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Abstract Massive small bowel resection (SBR) results in
a significant increase in intestinal epithelial cell (EC)
proliferation as well as apoptosis. Because the site of
SBR (proximal (P) vs. distal (D)) affects the degree of
intestinal adaptation, we hypothesized that different
rates of EC apoptosis would also be found between
P-SBR and D-SBR models. Wild-type C57BL/6J mice
underwent: (1) 60% P-SBR, (2) 60% D-SBR, or (3)
SHAM-operation (transaction–reanastomosis) at the
mid-gut point. Mice were sacrificed after 7 days.
EC apoptosis was measured by TUNEL staining.
EC-related apoptotic gene expression including intrinsic
and extrinsic pathways was measured with reverse
transcriptase-polymerase chain reaction. Bcl-2 and bax
protein expression were analyzed by Western immu-
nobloting. Both models of SBR led to significant in-
creases in villus height and crypt depth; however, the
morphologic adaptation was significantly higher after
P- SBR compared to D-SBR (P<0.01). Both models of
SBR led to significant increases in enterocyte apoptotic
rates compared to respective sham levels; however,
apoptotic rates were 2.5-fold higher in ileal compared to
jejunal segments (P<0.01). P-SBR led to significant in-
creases in bax (pro-apoptotic) and Fas expression,
whereas D-SBR resulted in a significant increase in
TNF-a expression (P<0.01). EC apoptosis seems to be
an important component of intestinal adaptation. The
significant difference in EC apoptotic rates between
proximal and distal intestinal segments appeared to be
due to utilization of different mechanisms of action.
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Introduction

Short bowel syndrome (SBS) is characterized by maldi-
gestion and malabsorption after extensive loss of the
small bowel [1, 2]. In the rodent model of massive small
bowel resection (SBR), the residual small intestine (both
jejunum and/or ileum) undergoes a series of adaptive
processes leading to a significant increase in intestinal
absorptive surface area which reflects regulatory pro-
cesses for reestablishment of the nutritional homeostasis
of the body, the exact mechanisms of which are still
poorly understood [3–5].

The degree of intestinal adaptation has been shown
to depend on the amount of the resected tissue and also
on the site of intestinal resection [6–8]. Distal small bo-
wel has been shown to have a higher ability of adapta-
tion compared to the proximal small bowel, i.e., ileum
shows a greater postresectional adaptation than jejunum
[7, 8]. Thus, a number of studies focused mainly on the
investigation of the mechanisms that drive the ileal
postresectional adaptation. However, others reported
that both ileum and jejunum show similar morphologic
adaptive responses [9] and that it is the jejunum that
significantly augments its absorptive capacity after distal
SBR (D-SBR), when compared to the ileum in a model
of proximal SBR (P-SBR) [10].

Recently, increased rates of enterocyte apoptosis
have been reported after massive SBR, indicating that
not only crypt cell proliferation, but also enterocyte
apoptosis may play the crucial role during the process of
postresectional intestinal adaptation [11–13]. The
importance of crypt cell apoptosis is elucidated by the
fact that the death of one crypt cell may be responsible
for the loss of more than 100 descendent crypt entero-
cytes [14].

So far, the mechanisms behind the potentially distinct
adaptive responses of residual intestine after P-SBR
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versus D-SBR remain elusive. The aim of this study was
to investigate if differences in postresectional intestinal
adaptation of jejunum and ileum may be related to
differences in enterocyte apoptosis rates, as well as dif-
ferences in gene and protein expression of the various
apoptotic pathways [15].

Methods

Animals

Studies reported here conformed to the guidelines for the
care and use of laboratory animals established by the
University Committee on Use and Care of Animals at the
University of Michigan (Ann Arbor, MI, USA) and
protocols were approved by that committee. Male, spe-
cific pathogen-free C57BL/6J mice (The Jackson Labo-
ratory, Bar Harbor, ME, USA) purchased at 8 weeks of
age were housed in the animal care facility of the Uni-
versity ofMichigan. Mice were maintained in a 12-h day–
night rhythm at 23�C and a relative humidity of 40–60%.

Experimental design

To investigate the postresectional changes in the ileum
versus jejunum, two different SBR models were utilized:
(1) 60% P-SBR, resection of the small bowel between
the point 2 cm distal to the ligament of Treitz and 10 cm
proximal to the ileo-cecal junction, and (2) 60% D-SBR,
resection of the small bowel between the point 10 cm
distal to the ligament of Treitz and 2 cm proximal to the
ileo-cecal junction. Small bowel transection (SHAM)
and reanastomosis without bowel resection at the point
approximately 14 cm distal to the ligament of Treitz was
used as a sham operation. Each group was comprised of
seven mice.

Surgical procedure

This procedure has been described previously [16].
Briefly, one day prior to surgery mice chow was ex-
changed to micro-stabilized rodent liquid diet (TestDiet,
Richmond, IN, USA). Mice were anesthetized with
pentobarbital sodium (50 mg/kg i.p.). Bowel end-to-end
anastomoses were completed with interrupted 8–0
monofilament sutures. At the end of surgery, mice were
resuscitated with a 3 ml subcutaneous injection of 0.9%
saline solution. On the first postoperative day, mice were
given only water and thereafter had free access to water
and liquid diet [17]. Body weights were determined
preoperatively and at harvest.

Harvesting

Mice were sacrificed at 7 days postoperatively using
CO2. The small bowel was exposed and 0.5 cm segments
of small bowel were immediately immersed in 10%

buffered formalin. Jejunal and ileal tissues were consis-
tently taken from the sites 3 cm distal to the ligament of
Treitz (D-SBR, SHAM-J) and 3 cm proximal to the ileo-
cecal junction (P-SBR, SHAM-I), respectively. The parts
of the small bowel 1 cm distal and 1 cm proximal to the
anastomosis site were discarded. The remaining small
bowel was immediately processed for mucosal cell iso-
lation. The ileum or jejunum were harvested in the
P-SBR and D-SBR groups, respectively. In the SHAM
group the remaining ileum (SHAM-I) and jejunum
(SHAM-J) were isolated separately.

Intestinal morphology and histology

Formaldehyde fixed tissues were dehydrated, embedded
in paraffin, cut (5 lm thickness), and stained with H&E.
Image Pro Plus Software (Media Cybernetics, Inc., Sil-
ver Spring, MD, USA) was used for measurements of
villus height and crypt depth. Ten replicate measure-
ments were made per tissue section and averaged.

Terminal deoxynucleotidyl transferase biotin–dUTP
nick end labeling (TUNEL)

Jejunal and ileal paraffin-embedded tissues were assayed
for apoptotic cells (broken DNA strands) by TUNEL
staining (ApopTag Plus Peroxidase InSitu Apoptosis
Detection Kit, Chemicon International Inc, Temecula,
CA, USA), as previously described [16]. Slides were
incubated with only one-third of the manufacturer’s
recommended concentration of TdT enzyme, in order to
avoid over-staining.

Quantification of apoptosis

Assessment of apoptosis consisted of counting all
TUNEL positive EC in all well-oriented crypts and villi
separately and dividing the number of apoptotic cells per
number of analyzed crypts and villi, respectively. Add-
ing together of both crypt and villus apoptotic indices is
expressed as the apoptotic index per crypt–villus com-
plex. A Nikon TS-100 microscope was used at ·40
magnification and images were digitally recorded with
an Evolution MP 5.1 CCD camera.

Mucosal cell isolation and purification

Mucosal cells were isolated and EC purified as previ-
ously described [18].

Reverse transcriptase-polymerase chain reaction
(RT-PCR)

Total RNA was isolated using a guanidine isothiocya-
nate/chloroform extraction method using Trizol (Gibco
BRL, Gaithersburg, MD, USA). EC mRNA (poly-A
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positive) was reverse transcribed into cDNA following a
standard protocol [19]. Specific primers for selected gene
sequences of the members of the intrinsic (bcl-2, bax)
and extrinsic (TNF-a, Fas) apoptotic pathways were
designed using proprietary software (LaserGene,
DNAStar, Inc, Madison, WI, USA). PCR and gel were
run under standard conditions [20]. A Kodak EDAS
System (Rochester, NY, USA) was used for imaging and
quantification. Results were expressed as a ratio of the
investigated mRNA over b-actin mRNA expression.

Immunoblot analysis

Protein concentration was determined using a Micro
BCA Protein Assay Kit (Pierce Biotechnology Inc.,
Rockford, IL, USA). Approximately, 80 lg of total
protein in loading dye was loaded per lane and separated
on a SDS-polyacrylamide-gel electrophoresis (15%).
Proteins were transferred to a PVDF membrane (Bio-
Rad), treated with blocking solution (Zymed Labora-
tories, San Francisco, CA, USA) and probed overnight
with either monoclonal mouse anti-bcl-2 antibody (1:400
in blocking solution; BD PharMingen, San Diego, CA,
USA) or polyclonal rabbit anti-mouse bax antibody
(1:1,000, in blocking solution, BD PharMingen). The
membranes were then washed and incubated for 1 h at
room temperature with either a 1:5,000 dilution of
horseradish peroxidase (HRP)-conjugated goat anti-
mouse IgG (Santa Cruz Biotechnology Inc., Santa Cruz,
CA) or 1:8,000 HRP conjugated goat anti-rabbit IgG
(Zymed Laboratories, San Francisco, CA, USA),
respectively. Detection was done with enhanced chemi-
luminescence (Amersham) on X-OMAT AR film
(Eastman Kodak, Rochester, NY, USA) and quantified
using the same Kodak software mentioned above.
Detection of b-actin was performed in the same fashion
by re-probing membranes with purified anti-mouse
b-actin (1:8,000, Sigma-Aldrich, St. Louis, MO, USA).
The results are expressed as the ratio of target protein
over b-actin protein expression.

Statistical analysis

All data are expressed as mean ± SD, unless indicated
otherwise. The comparisons among groups were done
using either student t test or one-way ANOVA followed
by a Bonferroni t test for post hoc analysis of signifi-
cance using Graph Pad Prism, Version 4.0 software
(GraphPad, San Francisco, CA, USA). A value of
P<0.05 was considered significant.

Results

General description

All mice tolerated surgery well and showed no signs of
intestinal obstruction at harvest. Seven days following

SBR, body weight declined significantly in both SBR
groups with a significantly higher body weight loss in the
D-SBR group compared to P-SBR (percent change from
weight at surgery: �15.5±3 vs. �9.9±3%, respectively,
P<0.01). There was no significant decline in body
weight in SHAM operated mice.

Intestinal morphometric changes

The adaptive responses after SBR are shown in Table 1.
Compared with the sham-transected group, villus height
and crypt depth were significantly increased in both
models of SBR 1 week after resection (P<0.001); how-
ever, the relative increase in villus height was signifi-
cantly higher after P-SBR than D-SBR (31±4 vs.
18±7%, respectively; P<0.001). Similarly, P-SBR re-
sulted in a greater increase in crypt depth compared to
the D-SBR group (35±5 vs. 26±8%; P<0.05).

Epithelial cell apoptosis

Enterocyte apoptosis rates were significantly higher in
ileal segments compared to jejunum. Massive SBR
caused a significant increase in EC apoptosis for both
the D-SBR and P-SBR groups compared to the respec-
tive SHAM segments (Fig. 1). Interestingly, the rates of
EC apoptosis were 2.5-fold higher in ileal segments
(SHAM-I and P-SBR) compared to jejunal segments
(SHAM-J and D-SBR).

Expression of apoptosis related genes and proteins

To investigate the mechanisms which resulted in the
differences in EC apoptotic rates, several factors in both
the intrinsic (bcl-2 family of proteins) and extrinsic
(TNF-a and Fas) components of apoptotic signaling
were studied. Results showed a significant increase in
postresectional gene expression of bcl-2 after both SBR
models compared to respective SHAM levels. Expres-
sion of bcl-2 was significantly higher after D-SBR
compared to P-SBR (P<0.01, Fig. 2). The expression of
the pro-apoptotic gene bax increased significantly after
P-SBR (P<0.05), but did not change significantly after
D-SBR (P=ns). Although bax-expression from SHAM
segments was higher in jejunal compared to ileal seg-
ments (P<0.05, Fig. 2), the bax to bcl-2 ratio was lower
after D-SBR compared to P-SBR (P<0.05, Table 2).

Western blot analysis confirmed the changes of bcl-2
and bax (Fig. 3). A significant increase in postresectional
expression of bax was only found after P-SBR
(P<0.05). However, in SHAM segments, the expression
of bax protein was consistently higher in jejunal com-
pared to ileal segments (P<0.01). On the other hand,
bcl-2 protein expression showed a significant increase in
both models of SBR compared to SHAM levels with a
significantly higher expression in jejunal than ileal seg-
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ments (P<0.01, Fig. 3). This resulted in significantly
lower bax to bcl-2 ratio after D-SBR compared to
P-SBR (P<0.01, Table 2).

Gene expression of the investigated members of the
extrinsic apoptotic pathway (TNF-a and Fas) also
showed marked segmental differences (Fig. 4). After
P-SBR there was no change in the expression of TNF-a,
but a significant increase in the expression of Fas com-
pared to SHAM-I levels (P<0.05). In contrast, when
compared to SHAM-J after D-SBR, no change in Fas
mRNA expression but a significant increase in the
expression of TNF-a was found (P<0.05). Interestingly,
at SHAM-levels mRNA expression of Fas was signifi-
cantly higher in jejunum compared to ileum and the
opposite was the case for TNF-a (P<0.01, respectively).

Discussion

This study showed that at 7 days after massive SBR in
mice there is a marked difference in enterocyte apoptosis
rates between proximal and distal small gut. A similar
difference in baseline rates of apoptosis was also

observed when looking at SHAM operated mice.
Additionally, P-SBR induced a higher morphologic
intestinal adaptive response and was associated with a
higher EC apoptotic rate compared to D-SBR. Finally,
this difference in EC apoptotic rates after different sites
of SBR may be due to the differential expression of the
members of extrinsic and intrinsic apoptotic pathways
along the proximal–distal small gut axis.

Intestinal adaptation after massive SBR is a complex
process involving numerous nutritive and nonnutritive
factors that lead to cellular hyperplasia and result in
compensatory increases in villus height and crypt depth
[1, 5, 18]. We set up our studies at 7 days postresection
because it has been shown that in rodents, by this time-
point, the majority of postresectional intestinal mor-
phologic changes have been achieved [9]. Our findings of
higher morphologic changes in the ileal segment com-
pared to jejunal segment support previous reports
showing that the ileum has a greater adaptive capacity to
intestinal resection compared to the jejunum [6–8]. This
phenomenon has been attributed to the increased load of
chyme and intestinal secretions in the ileal segment after
P-SBR. In our study, mice lost significantly less weight
after P-SBR compared to D-SBR, which also suggests a
greater adaptive capacity of ileum compared to jejunum.

Morphologic adaptation after SBR has been shown
to be driven by changes in crypt cell proliferation and
enterocyte apoptosis rates [11, 13, 21]. In the rapidly
proliferating intestinal epithelium the ratio between en-
terocyte proliferation and apoptosis is responsible for
maintenance, enhancement or loss of intestinal absorp-
tive function [22]. Cell loss in the small intestine is
mainly regulated by programmed cell death [23]. Several
studies have recently shown that EC apoptosis is in-
creased in the frame of intestinal adaptation after
P-SBR, and emphasized that bax is the major protein

Fig. 1 Changes in the overall epithelial cell apoptosis rates
(number of apoptotic cells per crypt–villus complex) at 7 days
after SBR compared to sham transection are shown. Note the 2.5-
fold higher enterocyte apoptotic rates in ileal compared to jejunal
segments. Values represent means ± SD. In each group n=7.
#P<0.05, §P<0.01

Fig. 2 mRNA expression of bcl-2 and bax at 7 days after distal
and proximal SBR compared to respective segments of sham-
transected mice. Note the significant increase in bcl-2 in both D-
SBR and P-SBR groups, as well as the significantly higher levels of
bcl-2 expression after D-SBR compared to P-SBR. Values
represent means ± SD.*P<0.05, §P<0.001

Table 1 Changes in villus height and crypt depth

Villus height (lm) Crypt depth (lm)

SHAM-J 353±24 97±10
D-SBR 431±25* 133±11*
SHAM-I 229±9 80±4
P-SBR 332±12* 121±5*

The effects of distal (D) and proximal (P) small bowel resection
(SBR) on changes in villus height and crypt depth at 7 days after
surgery compared to sham transection (in jejunum and ileum (J and
I, respectively) are shown. Values represent means ± SD. In each
group n=7*P<0.001
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that drives increased EC apoptosis after SBR [11, 24,
25]. On the other hand, others have also reported an
increased expression of Fas, another potent inducer of
apoptosis over the death receptor pathway after P-SBR
[13]. This suggests that not only the bcl-2 family but also
the members of the extrinsic apoptotic pathway are in-
volved in regulation of postresectional EC apoptosis.
Our results show that besides the significant increases in
EC apoptosis rates at 7 days postsurgery in both SBR
models, EC apoptosis rates per crypt/villus complex
were significantly higher in ileal compared to jejunal
segments. Analysis of gene and protein expression of
selected members of intrinsic and extrinsic apoptotic
pathways revealed that their expression profiles vary
greatly along the proximal–distal axis of the gut. We
found that after P-SBR, both bax and Fas gene

expression were up-regulated; and that these findings are
supported by previous studies [11, 13]. However, tumor
necrosis factor alpha (TNF-a) was the only factor found
to be up-regulated at 7 days after D-SBR. TNF-a was
also found to be up-regulated after mid-gut resection in
mice [16]. This suggests that different mechanisms may
be responsible for the regulation of apoptosis in ileal
versus jejunal sections of the intestine.

Interestingly, analysis of bcl-2 expression showed that
bcl-2 is highly up-regulated after SBR in both P-SBR
and D-SBR models. Bcl-2 is an anti-apoptotic member
of the bcl-2 family and has the capability to prevent cell
death [26]. Furthermore, mice which were bcl-2 deficient
had significantly shorter villi [27], whereas mice over-
expressing bcl-2 showed increased intestinal adaptation
compared to wild-type mice [28]. In addition, increased
ratios between the pro-apoptotic and anti-apoptotic
members of the bcl-2 family have been shown to create
an environment favoring apoptosis [25, 29]. The up-
regulation of bcl-2 after SBR, as found in our study,
may indicate a higher resistance of intestinal EC to
apoptosis during the process of postresectional intestinal
adaptation. Possibly increased levels of bcl-2 and a lower
postresectional bax to bcl-2 ratio may play an important
protective role in intestinal adaptation following SBR
(Table 2).

In conclusion, our data indicate that:

1. There are distinct adaptive responses upon SBR be-
tween proximal and distal small gut
2. Higher morphologic adaptation of ileum upon P-SBR
is associated with higher rates of EC apoptosis com-
pared to jejunum after D-SBR, indicating that increased
cell growth is associated with an increased cell death
3. There is a differential expression of apoptosis related
genes and proteins along the proximal to distal axis of
the small intestine.
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Table 2 Changes in bax to bcl-2 ratio

Bax to bcl-2 ratio
(mRNA)

Bax to bcl-2
ratio (Protein)

SHAM-J 7.8±1.6 4.6±1.4
D-SBR 1.2±0.8** 2.3±0.8*
SHAM-I 9±1.7 6.3±1.5
P-SBR 2.2±0.5** 5.3±1.8

Effects of distal (D) and proximal (P) small bowel resection (SBR)
on changes in bax to bcl-2 ratio compared to respective sham levels.
Both mRNA and protein data are shown at 7 days after surgery.
Note significant decreases in mRNA bax to bcl-2 ratios in both
SBR models and a significant decrease in protein bax to bcl-2 ratio
only after D-SBR. Values represent means ± SD. In each group
n=5–7
*P<0.05, **P<0.001

Fig. 3 Protein expression of bcl-2 and bax at 7 days after distal and
proximal SBR compared to respective segments of sham-transected
mice. Note significantly higher bcl-2 levels after D-SBR compared
to P-SBR and a significant increase in bax protein expression only
after P-SBR. Values represent means ± SD. *P<0.05, §P<0.001

Fig. 4 Alterations in mRNA expression of Fas and TNF-a at
7 days after distal and proximal SBR compared to respective
segments of sham-transected mice. Note the differential expression
of TNF-a and Fas between the different sites of resection. Values
represent means ± SD. *P<0.05, #P<0.01
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