Rheol Acta (2005) 44: 319-330
DOI 10.1007/s00397-004-0415-2

ORIGINAL CONTRIBUTION

Seung Joon Park
Sachin Shanbhag
Ronald G. Larson

Received: 8 April 2004
Accepted: 11 August 2004
Published online: 5 October 2004
© Springer-Verlag 2004

S. J. Park - S. Shanbhag

R. G. Larson (I)

Department of Chemical Engineering,
University of Michigan, Ann Arbor,
MI 48109, USA

e-mail: rlarson@umich.edu

Tel.: +1-734-9360772

Fax: +1-734-7630459

Present address: S. J. Park

Corporate Research & Development,
LG Chem, Ltd./Research Park, 104-1,
Moonji-dong, Yuseong-gu,

Daejeon, 305-380, Korea

A hierarchical algorithm for predicting the
linear viscoelastic properties of polymer melts
with long-chain branching

Abstract The “‘hierarchical model”
proposed earlier [Larson in Macro-
molecules 34:4556-4571, 2001] is
herein modified by inclusion of early
time fluctuations and other refine-
ments drawn from the theories of
Milner and McLeish for more
quantitative prediction. The hierar-
chical model predictions are then
compared with experimental linear
viscoelastic data of well-defined long
chain branched 1,4-polybutadienes
and 1,4-polyisoprenes using a single
set of parameter values for each
polymer, which are obtained from
experimental data for monodisperse
linear and star polymers. For a wide
range of monodisperse branched
polymer melts, the predictions of the
hierarchical model for monodisperse

melts are very similar to those of the
Milner—McLeish theories, and agree
well with experimental data for
many, but not all, of the branched
polymer samples. Since the modified
hierarchical model accounts for
arbitrary polydispersity in molecular
weight and branching distributions,
which is not accounted for in the
Milner—McLeish theories, the hier-
archical algorithm is a promising
one for predicting the relaxation of
general mixtures of branched poly-
mers.
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Introduction

It has long been known that rheological properties, and
therefore processing properties, of polymers are highly
affected by the degree of long-chain branches (LCB) [8,
9, 34]. It is therefore very important to detect and to
characterize LCB. While '* C-NMR and solution tech-
niques using light scattering combined with gel perme-
ation chromatography (GPC) have been widely used for
characterizing LCB, they have difficulty in detecting low
levels of LCB, which are nevertheless able to affect
drastically the rheological properties [12, 25]. Thus,
rheological methods have been developed for detecting
LCB because of its sensitivity to the presence of small
levels of LCB [1, 11, 29, 33].

Because the long-chain branching
commercial polymers, i.e., the density of branch points,
branch length, and the locations of the branches along
the polymer backbone or along the other branches, is
complicated, it is difficult to predict their effect on the
rheological properties of polymers. Recent molecular
theories for long-chain-branched polymers are based on
the idea of dynamic tube dilation (DTD), which models
the constraint release of the entangled branched poly-
mer melts as an effective widening of the tube. These
theories are able to predict the relaxation behavior of
well-defined branched polymers such as monodisperse
star, H, pom-pom, and comb polymers [2, 16-18, 20].
Despite this success, the DTD theory has been criti-
cized for its apparent lack of controlled renormaliza-
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tion at different timescales of the effective diffusion
constant of the retracting star arm [15]. In addition, the
DTD theory fails to predict some experimental findings
such as the relationship between the self-diffusion
constant and the viscoelastic terminal time of star
polymer melts and the peak of the dissipative part of
the dielectric relaxation in the terminal region [6, 32].
However, the DTD theory predicts well the stress
relaxation of various ideal branched polymers and this
motivates our interest in extending it to commercial
polymers with complex long-chain branching struc-
tures.

To describe commercial branched polymer melts,
theories of DTD developed for monodisperse polymers
must be generalized so that mixed systems can be con-
sidered that are not only polydisperse in molecular mass
but also polydisperse in branch length and branch
placement. In addition, to be most useful, the parame-
ters used for prediction of simple branched polymers
such as monodisperse star polymers should not be re-
adjusted when more complex branched structures are
modeled.

To this end, Larson [13] developed an algorithm
that generalizes the Milner—McLeish theories [2, 17-20]
to predict the relaxation of general mixtures of bran-
ched polymers; it is called the ‘“hierarchical model”
because it is based on the hierarchical character of
relaxation in branched polymers. Predictions of the
original hierarchical model showed reasonably good
agreement with experimental data for various nearly
monodisperse branched structures, and the model
could predict nearly quantitatively the relaxation
behavior of a mixture of branched and linear polymers.
However, while the original hierarchical model is based
on the Milner—-McLeish theory, its predictions for
specific systems such as monodisperse linear and star-
linear blends do not match perfectly with the predic-
tions of the Miner—-McLeish theory due to neglect of
the early-time fluctuations of arm relaxation and the
crude prefactor in the equation for late-time retraction
in the hierarchical model [13]. In addition, besides the
equilibration time 7., which is a fitting parameter in the
Milner—-McLeish theory, the original hierarchical model
needs an additional fitting parameter 7y, which is the
time constant in the prefactor of the expression for
late-time fluctuations.

In this work we modify the hierarchical model to
include the early-time fluctuations and to eliminate the
need for the additional parameter 7. We then compare
its predictions with experimental data for nearly
monodisperse 1,4-polybutadienes and 1,4-polyisop-
renes. For branched polymers, polydispersity affects the
relaxation behavior more strongly than for linear
polymers because the arm relaxation time is exponen-
tially dependent on the arm molecular weight. Thus,
the small levels of polydispersity normally obtained

even for anionically polymerized polymers can change
the relaxation behavior drastically. In this work we also
show how polydispersity in overall molecular weight
and in branch molecular weight affects the rheological
properties of branched polymers. We obtain a single set
of parameter values for each polymer by fitting data
for monodisperse linear and star polymers, and use
these parameter values to predict linear viscoelastic
data for a wide range of well-characterized branched
polymers [21].

Modifications of the hierarchical model

We modify the algorithm developed by Larson [13] as
explained below, and follow the notation used in that
paper. Figure 1 illustrates how the algorithm treats the
hierarchical relaxation of a comb-branched polymer,
which is composed of arms and backbone segments. At
short time after a small step strain, only the arms can
relax inward from their tips by early-time fluctuations
and late-time retraction. When an arm is fully relaxed, it
is conceptually pruned away and replaced by a bead at
the branch point, which schematically represents the
frictional drag contributed by that arm. Eventually the
unrelaxed molecule becomes the equivalent of an “H”
molecule. As more and more arms become completely
relaxed, the unrelaxed molecule eventually becomes a
“star”’, and finally a “‘linear”” molecule. The final relax-
ation then occurs by reptation of an effectively “linear”

comb
1 B
H
i B
star
1 B
M linear

Fig. 1 Conceptualization of algorithm for computing hierarchical
relaxation of a comb-branched polymer. See text for details
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chain, which, however, reptates slowly because of the
effective beads representing the drag produced by the
arms.

In this work, we use the following definitions for the
entanglement spacing M, and the tube diameter « [14]:
4 pRT M,

p 2 e (1)

MC = gG—gj, a = ﬁsz
where p is the density of the polymer melt, R is the gas
constant, 7T is the absolute temperature, G»° is the pla-
teau modulus, M is the polymer molecular weight, N is
the number of monomers, and b is the monomer-based
statistical segment length, defined so that Nb* = (R?),
where (R?) is the mean-square end-to-end vector of the
chain at equilibrium. In the previous paper [13], the
definition of M. was not consistent with the definition of
a because of missing the factor of 4/5 in the definition of
M.; see [14].

The arm retraction motions are divided into two
stages: the first stage consists of the early-time fluctua-
tions, which are limited to small fractional excursions
toward the branch point, and the second stage contains
the late-time, deep arm retractions, or fluctuations. For
the early-time motion, the effective entropic potential
impeding the arm retraction is very small. Thus, the
motion of the free end can be considered to be a one-
dimensional Rouse motion. In the previous paper, the
early-time fluctuations were not considered. While the
“waiting time”’ prefactor used in the original hierarchical
model can include the effect of the early-time fluctua-
tions indirectly through an empirical adjustment of its
value, for high molecular weight linear polymers, the
resulting prediction for the longest relaxation time is
much longer than that obtained experimentally. To
avoid this problem, in this work we include directly the
early-time fluctuations used by Milner and McLeish [18],
which is as follows:

Tearly(é) = %Téfesg‘f“ (2)
where S, = M,/M., with M, the molecular weight of
an arm of the star polymer and 7. the “equilibration
time”, i.e., the Rouse time of a single entanglement
length of polymer. Here ¢ is an arm coordinate that
runs from zero to unity as one moves along the con-
tour of the arm from the free end to the branch point.
The factor 225/256 in Milner and McLeish’s original
paper [18] is changed to 9/16 because of our choice of
the definition of M, in Eq. (1). In the original hierar-
chical model, the relaxation time for the late-time arm
retraction was

Tiate (&) = 10822 exp[Uesr(&)] (3)

where 7( is an additional time constant and was deter-
mined from fitting the relaxation time of monodisperse

star polymers. U, is the effective potential for the arm
retraction. Thus, the prefactor of the late-time equation
in the original hierarchical model was independent of the
arm coordinate &.

The late-time arm retraction time can be obtained
from a first-passage time calculation of the diffusion
over a barrier (Milner and McLeish [18]):

, & ¢
&) = [ 4/ explUaal@)] [ 4" expl-Uan(&)
0 —0

(4)

where L is the contour length and Dy is the effective
curvilinear diffusion constant of the retracting arm in
the tube. (The lower limit of - on the inner integral
allows outward, as well as inward fluctuations of the
primitive path). Milner and McLeish have used a more
refined prefactor than Eq. (3) for the arm retraction of
a star polymer by approximating Eq. (4) as follows [18,
21]:

5 1/2
Tate($) = Tesj/z <€>

exp[Uer(£)]
2/(a+1) 12
-0 ()2

where I' stands for the gamma function and « is the
dilution exponent in the dynamic dilution theory.
While we can derive the analytic form of the effective
potential and the prefactor in specific systems such as
monodisperse stars, star-linear blends, H, and comb
polymers [2, 17, 18, 20], it is very difficult to obtain
the effective potential analytically for general mixtures
of branched polymers. In the original hierarchical
model, calculation of the effective potential was not
necessary because the time integration only required
the differential form of the potential, which could be
obtained from the instantaneous concentration of un-
relaxed melts, ®(¢7) (see Eq. (10) in the previous paper
[13]). This permitted the hierarchical model to deal
with general mixtures of branched polymers. However,
if the early-time fluctuations are included, we need to
calculate the effective potential at every time step in
order to construct the crossover equation that splices
together the early-time fluctuations and the late-time
retraction.

Here we calculate the effective potential for the arm
retraction from the general formula:

(5)

Uaar(¢) = / 28,B(&) d¢ (6)
0
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where v=3/2. The value v=15/8 in Milner and McLe-
ish’s original paper [18] and in the previous paper [13] is
changed to 3/2 because of our choice of the definition of
M. in Eq. (1). At each time step we calculate the unre-
laxed volume fraction ® (&’), using the arm coordinate &
as follow:

m ”d l

ny (1)
Z Z¢ 7] 1_ (ivjvt))+z¢b(i,j)]
j=1

where m, n, (i), and ny, (i)=n, (i)—3 are the number of
molecules, the number of arms, and the number of
backbone segments, respectively, for molecule i. ¢,(i,))
and ¢y(i,j) are the volume fractions of arm and back-
bone segment for molecule i. Note that at any time ¢, the
new information needed to compute the value of the
potential needed at that time step, namely ® (& (7)), is
available from the above equation. The above sums only
include arm and backbone segments that have not
completely relaxed at time ¢.

There has been much discussion about which value of

e ““dilution exponent,” a=1 or a=4/3, is the more
suitable one. In the original version of the hierarchical
model [13], «=1 was used for the dilution exponent. In
this work, however, we use «=4/3 because we have re-
cently shown that the value of M. obtained from a best-
fit of viscosity of both linear and star polymers is closer
to the value determined from the plateau modulus in the
case of «=4/3 [21]. In the modified hierarchical model,
the integration in Eq. (6) for the effective potential
is performed numerically at every time step, and the
late-time arm retraction is then calculated directly
from the numerical integration of Eq. (4) with
L?/Degy=(3/2)n°S,*t.. Thus, the modified hierarchical
model does not need the fitting parameter z,.

In calculating the relaxation spectrum of an arm, we
need the crossover equation between the early-time and
the late-time functions. To obtain this, we use the
equation developed by Milner and McLeish [18], which
is

Tearly(é) eXp [Ueff(é)]

I+ Tearly(é) eXP[ eff( )]/Tlate(é) (7)

Ta(é) =

At any time ¢, the arm will have relaxed from its free
end to a point ¢ obtained by equating t, with ¢; hence

Tearly(é) exp[Ueff(é)] (8)
1+ Tearly(é) exp[Ueff(é)}/Tlﬁte(é)

The incremental increase in ¢ is related to the incre-
mental increase in At through a differential form of Eq.
(8). The new value of & is calculated as follows:

At
dry/d¢

t=1,(¢) =

Sold + 53 )

fnew

In this work we use time steps that are equal intervals in
time instead of in the logarithm of time, as used in ori-
ginal model, because here we include the early-time
fluctuations, which can only be calculated accurately if
the time step remains small throughout the integration.
(The early time fluctuations affect relaxation even at late
time because of the cross-over formula, which is used
throughout the calculation).

To account for the sudden decrease of the unrelaxed
volume fraction after the reptation time of any linear
chains in the mixture, the hierarchical model includes
“supertube relaxation” by using a function ®gt, which is
defined as [20]:

P —1/2a
Dst = Ds10 (-)
A

where ¢, is the time at which supertube relaxation is
activated and ®gr is the volume fraction of the un-
relaxed material just before the sudden relaxation by
reptation occurs. In the original hierarchical model,
however, the arm was allowed to relax during the
constraint-release Rouse process. The result of this
assumption was that the predicted relaxation time was
much shorter than that of experimental data in blends
of linear and star polymers. In this work, we follow
the Milner—-McLeish theory [20], where the arm
relaxation is not allowed during the constraint-release
Rouse process.

The storage and loss moduli G” and G” are calculated
by using

1
G (o) _/ w’*t?
G / 1 + w?f?

(10)

[@sr(1)]"d (1)

+“/%‘D(f)@sﬂt)]“_'dd)sﬂt) (11)
0
GN /1 212 (I)ST )]adq)(t)
0
+ “/#Ciztzq’(’)[@sﬂt)]md@m(t) (12)

0

where ®(7) and Dgr(f) are respectively the unrelaxed
fraction and the supertube fraction at time ¢ during the
relaxation.

All calculations have been carried out on a PC wtth
a Pentium III 1 GHz CPU. The computational time
required for the new hierarchical model is much
greater than that of the old hierarchical model because
in the new model the integration of Eq. (6) to obtain
the effective potential is carried out at each time step
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and uses a linear time step instead of the logarithmic
one used in the old hierarchical model. However, the
typical computational time for polydisperse H- and
comb polymers is less than 5 h.

Results and discussion

Comparison between the hierarchical model
and the Milner—McLeish model

In this work we choose 1,4-polybutadienes and 1,4-
polyisoprenes as model polymers, because for these
polymers we can find suitable rheological data in the
literature all at the same, or nearly the same, tempera-
ture for several different architectures and molecular
weights. The parameters needed in the hierarchical
model are the plateau modulus G»°, the entanglement
spacing M., and the equilibration time t.. The value of
G, is obtained from Fetters et al. [5] for polybutadiene
and from Pearson et al. [23] for polyisoprene. The value
of M, can be calculated from the value of G»° using Eq.
(1). The value of 7. is related to the monomeric fric-
tion coefficient { and tube diameter a by re=Ca2Me/
3n° Mok T, where M, is the monomer molecular weight.
Therefore, in principle, we can obtain the . value from
the literature values of the tube diameter and the
monomeric friction coefficient [3]. We note, however,
that the value of { is often based on data from the
transition region, and might not be accurate for calcu-
lation of slow relaxation processes. In addition, the
theory for branched polymers is very sensitive to the
values of M. and t.. Thus, in this work, we choose M,
and 7. values from the best-fits of zero-shear viscosities
of linear and star polymers using the Milner—McLeish
theory. For polybutadiene we use G»°=1.15x10° (Pa),
M.=1650 and 17.=3.7x10"" (s) at T=25 °C. Compari-
son between model predictions using these parameter
values and experimental data of polybutadiene is re-
ported in Park and Larson [21].

For polyisoprene we use G°=0.44x10° (Pa),
M.=4054, and 1.=1.0x10"T=25 °C. Figure 2 shows
the zero-shear viscosities of linear and star polyiso-
prene [Fetters et al. 4, 10]. The lines are the predic-
tions of the Milner—McLeish theory [18, 20]. The
Milner-McLeish theory predicts experimental zero-
shear viscosity well. While in the case of polybutadiene
the value of M.=1650 obtained by best-fitting is
slightly higher than the value (M.=1543) calculated
from the value of G, for polyisoprene we can use the
value M.=4054 obtained using Eq. (1) and the
experimental value of GNP, to fit the zero-shear vis-
cosities of both linear and star polymers. In this work
for each polymer we will use the same parameter
values for all hierarchical model predictions of the
rheology of all architectures.
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Fig. 2 Zero shear viscosity vs. molecular weight of 1,4-polyisop-
renes at 7=25 °C for a linear and b star polymers. The symbols are
experimental data from Gotro and Graessley [10] and Fetters et al.
[4]. The lines are the prediction of the Milner—McLeish theory
[18, 19]

In Fig. 3 we compare the predictions of the Milner—
McLeish theory and of the hierarchical model for the
zero-shear viscosities of polybutadiene monodisperse
stars using the same parameter values [24, 26, 27, 31]. The
dotted line is the prediction of the Milner—McLeish the-
ory and the solid line is the prediction of the hierarchical
model. Here and hereafter the term “hierarchical model”
refers to the modified version of the theory presented in
this paper, not the early version of the theory. As shown
in Fig. 3, the prediction of the hierarchical model is al-
most the same as that of the Milner—McLeish theory and
matches well the experimental zero-shear viscosities of
monodisperse stars. We note that while the Milner—
McLeish theory uses the approximate form of the first-
passage time equation for the late-time retraction, its
predictions are very similar to those of the hierarchical
model, in which the first-passage time equation is
calculated by numerical integration.
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Fig. 4 Storage and loss moduli of bidisperse 1,4-polybutadiene
linear melts containing molecular weight 36,800 (M) and 168,000
(M>) mixed at various long-chain volume fractions (¢,) at
T=25°C. The symbols are experimental data from Struglinski
and Graessley [30]. The dotted lines are the predictions of the
Milner—McLeish theory [22] and the solid lines are the predictions
of the hierarchical model

In Fig. 4 we compare the model predictions of the
Milner—McLeish theory [19, 22] (dotted lines) and of the
hierarchical model (solid lines) with experimental data
from Struglinski and Graessley [30] for the storage and
loss moduli of linear—linear blends with long-chain vol-
ume fractions of 0, 0.1, 0.3, 0.5, 0.7, and 1.0. Since the
original Milner—-McLeish theory [19] was developed only
for monodisperse linear polymers, here we use the

extended version of Park and Larson [22] for the bidis-
perse linear—linear blend. As shown, the model predic-
tions are in good agreement with experimental data.
When the early-time fluctuations are included in the
modified hierarchical model, the model overpredicts the
low-frequency G’ data for the pure high-molecular-
weight component, while the Milner—McLeish theory for
monodisperse linear polymers predicts this behavior
more accurately. The Milner—McLeish theory for linear
polymers does not include a cross-over to the late-time
retraction, while the hierarchical model includes the late-
time retraction even for monodisperse linears, because it
was developed to deal with general mixtures of branched
polymers, and so the same relaxation mechanisms are
applied to all chain ends, whether they are the ends of
linear molecules or of branches. If we were to consider
only the early-time fluctuations, the hierarchical model
predictions could be improved for linear polymers.
However, in principle, there appears to be no reason not
to include the late-time retraction in the relaxation of
linear polymers, even though this inclusion worsens its
predictions of data for linear polymers [35].

The experimental data of Struglinski et al. [31], and
the corresponding model predictions of the hierarchical
model (solid lines) and the Milner—McLeish theory [20,
21] (dotted lines) for the loss modulus are shown in
Fig. 5 for star-linear blends with star volume fractions
of 0, 0.2, 0.5, 0.75, and 1.0. As shown, the hierarchical-
model predictions are very similar to those of the
Milner—McLeish theory. While the hierarchical model
predictions are not perfect for monodisperse linear
polymers, the hierarchical model can capture the
relaxation behavior of star-linear blends very well
without adjustment of parameter values. We note that
in the previous version of the hierarchical model [13],
the predictions in the terminal region did not agree well
with experimental data because arm retraction was
allowed during the constraint-release Rouse motion.
The agreement of the predictions of the modified
hierarchical model with experimental data for linear
and star polymers shows that the modified model can
predict the relaxation of linear and star polymers and
their blends nearly as well as does the Milner—McLeish
model.

Branch point motion

In the case of H and comb polymers, the arms are at-
tached to a backbone. The backbone can relax after the
arms have completely relaxed. In the relaxation of the
backbone, most of the effective friction is concentrated
at the branch points. Thus, to obtain more accurate
theoretical predictions, the diffusivity of the branch
point should be considered, and this is related to the arm
retraction time as follows:
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blends containing linear molecules of molecular weight 100,000
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various star volume fractions (¢,) at T=25 °C. The symbols are
experimental data from Struglinski et al. [31]. The dotted lines are
the predictions of the Milner—McLeish theory for star-linear blends
[20] and the solid lines are the predictions of the hierarchical model

p2a2

- 2q7,

Dy, (13)
where p is a numerical constant, a is either the undilated
or the dilated tube diameter (more on this below), ¢ is
the number of dangling arms from each branch point,
and 7, is the arm retraction time. McLeish et al. [17]
compared theoretical predictions with experimental data
for polyisoprene H-polymers using a fitted value p*>=1/12
because there is an uncertainty in the mean hopping
distance of a branch point. In their calculation, the di-
lated tube diameter was used in defining the branch
point diffusivity. Daniels et al. [2] extended the theory of
McLeish et al. [17] to polybutadiene comb polymers.
Frischknecht et al. [7] applied the theory of McLeish
et al. [17] to polyisoprene asymmetric stars, in which one
branch is shorter than the other two equal-length
branches. They showed that to obtain agreement with
experimental data, the value of p® must be adjusted
separately for each asymmetric star. McLeish et al. [17]
considered the effect of polydispersity on the terminal
relaxation time of an H-polymer and argued that poly-
dispersity increases the terminal relaxation time. How-
ever, recently Shanbhag and Larson [28] showed, using a
slip link simulation, that the terminal relaxation time of
a polydisperse H-polymer is shorter than that of a
monodisperse H-polymer of the same weight-average
molecular weight.

In this work we test the hierarchical model against
data for polyisoprene asymmetric star, H, and polybu-
tadiene comb melts, and examine the effect of polydis-
persity on their terminal relaxation behavior [2, 7, 17].

Table 1 Molecular characterization of polyisoprene asymmetric
star polymers [7]

Polymer sample M, long arm M, short arm M, /M, star
ASI11 1.07x10° 1.15x10* 1.02
AS17 1.16x10° 1.90x10* 1.01
AS37 1.07x10° 3.90x10* 1.01
AS47 1.10x10° 4.00x10* 1.02

Table 2 Molecular characterization of polyisoprene H-polymers
[17]

Polymer sample M, My, My /M, MM,
backbone  arm backbone arm

H110B20A 1.11x10° 2.00x10*  1.13 1.01

H160B40A 1.64x10° 4.00x10*  1.30 1.05

Table 3 Molecular characterization of polybutadiene comb poly-
mers [2]

Polymer M, M, My /M, My /M, Number
sample backbone arm backbone arm of arms
PBC3 1.25x10°  1.77x10*  1.06 1.01 49
PBC5 6.39x10*  1.19x10* 1.06 1.04 8.6
PBC7 6.14x10*  2.27x10* 1.03 1.07 8.4
PBCI1  6.27x10*  5.80x10° 1.03 1.03 8.2

The molecular weights of the arms and backbones of
these polymers are given in Tables 1, 2 and 3. In the
original hierarchical model p* was set to unity, and the
undilated tube diameter was used in defining the branch-
point diffusivity. The proper choice of tube diameter to
be used in the definition of the branch point diffusivity
has been discussed extensively [2, 7, 16, 17]. Frischkn-
echt and Milner [6] found that self-diffusion data for
hydrogenated polybutadiene star melts are more con-
sistent with diffusive hops distances that scale with the
undilated, rather than the dilated tube diameter. In this
work we use the undilated tube diameter, and take
p>=1/12 for the calculation of the branch point diffu-
sivity.

Asymmetric star polymers

The storage and loss moduli of polyisoprene asymmetric
stars from Frischknecht et al. [7] are shown in Fig. 6.
Here and in what follows, the solid lines are the pre-
dictions of the hierarchical model for polydisperse
polymers and the dotted lines are those for monodis-
perse ones, unless otherwise stated. In the hierarchical
model, the effect of polydispersity is accounted for by
generating an ensemble of molecules to represent the
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Fig. 6 Storage and loss moduli of polyisoprene asymmetric stars at
T=25°C. a AS11, b AS17, ¢ AS37, d AS47. The symbols are
experimental data from Frischknecht et al. [7]. The solid lines and
the dotted lines are the predictions of the hierarchical model with
monodisperse and polydisperse arms molecular weights, respec-
tively

molecular weight distribution and then simulating the
relaxation of a melt of chains from this ensemble. In this
work we have used 1000 molecules for the hierarchical
model calculations. Runs with 2000 molecules give
nearly the same results. Since for the asymmetric stars
only the overall polydispersity was reported, and not the
polydispersity of each arm separately, for the prediction
with polydispersity, we choose each arm from a log-
normal distribution having M, /M,=1.06 and combine
the three arms randomly to make 3-arm asymmetric star
polymers with an overall polydispersity of around 1.02,
which is close to the reported value. As shown, the
predictions with polydispersity are similar to those for
the monodisperse predictions. This is consistent with the
argument of Frischknecht et al. [7] and the slip-link
simulations (Shanbhag and Larson 28] for the asym-

Frequency (1/s)

metric star. While Frischknecht et al. [7] found that the
value of p? needed to be adjusted to give agreement with
experimental data for each asymmetric star, our hier-
archical model predictions are in reasonable agreement
with experimental data using the same value of p?, ex-
cept for the sample with the shortest arm, AS11. Because
the hierarchical model is similar to the theory of Fris-
chknecht et al. [7] the better predictions obtained by the
former are due to the different choice of model param-
eters. Frischknecht et al. [7] chose values of model
parameters from fitting data for the symmetric star and
linear chain, namely G»°=0.49x10° (Pa), M.=3641,
and 7. =8.9x107°. Because of the factor of 4/5, the value
of M.=4551 used by Frischknecht et al. [7] differs from
the value M.=3641 in our calculations. (The parameters
used by Frischknecht et al. [7] do not predict correctly
the experimental data of the monodisperse stars). If we
use the same parameter values used by Frischknecht
et al. [7] in the hierarchical model predictions, we find,
as did Frischknecht et al. [7], that good fits are only
obtained if we adjust the value of p* separately for each
melt.
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H-polymers

Figure 7 shows a comparison between hierarchical model
predictions and experimental data for polyisoprene H-
polymers from McLeish et al. [17] The insets in Fig. 8
contains the predictions of the theory of McLeish et al.
[17] for H-polymers, where we used the undilated tube
diameter in defining the branch point diffusivity. The
parameter values we used for the H-polymer predictions
are the same as those for asymmetric stars. The ensemble
of polydisperse H-polymers were generated using the
same method as employed for the polydisperse asym-
metric stars, except that both arm and backbone poly-
dispersities were reported for these polymers and so
ensembles of both arms and backbones were generated
with log-normal molecular-weight distributions to match

(a) 108
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Fig. 7 Storage and loss moduli of polyisoprene H-polymers at
T=25°C. a H110B20A, b H160B40A. The symbols are experi-
mental data from McLeish et al. [17]. The solid lines and the dotted
lines are the predictions of the hierarchical model with monodis-
perse and polydisperse arm and backbone molecular weights,
respectively. The insets are the predictions of the theory of McLeish
et al. [17]

these polydispersities and then arms from the former
ensemble were attached to backbones from the latter
ensemble. As shown in Fig. 7, the hierarchical model
predicts the experimental data well. These results show
that the hierarchical model can predict the relaxation
behavior of H-polymers without adjustment of the
parameters from the values used for the linear and star
polymers.

While in the case of H110B20A, where the arm
polydispersity is very small and the predictions with
polydispersity are very similar to those without it, for
H160B40A, inclusion of polydispersity leads to better
agreement with experimental data than does monodis-
persity. However, as shown in the inset of Fig. 7(b), the
polydispersity correction developed by McLeish et al.
[17] worsens the predictions, relative to the monodis-
perse calculation for H160B40A. For an H-polymer, the
effect of the backbone polydispersity on the terminal
relaxation time is small compared to the effect of the arm
polydispersity, but the terminal relaxation time of an H-
polymer having polydisperse arms is shorter than that of
a monodisperse H-polymer with the same weight aver-
age arm and backbone molecular weights as that of the
polydisperse H. While the decrease of the terminal
relaxation time predicted by the hierarchical model for a
polydisperse H-polymer is not as drastic as predicted by
the slip-link simulations of Shanbhag and Larson [28],
the result is qualitatively consistent with their prediction.
On the other hand, the polydispersity corrections of
McLeish et al. [17] and Frischknecht et al. [7] for H-
polymers result in an increase of the terminal relaxation
time, the opposite of which is predicted by the hierar-
chical and the slip-link models. Shanbhag and Larson
[28] argued that the diffusivity of the most mobile
branch point of H-polymer can be approximated by

2 2 4

Dbr ra ZTL

i=1 &l

(14)

where iis an index that distinguishes the four arms. Thus,
Dy, 1s greatly increased if any one of the four arms is short
and is only moderately decreased by the presence of longer
arms. Because the perturbation argument used by
McLeish et al. [17] and Frischknecht et al. [7] to explain
the effect of polydispersity in H-polymer is a mean field
approach, it is unable to account properly for the
“acceleration” that short branches can induce in the dif-
fusive motion of the backbone. The slip-link model views
an entanglement between two chains in a melt as a slip link
that permits a sliding motion of both chains, and survives
only as long as neither chain has an end that passes
through the slip link. Thus, constraint release caused by
relaxation of surrounding chains can be captured using
creation and destruction of slip-links. The slip-link model
offers insight into the drawbacks of the current analytical
theory for branched polymers, in which the mobility of the
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Fig. 8 Storage and loss moduli of polybutadiene combs at
T=25°C. a PBC3, b PBCS5, ¢ PBC7, d PBCI11. The symbols are
experimental data from Daniels et al. [2]. The solid lines and the
dotted lines are the predictions of the hierarchical model with

branch point is set by the first passage time in a dilating
tube. Thus, the slip-link model can in some cases predict
the relaxation of branched polymers more accurately than
an analytical model such as the hierarchical model.
However, the computational time required for simula-
tions with the slip-link model is much larger than that of
the hierarchical model. For example, for the comb poly-
mers considered in this paper, the computational time for
the slip-link model is longer than 1 month, vs a few hours
with the modified hierarchical model.

Comb polymers

In Fig. 8 we compare the predictions of the hierarchical
model with experimental data for polybutadiene combs
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from Daniels et al. [2]. Daniels et al. divided the combs
into two groups, i.e., combs with a small and large
numbers of arms, and used correspondingly different
early-time equations and reptation-time expressions for
the backbones of the combs. However, the reptation
time for the backbone of a comb with a large number of
arms (see Eq. (16) in the paper of Daniels et al.) is not
correct because it is made proportional to the third
power of the number of entanglements in the backbone,
rather than of the second power as it should be, because
most of drag is contributed by the branch points. Dan-
iels et al. [2] correctly estimated the relaxation time of a
comb polymer using t, Ly>/Dgr, where Ly is the back-
bone length and Dy is the drag of the reptation. How-
ever, for comb polymers, most of drag is contributed by
the branch point, so that Dg ~ p*a*/2¢T..m Where ¢ is the
number of arms and 7,., is the relaxation time of arm. If
we neglect the drag contributed by the backbone, we
obtain the result 74 o< qu2 instead of 74 =< L;,’, where the
latter result would be obtained if friction from the
backbone material were more important than the drag
due to the arms.
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In the hierarchical model, the expression for the
reptation time is the same in both cases of large and
small numbers of arms. As shown in Fig. §, the hierar-
chical model can predict a priori the qualitative shapes
of the curves of G’ and G” for combs. The theory of
Daniels et al. [2] cannot predict the relaxation behavior a
priori for the comb polymers, but rather the values of
the molecular weights and polydispersities of both arms
and backbones are adjusted for each polymer to obtain a
fit to the data.

The hierarchical model predictions for polydisperse
combs are generated using the method explained in the
previous paper [13]. Briefly, we allow the arms and the
backbone to be polydisperse with a log-normal distri-
bution. The longer backbones contain on average more
arms than do shorter ones, i.e., the number of arms
follows a Poisson’s distribution. For comb polymers, the
effect of the polydispersity is complicated because the
molecular weights of the backbone segments and of the
arms and the positions of branch point are not uniform.
Unlike the case of the H-polymer, for comb polymers
the hierarchical model predictions do not show quanti-
tative agreement with experimental data even though the
polydispersities are included. However, considering that
the parameter values obtained from the monodisperse
linear and star polymers are not adjusted at all in the
predictions for comb polymers and considering the
experimental uncertainty in the molecular weight of the
arms and backbones and in the number of branches, the
predictions of the hierarchical model are qualitatively
good.

Conclusions and future directions

The hierarchical model presented by Larson [13] is
modified to give more quantitative agreement of its
predictions with experimental data for long-chain

branched polymers. For 1,4-polybutadienes and 1,4-
polyisoprenes, the model predictions are compared with
experimental linear viscoelastic data for branched
polymers of various structures using a single set of
parameter values, which are obtained from fits to
experimental data for monodisperse linear and star
polymers. The predictions of the hierarchical model are
in good agreement with experimental data for linear/
linear and star/linear blends, nearly as good as the pre-
dictions of the Milner—McLeish theories. While the
model can capture the general trend of the relaxation
behavior of asymmetric star, H- and comb polymers, its
predictions do not completely match the experimental
data, especially for comb polymers. Nevertheless, con-
sidering that a single parameter set has been used for all
theoretical predictions for a given polymer chemical
type, we can still conclude that the hierarchical model is
very promising as a tool for predicting the relaxation of
general mixtures of the branched polymers.

The most important issue that remains to be solved
in the theoretical modeling of the relaxation of bran-
ched polymers is how to deal with the motion of the
branch point in a more satisfactory way than has been
accomplished so far. Since most of drag for backbone
relaxation is contributed by the branch-point motion,
an accurate description is essential for quantitative
prediction. The existing theories treat branch-point
motion as a series of “hops” in either undilated or
dilated tubes, but use an empirical prefactor (p*=1/12)
which is obtained by data fitting. More microscopic
modeling and additional quantitative experimental
studies on relaxation of well-defined multiply branched
polymers will be required to develop a more satisfying
theory.
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