous insulin injections (group
C) led to an additional increase in mucosal weights in
jejunum (35%, P<0.05) and ileum (33%, P<0.05)
compared with SBS untreated animals (group B).

Mucosal DNA and protein

Short bowel syndrome rats (group B) had significantly
higher mucosal DNA levels in jejunum (threefold,
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Fig. 2 Macroscopic bowel appearance

P<0.05) and ileum (33%, P <0.05) compared with
sham (group A) animals (Fig. 3). SBS-INS rats (group
C) demonstrated an additional 50% increase in mucosal
DNA in jejunum and ileum compared with SBS
untreated animals (group B). SBS rats (group B) dem-
onstrated a threefold increase in mucosal protein in
jejunum compared with sham (group A) animals.
SBS-INS rats showed a significant increase in mucosal
protein in jejunum (47%, P<0.05) and ileum (55%,
P<0.05) compared with SBS untreated (group B)
animals.

Histological findings

The histological changes in remaining bowel are shown
in Fig. 4. As expected, bowel resection (group B)
resulted in a significant increase in villus height in jeju-
num (50%, P <0.05) and ileum (49%, P <0.05), and in
crypt depth in jejunum (29%, P <0.05) and ileum (24%,
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Fig. 4 Microscopic bowel appearance

P <0.05) compared with sham animals (group A). Sub-
cutaneous injections of insulin (group C) led to a sig-
nificant increase (vs. SBS untreated animals, group B) in
crypt depth in jejunum (25%, P <0.05) and ileum (38%,
P <0.05) and a trend toward an increase in villus height
in jejunum and ileum; however, this trend did not
achieve statistical significance.

Cell proliferation and apoptosis

A significant increase in cell proliferation was seen fol-
lowing bowel resection (group B) compared with sham
animals (group A) in  jejunum (27015
vs.168 12 BrdU-positive cells per 10 crypts, P <0.05)
and ileum (262 =19 vs.190 =7 BrdU-positive cells per 10
crypts, P<0.05) (Fig. 5). Following insulin injections,
SBS-INS rats (group C) demonstrated an additional
increase in the jejunal (340+30 vs. 270+ 15 BrdU-po-
sitive cells per 10 crypts, P <0.05) and ileal (380 + 39 vs.
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Fig. 5 Enterocyte proliferation
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262 +19 BrdU-positive cells per 10 crypts, P<0.05)
proliferation rates compared with SBS untreated ani-
mals (group B).

Short bowel syndrome rats showed a significant in-
crease in enterocyte apoptosis in jejunum (21.32+3.4 vs.
9.2 &+ 3.three apoptotic cells per five villi, P<0.05) and
ileum (28.2+3.4 vs. 16+ 5 apoptotic cells per five villi,
P <0.05) compared with sham animals (Fig. 6). Fol-
lowing subcutaneous insulin, SBS rats showed a ten-
dency toward a decrease in cell apoptosis in jejunum and
ileum compared with SBS untreated animals; however,
this trend did not achieve statistical significance.

Discussion

The IGF system was discovered as a group of factors in
serum that mediate the growth-promoting effects of
growth hormone on skeleton [12]. This system includes
the ligands IGF-I and IGF-II, the receptors IGFRs type
1 and type 2, and six high-affinity binding proteins
(IGFBPs 1-6) that modulate IGF cellular actions [8].
The role of the IGF system in the growth and differen-
tiation of bowel during development has been reported
by many investigators [13, 14] A growing body of evi-
dence suggests that IGF-I mediates many of the en-
terotrophic actions of growth hormone. It is believed
that growth hormone stimulates intestinal adaptation in
patients with SBS through modulation of IGF-I [9]. In
many animal models of SBS, systemic or local IGF-I
administration enhanced bowel regrowth and improved
nutrient absorption [9, 15]. Although positive effects of
IGF-I in SBS have been reported by many investigators,
little evidence exists that insulin may affect intestinal
growth following bowel resection. Recent experimental
and clinical studies suggest a possible role for insulin in
normal intestinal physiology. Insulin stimulates the
epithelial cell proliferation and differentiation of intes-
tinal epithelial cells in vitro [16]. Insulin-receptor densi-
ties are selectively associated with intestinal mucosa
growth in neonatal calves [17]. Insulin has trophic effects
on intestinal mucosa in the newborn miniature pig [18],
accelerates enterocytes proliferation in the intestinal
mucosa of suckling mice [19], and increases fermental
activities in villus cells and the concentration of the
secretory component of immunoglobulins in crypt cells
in rats [20].

Because there is some evidence that insulin has tro-
phic effects on gut, we hypothesized that this agent could
enhance intestinal regeneration following massive small
bowel resection. Insulin might stimulate mucosal
hyperplasia by a direct stimulation of proliferation or
cell migration, or by inhibition of enterocyte apoptosis.
Alternatively, it might exert its pro-adaptive effect by
stimulating the release of various trophic agents or by
altering absorption and secretion of different nutrients.

Our results show that bowel resection in a rat results
in apparent stimulation of structural intestinal adapta-
tion. This is evident from increased bowel and mucosal
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weight, mucosal DNA and protein content, villus height,
and crypt depth. Our findings suggest that proliferation
of crypt cells increased significantly following bowel
resection and was closely correlated with increased crypt
depth. An increased cell apoptosis may be considered a
mechanism that counterbalances the increased entero-
cyte proliferation in order to reach a new homeostatic
set during intestinal adaptation and promotes disposal
of genetically aberrant stem cells and prevents tumoro-
genesis. Mucosal response to massive resection in our
experiment is comparable to the changes previously
observed in our laboratory [21, 22].

In our experiment, subcutaneously administered
insulin stimulated mucosal hyperplasia, characterized by
increased bowel and mucosal weights and increased
mucosal DNA and protein. Increases in DNA and
protein content in our model suggest that hyperplasia
was the predominant adaptive response to insulin
administration. Increased crypt depth in both jejunum
and ileum suggests increased cell proliferation and was
correlated with increased enterocyte proliferation index.
Enterocyte death via apoptosis showed a trend toward a
decrease; however, this trend did not achieve statistical
significance. Increased enterocyte proliferation and a
trend toward decreased cell death suggest increased gut
epithelial cell turnover following insulin administration
and may indicate an adaptive mechanism to increase
enterocyte mass. Taken together, these findings suggest
that insulin may stimulate gut regrowth following mas-
sive small bowel resection in the rat. These preliminary
observations suggest that insulin may have clinical util-
ity for the patient with SBS.
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