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Abstract. Neural point processes are often approxi- 
mated by partitioning time into bins, each with a 
Bernoulli distribution of firing, in order to simplify the 
mathematical description of their properties. Some of 
the basic statistics of a neural process are compared 
using the Bernoulli approximation and the actual Pois- 
son representation. It is seen that in general the 
Bernoulli approximation is an accurate model only for 
small 2A where 2 is the intensity and A is the width of 
the time bin. This discrete representation leads to a 
model of the PST histogram as an AR system, where 
the parameters depend upon the driving signal s(t), the 
refractory effect r(t) and the binwidth A. This AR 
representation is used to predict the PST histogram 
given s(t), r(t) and A. Estimates of s(t) and r(t) are 
derived within this parameterization and results dis- 
cussed for several types of recovery functions given a 
constant s(t). AR techniques are used to estimate the 
AR parameters from the PST histogram of a simulated 
point process, from which both s(t) and r(t) are esti- 
mated. 

1 Introduction 

Point process theory has become prominent in the 
study of neural systems because information is con- 
veyed through the timing of discharge activity. Differ- 
ent models have been proposed for the generation of 
nerve discharge (Gerstein and Mandelbrot 1964; 
Geisler and Goldberg 1966), different mathematical 
structures for the temporal occurrence of discharge 
have been presented (Brillinger 1988; Johnson and 
Swami 1983; Chornoboy et al. 1988), as have different 
means of displaying specific properties of the process 
(Perkel et al. 1967; van Stokkum et al. 1986; Palm et al. 
1988). These descriptions have been used when applying 
techniques such as the maximum likelihood estimator 
or the EM algorithm to estimate characteristics of the 
process (Miller 1985). 

Frequently in such analysis the process under inves- 

tigation is discretized in time by partitioning time into 
equally sized bins. A variable is assigned to each bin 
which is equal to the number of firings that occurred 
within that bin. The bins are often assumed to be 
sufficiently small such that the probability of the pro- 
cess firing more than once within the bin is negligible. 
This simplification will be termed the Bernoulli approxi- 
mation, since each bin variable is assumed to be binary, 
and results in a Bernoulli process that is much easier to 
analyze mathematically. 

The extent to which the simplifications introduced 
by the Bernoulli approximation lead to disparities be- 
tween the derived statistics and those for the continu- 
ous-time case is unclear. For example, biases i n  the 
mean and higher moments of the number of firings 
within a bin may be introduced. Such biases might 
subsequently affect any estimator based on the discrete 
representation. The accuracy of the assumption is 
linked to the size of the bin since the larger the bin the 
less the Bernoulli distribution resembles the true distri- 
bution, in part because the probability of more than 
one firing within a bin becomes non-negligible. On the 
other hand, infinitesimally small bins will drastically 
reduce the number of firings within a bin which will 
cause the variance of any estimator that is dependent 
on the number of firings within the bin to be unaccept- 
ably large. 

In Sect. 2.1, the effects of assuming a Bernoulli 
instead of a Poisson distribution will be examined. 
Some basic properties of a point process will be derived 
with and without the Bernoulli approximation. It will 
be seen under which conditions the Bernoulli approxi- 
mation is valid, i.e., provides the same statistics as those 
derived using the exact Poisson distribution. It will also 
be seen that the expected number of firings within a bin 
is correctly predicted using the Bernoulli approximation 
regardless of bin size, but that higher moments and the 
correlation between the bins are not well approximated 
if the binwidths are too large. 

For a stimulus that is presented repeatedly, the PST 
histogram indicates the relative time at which a dis- 
charge occurs with respect to the onset of the stimulus 
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(Gerstein and Kiang 1960). It is a simple and useful 
method of examining the first-order properties of the 
firing process from which the stimulus can be estimated. 
The PST histogram is an unbiased estimate of the 
average intensity 2(0 of the point process during the 
stimulus presentation (Johnson 1978) and can be used 
to estimate the driving stimulus when the the form of 
an inhibitory refractory effect is known (Miller 1985). 
When using the PST histogram as an estimator, the 
Bernoulli approximation is often made, i.e., that the 
binwidths are small enough so that the process can only 
fire once within a bin during one stimulus presentation. 
The Bernoulli analysis of Sect. 2.1 cannot be extended 
to the PST histogram, however, because possible refrac- 
tory effects destroy necessary stationarity assumptions 
across presentations. In Sect. 2.2 the unconditional 
probability of a process firing at any point in the PST 
histogram will be derived. It will once again be seen 
that the Bernoulli approximation holds if the binwidth 
is sufficiently small. It will also be seen that the 
Bernoulli approximation produces the exact asymptotic 
probability of firing with respect to time regardless of 
the binsize. 

The analysis leads to a useful property of the PST 
histogram. It is shown that if each bin in the histogram 
represents a random variable in a discrete random 
process, then the structure of the histogram is that of 
an auto-regressive (AR) process. The exact form of the 
parameters using the Bernoulli approximation is 
derived in Sect. 3. Typically, the stimulus can only be 
estimated from the PST histogram when the exact form 
of the recovery function is known, either a priori or by 
estimates from the interval histogram. Using the AR 
representation of the PST histogram, AR techniques 
can be applied to estimate the coefficients of the AR 
process and from these both the stimulus and recovery 
functions can be estimated. The AR representation can 
also be used to determine the expected value of the PST 
histogram given the stimulus and the recovery function. 
Examples of these applications will be shown in Sect. 3. 

2 Bernoulli approximation 

2. I Statistics 

Consider a nerve which, when stimulated by s(t), has an 
intensity function 2(0. This means that 

2(0 = lim Pr{nerve fires in [t, t + At)} 
a,~o At  (1) 

Partition the timeline into bins of equal width A. As 
stated in the introduction, a typical simplifying assump- 
tion for analysis is that A is small enough so that the 
intensity 2(0 is approximately constant within the bin 
and, more importantly, no more than one point lies in 
each bin. The process is then considered to consist of 
discrete random variables, one assigned to each bin, 
each with a Bernoulli distribution, i.e., with a probabil- 
ity of firing once of 2(t)A and a probability of not firing 
of 1 -2(t)A. Estimators can be easily implemented us- 

ing this Bernoulli representation since the probability of 
a specific spike-train realization is the product of these 
simple terms. For multiple presentations of the simulus 
under the condition of stationarity across presentations, 
the distribution of firings within each bin is binomial 
with parameter 2(t)A and again the form of the estima- 
tor has been simplified. If these simplified distributions 
are not accurate, however, then the estimators based on 
the simplified distributions may also be inaccurate. It is 
therefore important to consider how well the Bernoulli 
approximation models the actual statistics of the point 
process. 

Assume that 2(0 is in fact constant over a binwidth, 
and describe it as 2 for the binwidth in question. Under 
the true Poisson distribution for firing time, which is 
described by 

2 exp( -2 t ) ,  (2) 

the probability of firing at least once within the bin is 
A 

S 2 exp(--At) dt = 1 - exp(-2A).  (3) 
0 

The relation between the actual statistics and those 
derived from the Bernoulli approximation rely on the 
approximation 

1 - exp(-2A) = 1 - [1 - 2A 

+ (2A)2/2! - (2A)3/3! + . . .  ] 

2A. (4) 

As 2,4 becomes large, however, the approximation be- 
comes worse and will result in an increasingly poorer 
estimate of firing probability. 

Considering the probability of exactly one firing 
within a bin, the difference between the probability 
derived from the Bernoulli assumption and that derived 
from the actual Poisson distribution is 

ar{one ~ n g  I Bernoulli} - Pr{one firing ] aoisson} 

= 2A - 2A exp(-2A) 

= 2A( 1 -- exp( --2A)). (5) 

The difference can be seen in Fig. 1, where the probabil- 
ities for both distributions are shown as a function of 
2A. The solid line shows the probability derived from 
the Bernoulli approximation while the dashed line 
shows that from the Poisson distribution. The probabil- 
ities are seen to significantly differ for 2A greater than 
0.1. 

The expected number of firings within a bin using 
the Bernoulli approximation is 2/I which is also the 
expected number using the Poisson distribution, regard- 
less of the size of 2A. Also, given the multiple presenta- 
tions of the stimulus, the maximum likelihood 
estimator for 2 given the number of firings within the 
bin is the same using both distributions. Thus, although 
the accuracy of the probability of firing varies with the 
magnitude of 2A, the Bernoulli approximation produces 
an accurate mean regardless of the size of 2A. This 
might explain why the potential problem of bin size is 
often not encountered when estimating 2. 
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Fig .  1. Probability of exactly I firing within a bin as a function of 2.4. 
The solid line represents the probability derived using the Bernoulli 
approximation, and the dashed line represents the Poisson derived 
probability 

In general, the actual moments of the firings within 
a bin differ from those based on the Bernoulli assump- 
tion. The general forms of the nth moment about the 
mean are 

(nth moment I Binomial) 

d" 
= (dt)" [exp( -2At)(XA exp(t) + (1 - 2A))]'[,=o, 

(nth moment I Poisson) 

d" 
= (dt)" [exp(2A(exp(t) - 1 - / ) ) ]  It = 0. (6) 

For example, this gives a difference in variance of 

var{firing I Poisson} - var{firing [ Bernoulli} 

= 2d - 2A( 1 - 2A) 

= ( ~ ) 2 .  (7) 

This difference is shown in Fig. 2 where the variances 
for the two distributions are plotted. Again, the as- 
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Fig. 2. The variance of the number of firings within a bin as a 
function of 2A. The lines arc formatted as in Fig. 1 
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sumption's results differ from the Poisson's results for 
large ;tA and may greatly affect whatever distribution- 
based estimator is used. 

To illustrate the problems that may arise when the 
Bernoulli approximation is used incorrectly, consider a 
statistical test for constant intensity based on a PST 
histogram of the process. If  2A = 0.3, say, then Fig. 2 
shows that the variance under the Bernoulli approxima- 
tion is significantly smaller than the actual variance of  
the Poisson process. Therefore, a test of significance 
based on estimated variance under the Bernoulli as- 
sumption will be biased towards incorrectly rejecting 
the hypothesis of constant threshold. 

2.2 Structure of PST histogram 

The structure of the PST histogram under both Poisson 
and Bernoulli distributions will now be considered. To 
simplify the derivation, let the intensity function be a 
constant 2 and let the absolute refractory period exist 
with length nA, where n is an integer. Without the 
refractory effect, independence of firing realizations 
from different stimulus presentations could be used to 
extend the results of the binned process in the previous 
section to the binned PST histogram. The absolute 
refractory period, however, inhibits the nerve from 
firing for a time of nA seconds immediately after the 
nerve fires. The intensity during a bin could be either 0 
or 2A, depending upon the history of  the nerve during 
that presentation, thereby violating the stationarity as- 
sumption. Thus, the bins previous to the bin lacing 
analyzed must be considered in order to determine the 
statistics of that particular bin. 

Firstly, the PST histogram under Bernoulli approxi- 
mation will be examined. Defining the kth  bin in the 
PST histogram by Bk, the PST histogram is described 
as a discrete process where Bk, at each stimulus presen- 
tation, has an unconditional probability of firing of Pk. 
Note that this assumes that, for a specific bin Bk, the 
histogram process is stationary since the probability of  
firing is always Pk, as opposed to the actual nerve 
process which has a probability of either 23 or 0, 
depending upon the process's history during that pre- 
sentation. 

Under the Bernoulli approximation, the probability 
of firing in bin Bk is 

Pk = Pr{fires in B k [doesn't fire in [Bk_n, B k_ I ] }  

x Pr{doesn't fire in [Bk- , ,  Bk_ 1]} 

= 2A -- 2A ~ Pk_i. (8) 
i = l  

Given the form of the probability of  firing in Bk 
during one presentation, the expected value of B(k) for 
N presentations can be derived, where B(k) is the value 
of the PST histogram in bin Bk. Estimating Pk-~ with 
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B(k - i ) / N  - the MLE of p k - i  -- one obtains 

P k = 2 A - 2 A  ~ B ( k - i ) / N ,  
i = l  

pkN = 2 A N - -  2A ~ B(k - i) , 
i = l  

E{B(k)} = 2AN - 2A ~ B(k -- i ) .  (9) 
i = l  

If  the steady-state segment of  the PST histogram 
where the transients have disappeared is considered, 
i.e., for large k (say for k > K, where K is large), then 

Pk =P, Vk > K .  (10) 

Substituting (10) into (8) and solving for p, the asymp- 
totic probability is obtained: 

p = 2A - 2Anp, 

p = 2A/(1 +2An) .  ( l l )  

So, for N presentations, the expected number in each 
bin is 

E{S(k)}  = 2AN~(1 + 2An). (12) 

This result concurs with results in which (12) has been 
derived using other methods (Johnson and Swami 
1983). Note that the denominator is independent of A 
since the product An is equal to the length of the 
refractory effect. Thus, E{B(k)} is proportional to A. 

The structure of  the PST histogram is now derived 
using the actual Poisson distribution. The analysis con- 
siders three separate cases for each bin. Each case is 
distinguished by whether the refractory period is still in 
effect at the beginning of  the bin and, if so, when the 
previous firing occurred. These cases are analyzed in 
Appendix A and result in the following description: 

n - - I  

P k = ( 1 - - e  -an ) - - ( 1 - - e  -ad) ~ Pk- i  
i = l  

+ [e -ha -- ( 1 -- e-~n)/(AA)lpk_,. (13) 

This result holds for all values of 2A. As stated in 
the previous section, the Bernoulli approximation relies 
on the approximation 

1 - -  e - h a  ~ 2 A  , ( 1 4 )  

and if this approximation is made in (13), the recursion 
reduces to (8), the PST description derived using the 
Bernoulli approximation. Equation (8) is then an accu- 
rate description of the histogram's structure if 2A is 
small enough so that the approximation in (14) holds. 

Assuming steady-state once again, 

p = (1  - np)(l - e  -ha) +p[1 - ( 1  - e-aA)/(2A)] (15) 

reduces to 

p = 2A/(1 + 2An), (16) 

such that the expected number of firings is 

E{B(k)} = 2aU/(1 + 2An) (17) 

for N presentations, which is the same as that obtained 

from the Bernoulli approximation in (12). Thus, the 
Bernoulli approximation exactly predicts the asymp- 
totic expected number of firings within a bin, regardless 
of the size of 2A. 

It should be noted that because the absolute refrac- 
tory effect is longer than one binwidth, there can never 
be more than one firing in a bin during a single 
presentation. Thus, the PST histogram is a true bino- 
mial system with binomial statistics since it cannot fire 
more than once per bin presentation. This is one of the 
few examples when a self-exciting point process results 
in a simpler formulation of  an estimation problem. 

Note that the exact analysis produces the same 
steady-state results as that derived using the Bernoulli 
approximation and they are the same even if 2A is 
large. The Bernoulli approximation does not give the 
correct recursion, however, and thus the higher-order 
moments of the bins as determined under the Bernoulli 
approximation are incorrect for large 2A, as are the 
cross-moments between the different bins. This will be 
important in the next section where the correlation 
between bins is used to estimate refractory effects. 

Johnson and Swami (1983) used a multiplicative 
relationship between the stimulus and the nerve's re- 
fractory effects to model the instantaneous intensity of 
the firing process. If  the stimulus is s(t), then the 
instantaneous intensity/~(t ;w,) is defined by 

IZ(t ;wt) = s(t)r(t -- wt) , (18) 

where r(t) is termed the recovery function and wt is the 
time of the most recent firing, r(t) is the recovery 
function which varies monotonically over time from 0 
to I, thereby reducing its inhibitory effect on the firing 
process as its argument (the time since the most recent 
firing) increases. In the previous discussion, s(t) was a 
constant ~ a n d  r(t) was a step function that was 0 over 
[0, nA). The case of time-varying s(t) and arbitrary r(t) 
will now be considered. 

Allowing r(t) to have values other than 0 and 1 
automatically introduces ambiguity into the solution to 
Pk" Consider the case discussed previously where 

r(t) = 0, t < n A ,  

=1 ,  otherwise. (19) 

If  the n bins before Bk contained M firings and the 
stimulus was presented N times, then the probability of  
firing in B k was 0 for M presentations and the probabil- 
ity of firing was 2A for N -  M presentations. For 
example, if the nerve fires in bin B,_ 3, then the recov- 
ery function will be 0 during B k. If, however, 

r( t )=t / (nA) ,  t < n A ,  

= 1, otherwise, (20) 

then all absolute knowledge about the time since the 
most recent firing is lost. If  the nerve fired in bin Bk_ 3, 
the recovery function might be 3/(nA) at Bk but the 
nerve could also fire in bin Bk_ 2 or B,_ 1 such that Bk 
would have a recovery function of 2~(hA) or 1/(nA), 
respectively. Therefore, the probability that a firing in a 



Pk = s(kA)A -- s(kA)A ~ Pk- ,q ( id )  
i = l  

x exp ( - - ( i ~  TM ) s([k -- 1]A --y)r(y) dy , (21) 
a) 

where q(t) is a term defined by Qi Bi (1989) as the shape 
function and is equal to 1 - r ( t ) .  When q(t) is positive, 
inhibitory effects are present and when q(t) is 0 the 
inhibitory effect is absent. I f  the Pk is assumed to be 
2(t)/A, then (21) is identical to that derived by Bi using 
much more complicated methods. 

The exponential in the above recursion is due to the 
uncertainty about which firings in the n bins prior to Bk 
are the most recent ones. Bi makes the following argu- 
ment for ignoring the exponential term. When r(t) is 
small, the exponential term is close to one, as is q(t). As 
r(t) approaches 1, the exponential becomes smaller, 
approaching 0 and q(t) also approaches 0. So, the terms 
in the summation in which the exponential is signifi- 
cantly different from 1 is a multiplier for the small q(t) 
which has very little effect on the total summation. 
Thus, Bi argues that it is reasonable to ignore the 
exponential and simplify the recursion to 

Pk = s(kA)A - s(kA)d ~, Pk-  ,q(iA) . (22) 
i = 1  

Using (22), the expected value of the firings in bin Bk 
can be derived as was done in (9): 

E{B(k)  } = s (kA)N - s(kA)A ~ B(k -- i)q(iA) . 
i = i  

(23) 

The simplification of (22) is, in fact, exactly equal to 
(21) when the recovery function contains only an abso- 
lute refractory effect - i.e., is a step delay - because the 
exponential is unity in each term. The effect of ignoring 
the exponential for a recovery function that is not just 
a step delay is shown in Fig. 3. The recovery function is 
a linear ramp with a 10 ms rise-time and is shown in 
Fig. 3a. The derived estimations for s(kA)Aq(iA), 
i = 1 . . . . .  10 using the approximation is compared to 
the actual parameters in Fig. 3b, and the resulting 
derived probabilities using the respective summation 
factors is shown in Fig. 3c. 

From this example, it is clear that the effect of 
ignoring the exponential in (21) is minimal. The sum- 
mation parameters shown in Fig. 3b are approximately 
the same and the resulting PST histograms differ by 
2.1%. Thus, from now on we will adopt Bi's suggestion 
and use (22) as the approximate recursion for Pk. 
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3 PST histogram as an AR system 

In the previous sections, the discussion has been strictly 
with regard to the firing probabilities. The conditions 
under which the Bernoulli approximation is valid have 
been examined and an expression for the probability of 
firing within each bin in a PST histogram has been 
derived. This information will now be used to gain 
knowledge about the driving stimulus s(t) and any 
refractory effects that may exist. 
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As shown by (22), the PST histogram can be mod- 
eled as an auto-regressive (AR) process. This A R  system 
is time-varying if s(t) is time varying and stationary if s(t) 
is a constant. Because the histogram can be modeled as 
an A R  system, A R  techniques can be used to estimate 
the AR parameters  and, f rom these, s(0 and r(0. 

From (23), the histogram's process can be modeled 
a s  

B(k) = s(kA)AN 

- s(kA)A ~ B(k - i)q(iA) + u(k), (24) 
i = l  

where u(k) is noise. Thus, B(k) is an A R  process with 
parameters determined by s(t), r(t) and A. 

The noise u(k) has the following properties: 
0 Define 

tiM(k): = s(kA)AN - s(kA)A ~ B(k - i)q(iA). (25) 
i = l  

Then, the probabili ty mass function for u(k) is 

P,(k)(U) = ( U +NM(k) I~ pkV+ M(k)(1 _ pk)U- v -  M(k) . 

(26) 

ii) E{u(k)} = O. 
iii) var{u(k) } = Pk( 1 -- pk)N.  (27) 

iv) E{u(k)u(k + 1)} = 0, V1 # 0, i.e., its autocorrela- 
tion function is zero except at the origin, so u(k) is white 
noise and the noise components  are uncorrelated. 
Of  the four properties, (iv) is the most important  
because most  A R  estimation techniques require that the 
driving signal be uncorrelated. 

Some of  the uses of  the AR model will now be 
demonstrated. Suppose that s(k) = 2 and 

r(k) =O, k <, 5 , 

= (k - 5)15, 6~<k~<10 ,  

= 1, else. (28) 

as shown in Fig. 4. 
The expected value of  the PST histogram can be 

considered as the output  o f  a linear time-invariant filter 
with transfer function 

H(z) = l /  1 ~ 2 A z - '  + hA z - '  , (29) 
" = 1  i = 6  

where 2d is the input. Figure 5 shows the output of  this 
filter for 2 = 10 and d = 5 ms, along with a PST his- 
togram from a point process modeled from the parame- 
ters using the method described by Snyder (1975). The 
expected value of  the PST histogram could also be 
produced applying the recursion of  (23): 

5 

E { B ( k ) }  = . 0 5 N -  .05 ~, B ( k -  i )  
i = 1  

10  

-- .05 ~ ((10 -- i)/5)B(k -- i) .  (30) 
i = 6  

The PST histogram can be used to estimate r(t) when 
s(t) is known to be a constant. Assume that a nerve is 
known to be stimulated by a constant signal of  
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Fig. 5. Demonstrating the performance of the AR model for a PST 
histogram. The solid line represents data obtained from a simulated 
point process with a 2 = 10 and a recovery function shown in Fig. 4; 
the dashed line shows the expected value of the histogram using the 
filter described in (29) and an input of 2,4 = .05 

unknown intensity 2. Since AR estimation techniques 
require that the data used for estimation be zero mean 
and stationary, the PST histogram data are normalized 
by subtracting the ensemble mean (Maragos et al. 1984) 
and the steady-state portion of  the PST histogram is 
considered in which the transients have decayed. 

Two sample histograms without the transients are 
shown in Fig. 6 with 2 = 100, d = .001, and N = 50000. 
Since the expected number of  firings in each bin is 

2AN 
E{B(k)} = -- 

1 + ~ 2Aq(iA) 
i = l  

the recovery function is needed to estimate 2 f rom the 
PST histogram. The recovery functions for each his- 
togram are 

ra(t) = 0 ,  t~<.004,  

= 1, otherwise, (31a) 

rb(t) = t/.O04, t ~ . 0 0 4 ,  

= 1, otherwise. (31b) 
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The product hA = 0.1 so (22) can be used as the AR 
model of the histograms, and the Levinson-Durbin 
algorithm (Kay 1988) can be used to estimate the AR 
parameters 2Aq(iA). 

From (22), it can be easily shown that the steady- 
state response of this system is 

p =2A/(I +2A i=,k q(i)) " (32)  

Let the estimates a(i) of the AR parameters q(i)2A be 
estimated from the Levinson-Durbin algorithm. The 
steady-state response, p, can be estimated by averaging 
B ( k ) / N  across the histogram, i.e., 

M 

= ~ B ( k ) / ( N M ) ,  (33) 
k = l  

where N is the number of presentations and M is the 
number of bins in the histograms. From (32), the 
estimate for 2 is 

( + " )  , g=~  1 ~ ~(i) / A .  (34) 
" = 1  

Using this estimate for 2, the recovery function can 
be solved to yield: 

F(i) = 1 -- O(i) 

= 1 -- ~(i)/(~,A). (35) 

The length of the histogram used in case (a) was 
300 points and the length of the histogram used in case 
(b) was 700 points. A larger number of data points 
were needed for case (b) in order to achieve the same 
estimator efficiency for the parameters as in case (a). 
The resulting estimates from these histograms are 

Pa = .07115 (36a) /3 b = .08344 (36b) 

[ .0984] [.0811 ] 
/"0686/ (37b) _~,,(i) = /.1325/|'0861| (37a) _~n(i) = |.0465 / 

L.O933J L.0296 J 

L = 100.3 (38a) ~'b = 102.3 (38b) 

Equations (38a) and (38b) demonstrate the accuracy of 
estimating the constant stimulus without a priori 
knowledge of the recovery function or its estimate from 
an interval histogram. The recovery functions estimated 
using (35) as well as the actual recovery functions are 
shown in Fig. 7. 
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Fig. 7a, b. The actual recovery functions and their estimations using (35) and the PST histograms partially shown in Fig. 6 



152 

4 Conclusion 

Point processes are often discretized in time for the 
simplicity of analysis. With the time-line divided into 
bins, a single probability of  firing is assigned to the bin 
which produces a binomial instead of a Poisson pro- 
cess. The validity of this simplification using the 
Bernoulli approximation was examined by comparing 
some basic statistics using the actual Poisson distribu- 
tion and the approximate Bernoulli distribution. The 
accuracy of the assumption was seen to be dependent 
upon the size of the product hA, where h is the intensity 
within a time bin and A is the size of the binwidth. 

Under the Bernoulli approximation, it is assumed 
that the process can fire only once within a bin. The 
probability of this occurring is close to the actual 
probability only when 2A is small, say less than 0.1. For 
2A larger than this, the assumption gives a much larger 
probability of  firing than exists in actuality. However, 
for any 2A, the expected number of firings within a bin 
is exactly the same for both the Poisson and the 
Bernoulli process. Although the probability of firing for 
the Bernoulli process is greater, the actual Poisson 
process has non-zero probabilities for the process firing 
any number of  times within the bin. This increases the 
mean number of  firings to be equal to that of the 
Bernoulli process. Thus, if one is only concerned with 
first order moments, the Bernoulli approximation is 
exact. Nerve processes and PST histograms can then be 
modeled using the discrete approximation with no re- 
gard to bin size and parameters from the first order 
statistics can be estimated using the binomial represen- 
tation. The Bernoulli approximation fails for higher 
order statistics when hA is large, as seen for the vari- 
ance plotted in Fig. 2. 

The PST histogram was shown to have an AR 
structure given in (22). This AR representation pro- 
vides a general method for modeling a PST histogram 
given the stimulus and recovery function, which leads 
to a well-defined estimator of  these functions from the 
observed histogram data. When estimating the stimulus 
from the PST histogram, it is frequently assumed that 
the time since the most recent firing is known for each 
occurrence in a bin (Johnson and Swami 1983; Miller 
1985). Such estimators require this additional side in- 
formation concerning firing intervals which is not 
present in the PST histogram. Thus the exponential in 
(21) is introduced to estimate the probability of the 
time since the most recent occurrence. Estimators based 
on this latter representation can be considered as esti- 
mators using incomplete information. 

The AR representation also provides the unique 
ability to estimate the recovery function from the PST 
histogram alone. The recovery function is typically 
estimated from the interval histogram, but the relation 
of the recovery function to the AR parameters allows 
an alternative estimate of the function using standard 
techniques such as the Levinson-Durbin algorithm. 
This second moment information has been typically 
ignored in the use of PST histograms and we have 
shown that it can be used to estimate both the recovery 

function and the driving stimulus. This information 
could also be incorporated with the interval histogram 
to increase the accuracy of signal estimators. 
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Appendix A 

Here we derive the unconditional probability of the 
nerve firing within bin Bk given that 

s(t) (A.la) 

r(t) 

= 2 .  

=0 ,  t <~nd , 

= 1, else. (A.lb) 

Three cases must be considered, corresponding to the 
three possible states of the recovery function: 

1 No refractory effect at the beginning of the bin. 
The probability of this case occurring is 

1 - ~ Pr{Bk_;}. (A.2) 
i = 1  

Given this case, 

Pr{Bk I case I} = 1 --e -aa . (A.3) 

H A firing occurred in one of  {Bk_ n + 1 . . . . .  Bk_ l }- 
The probability of this case occurring is 
n - - I  

Pr{Bk-i}- (A.4) 
i = l  

Then, 

Pr{B k [case II} = 0 (A.5) 

since the refractory period will not have finished during 
bin Bk. 

I I I  A firing occurred in bin Bk_ n. The probability 
of this case occurring is 

Pr{Bk_, }. (A.6) 

Then, the refractory period will end sometime during 
bin Bk. Assume that the firing distribution is uniform 
over the binwidth Bk_ ~ so that the refractory effect 
ends with a uniform distribution over Bk, i.e., 

Pr{refractory period ends at time t} 

= l/A, t ~ [(k - I)A, k A ) .  (A.7) 

This produces the result 
d A - - S  

Pr{B k lease III} = ~ 1/A ~ 2 e - a ' d w  ds 
0 0 

= 1 - (1 - e -a~) / (hA) .  ( a . 8 )  

When the probability of each case is multiplied by its 
corresponding conditional probability and then 
summed, the result is the probability of  a firing in bin 
B k :  



P r { B k } = ( 1 - - ~ = , ~  P r { B k _ ; } ) ' ( 1 - - e  -an)  

+ P r { B k _ .  }" [1 -- (1 -- e-an)/(2A)] 

n - - I  

= ( 1 - e - a ~ ) - ( 1 - e  -an) ~ Pr{Bk_i}  
i f f i l  

+ [e -an - (1 - e-an)/(2A)] P r ( B k _ .  } .  (A.9) 

Appendix B 
Here  we derive the uncondi t ional  probabil i ty"  o f  the 
nerve firing in bin B(k) for  a rb i t ra ry  s(t) and r(t). T w o  
cases mus t  be  considered,  cor responding  to whether  the 
nerve has recovered at  the beginning o f  bin Bk: 

I q(t -- Wu,) is zero at  the beginning o f  the bin. The  
probabi l i ty  o f  this case occurr ing is 

1 - P r { p r e v i o u s  firing was within the last n bins} 

= 1 -  ~ Pr{doesn ' t  fire before  Bk I fires in Bk- i }  
i = l  

x Pr{Bk_ ,}. (B.1) 

Since the exact  occurrence t ime o f  a firing in bin B k_ 
is unknown,  a un i fo rm distr ibut ion is assumed over  the 
bin for  the firing time. Then,  the first p robabi l i ty  in the 
equat ion  above  is 

Pr{doesn ' t  fire before Bk I fires in Bk_i} 

: i 1 ( ( ~ - o ~  ~exp ~ ) - s ( [ k -  1]A - y ) r ( y )  dy dw 
0 

~ exp ( - ( '~  TM ) s([k - 1]A - - y ) r ( y )  dy (B.2) 

where to get to the second line we have assumed tha t  
r(t) is cons tant  over  any binwidth and s(t)A is small. 
Assuming also tha t  s(t) is cons tan t  over  any  binwidth,  
we obta in  

Pr( Bk l case I} = s(kA)A [ l -- ~ l  Pr{ Bk-  , } ] 

x exp (--~ TM ) s([k - 1]A - y ) r ( y )  dy . (B.3) 

H q(t) is non-zero  at  the beginning o f  bin B k. The 
probabi l i ty  o f  this occurr ing is 

Pr{doesn ' t  fire before Bk [ fires in Bk_i} X Pr{Bk_i} �9 
l = 1  

(B.4) 
Again,  assuming r(t) is cons tan t  over  a binwidth and  
s(t)A is small, 
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Pr{Bk Icase II} =s(kA)A ~ Pr{Bk_i} 
i = l  

/ ( i -  l)a ) 
• r(ia) exp [ -  !  (tk - 114 - y)r(y)  dy . (B.5) 

When  the probabil i t ies  o f  cases I and  I I  are added,  the 
total  bin probabi l i ty  is obtained:  

Pr{Bk } = s(kd)A - s(kA)A ~ Pr{Bk_,}  
i ~ l  

/ ( i-  1)A \ 
x e x p ~ - -  ! s ( [ k -  1]A - y ) r ( y )  dy)[1 --r(iA)] 

= s(kA)A - s(kA)A ~ Pr{Bk_ i}q(iA) 
i = 1  

s([k - 1]A - y)r( y) dy . (B.6) 
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