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Abstract 

This paper describes an approach to the analysis of the input- 
output relationships present in a neuron pool that receives a number 
of inputs. These inputs consist of primary inputs to the neuron pool 
and inputs resulting from feedback of information from the neuron 
pool as well. Multiple input-output relationships are obtained in 
terms of the synaptic weightings of the inputs, the membrane response 
characteristics of the neurons and the conduction delays on the feed- 
back pathways, y = (I + M H D ) - 1  . M F x  is the explicit representation 
of the cell pool behavior assuming quasi-linear conditions, where y 
is the output vector of cell responses, I is the identity matrix, M is 
the response matrix of the cells, H is the feedback synaptic weighting 
matrix, D is the delay matrix, F is the input weighting matrix, and x 
is the input vector. It is shown that a solution to this formulation 
exists, is unique, is stable, and can be computed by specified 
algorithms. An insight gained from this formulation suggests that 
the output of each cell in the pool is related to virtually all of the 
inputs to the pool and the outputs of all cells in the pool. 

1968; Mendell and Henneman, 1971 ;. Whitehorn et al., 
1972; and Johnson, 1974). 

Many studies have characterized neural behavior 
using linear transfer functions. This is appropriate 
under small signal or quasi-linear conditions. It seems 
clear that one thrust in theoretical neurophysiology 
should be in the direction of a detailed treatment of the 
input-output characteristics of populations of sensory 
motor neurons with the aim of deriving appropriate 
transfer functions to describe their behavior, as 
expressed in Cohen (1973). 

In this paper we depart from previous work where 
the transmission of information through successively 
cascaded relay nuclei has been considered and ap- 
proach the problem of multiple pathway feedback on a 
parallel bundle of relay cells. 

1. Introduction 

During the 1960's the coincident development of 
the electronic digital computer as a laboratory tool and 
sophisticated microelectrode recording techniques 
resulted in intensive study of the response properties 
of single neurons in a wide variety of systems: More 
recently interest has been shown in the mathematical 
details of dynamic response properties of populations 
of neural elements (Williams, 1968, 1969, 1972; Cogg- 
shall and Bekey, 1970; Williams and Heetderks, 1973; 
and Coggshall, 1973). 

For many years the work of neurophysiologists has 
reflected an interest in cataloging the properties of 
neurons as means of placing them into distinctive 
functional categories. Recent experimental neuro- 
physiology has also been addressed to the population 
response of groups of neurons, but on a single neuron 
analysis basis (Henneman, Somjen and Carpenter, 
1965 a, 1965 b; Carpenter and Henneman, :1966; Towe, 
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2. Formulation 

For this initial effort we will assume an overly 
simplified model so that the central results that develop 
can be examined without the confusion of undue detail. 
Extension to more complex formulations can then 
follow from these results. 

There are a number of good studies of synaptic 
physiology in the literature. For the purposes of this 
report we mention three papers that present a com- 
prehensive review of this area (Rall et al., 1967; Stevens, 
1968; Kuno, 1971). The conclusions one might draw 
from these reports can be briefly summarized as 
follows: The transmission between presynaptic and 
postsynaptic neurons is quantal in nature, but in general 
the postsynaptic effects of the quanta sum linearly to 
produce the changes in membrane potential and, 
indeed, the effects of m a n y  presynaptic inputs to a 
neuron sum linearly to produce a change in membrane 
potential that is close to a linear weighted sum of the 
inputs. It seems that, in spite of the exceedingly complex 
machinery of synaptic transmission, we can as a first 
approximation represent a neuron as a slightly noisy 
linear summer of multiple inputs. We should add some 
linear membrane dynamics as well, perhaps of the 
form te  -~ as suggested by Rallet al. (1967). 
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We next assume that the "output" of each neuron 
is a weighted sum of the inputs including the various 
feedbacks that impinge on the particular neuron of note. 

If it is necessary to invoke Dale's Law and insist 
that a given neuron can have only inhibitory or ex- 
citatory effects exclusively we will consider all neuron 
outputs to be excitatory and to insert an reverting 
interneuron to produce inhibitory feedback. The ad- 
ditional synaptic delay added by the interneuron will 
be lumped into the total latency of the compound fiber. 

We will assume that each neuron in the pool pro- 
duces a response that is the low pass filtered and re- 
encoded version of the weighted sum of its "inputs". 
In doing this we ignore the fine structure of the spike- 
to-spike firing pattern of the cell and assume that the 
signal of interest, y(t) ,  is carried by a modulated point 
process. It has been shown by Knox (1970) and McKean 
et  al. (1970) that the signal can be recovered without 
distortion by low pass filtering the modulated point 
process which has a Poisson counting function and is 
modulated by periodic signals. Yin (1973) has extended 
this to more generalized modulation conditions. 

A given cell response results from the summation 
of a number of input spike trains. This tends to produce 
an output process that converges to a point process 
with a Poisson counting function almost regardless of 
the statistics of the constituent input spike trains. This 
has been confirmed specifically by Yin (1973) in his 
studies of thalamic responses to joint motion. 

We propose, therefore, at least in certain specific 
cases, that the output of a given cell can be considered 
to be a signal term accompanied by a noise term, 
inherent in the nature of the point process that is carry- 
ing the signal. The noise term can be considered to be 
injected into the cell output and summed with the 
signal. The noises associated with each cell output are 
assumed to be independent. We will assume that the 
effect of the noise terms on the behavior of the system 
can be ignored at present by the virtue of two as- 
sumptions: 1. Since the summated noise terms add 
incoherently and the signal terms tend to add coherent- 
ly the signal-to-noise ratio increases on the average by 
1~,  where n is the number of inputs to the cell; 2. The 
assumptions of linearity allow us to assume that the 
total response at any point is the sum of the noise and 
signal contributions (superposition). 

To describe this situation more succinctly consider 
Fig. 1. The variables x~ . . . . .  x, represent a set of inde- 
pendent external stimuli acting on the cell pool. The 
block labeled H represents the mixing of external 
signals with signals generated by the ceU's response to 
stimuli. The block labeled D represents the various 
delay times of individual cell fibers. The block labeled 
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Fig. 1. A neural population with feedback 

M represents the response characteristic of the cell 
membrane. 

The conceptual model of Fig. 1 must be sharpened 
somewhat before the analysis can proceed. In our study 
we shall invoke the following assumptions. 

First the signal mixing block is linear. More 
explicitly we assume that there exist matrices with 
typical elements hij(t  ) and f l j ( t )  such that 

ui(t) = ~ =1 ( f  i~(t)xj(t) - hl j ( t )yj( t  - "c j ) ) .  (1) 

Using vector notation: x ( t ) =  (x~(t),  . . . ,  x , ( t ) ) ,  y ( t -  z ) =  

(yl(t - -  Z'Z) . . . . .  yn ( t - -  Z,)) and u(t) = (ul ( t )  . . . . .  u,(t)).  Equa- 
tion (1) can be written in vector matrix form 

u(t) = F( t ) x ( t )  - H ( t ) y ( t  - z) . (2) 

Secondly we assume that D is a multivariate linear 
array of delay lines, that is 

y( t  - z)  = (Dy)( t )  = (Yl(t - z) . . . . .  y , ( t -  %)) .  (3) 

Finally the behavior of the cell membrane, modeled 
by M, is taken to be linear. One acceptable form for M 
is that of a time varying filter namely 

y(t)  = (Mu) ( t )  = S~o M ( t ,  fl)u(fi)dfl (4) 

where 2~/is a matrix valued impulse response function. 
In the following section we take up the analysis of 

the system described by Eqs. (2), (3), and (4). Attention 
is focused on techniques for determining existence, 
uniqueness, and stability of solutions to these 
simultaneous equations and computational methods 
for iterating to the solution. In so doing some recent 
system theoretic results are brought to bear. 

3. Analysis 

Using the vector-matrix notation of Eqs. (2), (3), 
and (4) we have 

y = M ( F x  - H D y )  

or invoking the linearity of M and H we have 

y § M H D y  = M F x .  (5) 



For example with M, H, and D computed as before, 
Eq. (5) is a family of n equations whosej th member is of 
the form 

yj(t) + ~ , t =  1 ~to f/l  jk(t, fi)hkl(fi)Yl(fi-- zz)dfl 

= 2~,/= 1 ~ 2~ljg(t, fi)fu(fi)xl(fi)dfi t >= 0 (6) 

Notice that in this model we tacitiy assume y(0)=0. 
Equation (5) points out that analysis of the neuron 

pool is intimately related to inversion of the operator 
I + M H D .  Indeed if this operator is invertable then 

y = (I + M H D ) -  t .  M F x  (7) 

is an explicit representation of the cell pool behavior. 
Our cell pool analysis then leads naturally to the 

question as to properties of M H D  such that a solution 
to Eq. (5) exists, is unique, is stable, and can be com- 
puted by specified algorithms. The analysis of such 
questions has a rich history in the technical literature. 
We cannot hope to do justice to the many authors who 
have labored in this vineyard, however, there are a 
number of significant introductions to the underlying 
analytic machinery available at this writing (Brockett 
and Willems, 1965; Damborg and Naylor, 1970; 
DeSantis and Porter, 1974; DeSantis, 1971; Minty, 
1964; Porter, 1966, 1971; Sandberg, 1964; Willems, 
1971; and Zames, 1966). 

Our attention is focused on using the recent results 
embodied in studies by DeSantis and Porter (1974) and 
DeSantis (1971). These studies utilize the structure of 
the abstract Hilbert resolution space. We shall interpret 
the abstract result in the present setting omitting the 
details of this transition for both brevity and 
readability. 

The key result in its abstract form is summarized 
in the following lemma (DeSantis and Porter, 1974). 

Lemma 1 

If T is a bounded linear strictly causal operator on 
a Hilbert resolution space then the I - T  is invertable 
and the inverse is computed by the uniformly con- 
vergent series 

(I - T ) - I  = ~ L  o Ti.  

Here T ~  T I = T ,  T Z = T  �9 T, and T " = T .  T "-1.  
Returning now to the operators of Eqs. (2), (3), and 

(4) consider the finite interval [0, k] = {0_-< t =< k}. Then 
the following assumptions and conclusions can be 
brought to bear. 

Assumption I 

Suppose each h~j of Eq. (1) is bounded and sectional- 
ly continuous on [0, k]. Then the map H is bounded 
and causal. 
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Assumption 2 

Suppose that z j > 0 j - -  1 . . . . .  n in Eq. (3). Then D is 
bounded and strictly causal. 

Assumption 3 

Suppose h/ljk(t, f l )=O if f i > t  and that 
Mjk(t, fi)dtdfl < ~ all j, k then M is bounded and 

causal. 

Proposition 1 

If H, D, and M satisfy Assumptions 1, 2, and 3 
respectively then M H D  is bounded linear and strictly 
causal. 

Proof  

The proof of this proposition follows easily from 
the fact that the composition of bounded linear func- 
tions is a bounded linear function and the fact that the 
composition of a causal function with a strictly causal 
linear function is strictly causal (DeSantis and Porter, 
1974). 

A direct consequence ofLemma 1 and Proposition 1 
is the following. 

Corollary 

If H, D, and M satisfy Assumptions 1, 2, and 3 
respectively then for every square integrable stimulus, 
x, there exists a unique square integrable response, y, 
determined by Eq. (7). Moreover 

(I + M H D )  - 1  --__ Z ;  = 0 ( - -  M H D )  i , (8) 

where the convergence is uniform. 
Our corollary can be given an intuitive inter- 

pretation. If min{zj} =S > 0 then if zn >_ k it is easily 
seen that D" is the zero operator on the interval [0, k]. 
Similarly (MHD) '=  0 on [0, k] and hence the series of 
the corollary terminates finitely and hence converges. 
It remains only to show that it converges to 
(I + M H D ) -  1. To see this note that by operating with 
(I + M H D )  on both sides of Eq. (8) we have 

(I + M H D ) [ I -  M H D  + (MHD) 2 - (MHD) 3 + ...1 

= I -  M H D  + M H D  + (MHD) 2 - (MHD) 2 + ... = I.  

On infinite intervals [0, ~ ]  the result is still true. 
First the series does terminate finitely on all finite sub- 
intervals. Moreover the square integrability of As- 
sumption 3 assists in producing convergence in the 
limit as k ~  ~ .  

4. Conc lus ions  

We have shown that solutions to the formulation 
embodied by Eq. (7) exists, is unique, is square inte- 
grable and can be computed by the specified algorithms. 
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~(t) =~  ~(t) 

Fig. 2. Simplified system 

= y(t) 

Further implications can be drawn from the results as 
well. Some of these implications are not intuitively 
obvious when simpler systems formulations are 
utilized. Consider the system of Fig. 2, for example. 
This is the result of'an attempt to "lump" the salient 
features of the system into a few black boxes. 

Bending our system formulation to this model 
would produce an average cell membrane character- 
istic/Y an average feedback delay ~ and a single sum- 
ming junction as shown in Fig. 2. 

This simplified type of formulation can be ex- 
plicitly or implicitly found in many studies of neuro- 
logical systems and can produce useful insights into 
the behavior of the system under study. Stark (1968) 
has reported several pioneering efforts along these 
lines. 

Systems with feedback can become unstable and 
produce oscillations. Oscillations in the neuromuscular 
system (clonus) and the pupillary control system 
(hippus) can ,occur under pathological conditions. 
Oscillations in other neurological systems (e.g., respira- 
tory control) can produce the natural rhythm required 
for system function, according to Cohen (1973). 

The model of Fig. 2 suggests that oscillation would 
occur if the gain and phase shift in the loop were 
properly adjusted. Determinations of such conditions 
of oscillation are well known in classical control theory. 
Oscillation would always be predicted for a sufficiently 
high loop gain in guch a system. 

Can the system of Fig. 1 with Assumptions ], 2, and 
3 produce an oscillatory behavior? The answer to this 
question is yes. On a finite time interval, [0, k], the 
system response can be oscillatory and this oscillatory 
behavior will be computable by the series of Eq. (8). 
Naturally, the mode of oscillation can be much more 
complex than the modes available in the simplified 
system. 

It is perhaps worthwhile to point out the fact that 
when one is observing a given y(t) as in single unit 
neurophysiology one is observing the manifestation of 
the properties of virtually all of the neurons in the pool 
and all inputs to the neuron pool. This can readily be 
seen in Eq. (7). Any element of the y vector results from 

products and summations of the properties of all cells 
and all inputs to the neuron pool. This should be obvi- 
ous without the model development, but Eq. (7) helps 
focus our attention on this fact. 

Our formulation at present is valid for situations 
where reasonably linear conditions apply. The nervous 
system, once the nonlinearities of the peripheral end 
organs have been broached, is surprisingly linear in 
many cases. Mountcastle and his co-workers (Mount- 
castle, Talbot and Kornhuber, 1966) have observed 
similarities in the response characteristics of cutaneous 
receptors and human subjects when equivalent stimulus 
paradigms were applied to the skin. This finding has led 
them to the conclusion that the intervening trans- 
formations between receptor response and subjective 
sensory events at higher levels may be linear in nature. 
Terzuolo and his associates have shown that the neuro- 
muscular system is rather linear in its system behavior 
even though significant nonlinearities are observed in 
the responses of muscle and receptor units (Poppele 
and Terzuolo, 1968; Rosenthal et al., 1970; Roberts 
et al., 1971). Even when linear conditions do not hold, 
their basic approach yields useful insights into under- 
standing human performance in motor tasks 
(Soechting, 1973; Viviano and Terzuolo, 1973). 

Our own theoretical development is motivated by 
ongoing experimental studies of the joint receptor 
system (Williams et al., 1973). There are significant 
second order nonlinearities in a class of rapidly 
adapting receptors in this system. It seems that the 
Volterra formalism (Poggio and Reichardt, 1973; Rice, 
1973) can extend the formulation presented in this 
paper. The work of George (1959) and Zames (1960) is 
also of interest because of the use of the delay operator 
in its iteration procedure. 

Newly developed experimental techniques may 
allow one to observe multiple inputs to a nucleus of 

- cells (Heetderks and Williams, 1975). Thus the elements 
of the input vector x and at least one element of the y 
vector may soon become available in an experimental 
setting. The formulation developed in the present paper 
or an extended version would then be of use in the 
analysis of such data. 
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