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Abstract. The goal of this study was to determine whether the 
elevated flux of sodium and potassium through the eryth- 
rocyte membrane of spontaneously hypertensive rats (SHR) 
is due to an intrinsic difference in the cell membrane or to a 
humoral factor present in the plasma. Isolated and washed 
erythrocytes from SHR and normotensive Wistar Kyoto 
(WKy) and Sprague-Dawley (SD) rats, were incubated in 1) a 
physiological salt solution, 2) WKy or SD plasma and 3) SHR 
plasma. Incubations were performed at 4~ for 23 h. 
Erythrocytes from SHR incubated in physiological salt 
solution had significantly greater Na + and K + fluxes than 
those from normotensive WKy and SD rats (P < 0.005). 
Plasma from any of the three strains of rats, as compared to 
physiological salt solution, increased Na + influx in the 
following order: SD > WKy > SHR. Erythrocyte K + efflux 
was not altered by plasma. We conclude that the elevated flux 
of Na + and K + in SHR erythrocytes is due to an intrinsic 
difference in the cell membrane. The greater Na § influx in 
plasma from any strain of rats is not correlated with the blood 
pressure of the rat. The lesser increase in Na + influx in 
erythrocytes incubated in plasma from SHR masks the 
greater intrinsic membrane permeability in the SHR eryth- 
rocyte when Na § fluxes are studied in whole blood. The 
elevated flux of Na + and K + through the erythrocyte 
membrane of SHR may reflect a general membrane defect 
that underlies the pathogenesis of elevated arterial pressure. 
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Introduction 

Abnormalities in fluxes of sodium and potassium have been 
demonstrated across erythrocyte membranes from spon- 
taneously hypertensive rats (SHR) and humans with essential 
hypertension (see Table 1). These abnormalities include 
differences in Na+/K+-ATPase activity, Na+/K+-co - 
transport, Na +/Li +-countertransport and passive diffusion 
of monovalent cations. It has been suggested that a humoral 
factor is involved in transmembrane distribution of sodium 
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and potassium in hypertension [26, 34, 36, 47]. In order to 
determine if a humoral factor is involved in the abnormal 
fluxes of Na + and K + across the erythrocyte membrane of 
SHR, plasma cross-over studies were performed, i.e., SHR 
erythrocytes incubated in plasma from normotensive Wistar 
Kyoto (WKy) or Sprague-Dawley (SD) rats and cells from 
normotensive rats incubated in SHR plasma. 

Materials and methods 

Blood pressures. Systolic blood pressures of 4 -  7 month old 
unanesthetized spontaneously hypertensive rats (SHR), and 
normotensive Wistar Kyoto (WKy) and Sprague-Dawley 
(SD) rats (Parke Davis or Taconic Farm) were monitored 
indirectly with a tail cuff and a Narco Pneumatic pulse 
transducer recorded on a Grass polygraph. 

Blood. In each experiment one SHR and one normotensive 
control (SD or WKy) rat were used. Rats were anesthetized 
with 50 mg sodium pentobarbital per kg body weight ip. By 
cannulating the abdominal aorta, blood was drawn into a 
10 ml syringe containing 100 units sodium heparin. Initial 
hematocrit values and whole blood hemoglobin concen- 
trations were measured. One whole blood sample (2 ml) from 
each rat, i.e., erythrocytes suspended in their own plasma 
without any experimental manipulations, was incubated. The 
pH of these whole blood samples ranged from 7.38 to 7.42. 
Following overnight incubation at 4 ~ C, the pH ranged from 
7.61 to 7.65. The remaining 8 ml of blood were centrifuged, 
plasma and cells separated and buffy coat discarded. All 
centrifugations were performed for 10 rain at 1,000 x g. Two 
0.5 ml plasma samples were taken for initial Na + and K + 
concentration determination by flame photometry. Initial 
Na + and K + concentrations were also determined in two 
0.5 ml samples of physiological salt solution (PSS). 

Erythrocytes. Erythrocytes were washed twice at room tem- 
perature in PSS containing: NaC1 (145 raM), KC1 (4.5 mM), 
MgSO4" 7H20 (1.22mM), NazHPO4- 7H20 (1.19 mM), 
CaC12 �9 2 H 2 0  (1.6 mM), dextrose (5.5 mM), fraction V bo- 
vine albumin (0.5 %) and morpholino propane sulfonic acid 
(20 mM, MOPS). The pH was adjusted at 4~ to 7.4. After 
each wash, the cells were centrifuged and PSS was discarded. 
From each strain of rats, 1 ml of packed erythrocytes was 
resuspended in 1) 1 ml PSS (same as above), 2) 1 ml WKy or 
SD plasma and 3) 1 ml SHR plasma. In the experiments using 
plasma as a suspension medium, pH was not controlled. 



Table 1. Erythrocyte membrane characteristics in essential hypertension and in SHR 

Species Membrane characteristics Abnormality" with references 

75 

Human permeability to Na + ]" : [20, 24, 32, 33, 35, 47] 

SHR permeability to Na + ]" : [5, 10, 12, 14, 38, 48, 49] 

Human Na+/K + ATPase activity l" : [20, 23, 45, 50] 

SHR Na+/K + ATPase activity ~ : [11, 12] 

Human Plasma factor changing 
Na+/K + ATPase activity 

Human Na+/K + cotransport ~ : [1, 7] 

SHR Na+/K + cotransport 

Human Na+/Li + countertransport ]': [1, 6, 7, 8, 27] 

Human Temperature dependence of Li +-efflux 

SHR General review of erythrocyte membrane 
permeability as a genetic marker in SHR 

,[ : [24, 32, 34, 36] 

+: [26, 34, 36, 47] <---> : [45] 

1:[7,8,21,23,25] ~ ):[13,44] 

~: [11, 12] 

[31] 
[51] 

" ]" = increase; ~ = decrease; ~ = no difference 

Incubation. All samples were incubated for 23 h at 4~ in 
25 ml siliconized glass Erlenmeyer flasks connected to a wrist- 
action shaker. The shaker setting was selected so that the 
motion was minimal necessary to prevent erythrocyte sedi- 
mentation. Before and after incubation, hematocrit values 
were measured for each sample. After incubation, the samples 
were centrifuged and incubation media separated for final 
Na + and K + concentration determination. All measurements 
were performed in duplicate. Final  incubation media hemo- 
globin concentrations were also measured. 

Ionic flux. Ionic flux was measured extracellularly as a change 
in the ion concentration in the incubation media, (expressed 
as ~tEq/ml packed erythrocytes/23 h) and corrected for cell 
and plasma volume, by the following formula: 

Ionic flux - A [ion] ( 1 -  H) 
H 

where A [ion] is the difference in concentrations of the ions in 
the medium before and after incubation, and "H"  is the mean 
of hematocrit values taken before and after incubation. 
Hematocrits measured before and after incubations did not 
vary more than J %. Microhematocrit centrifugations lasted 
for 2 min at 4,500 • g. 

Hemolysis. In addition to albumin in the PSS, 20 tal of 
dextrose solution was added to each sample (final medium 
concentration 11.1 mM) to minimize hemolysis during the 
washing procedure and the incubation. The percentage of 
lysis was calculated by dividing the final concentration of 
hemoglobin in the medium by the whole blood hemoglobin 
concentration, both measured by the hemiglobincyanide 
method [30]. Hemolysis never exceeded 1.3 %. 

Statistics. The statistical significance was assessed by 
Student's "t" test. P < 0.05 were considered significant. Data  
are expressed as mean _+ SEM. 

R e s u l t s  

Blood pressures (Fig. 1), whole blood hematocrit values, 
whole blood hemoglobin concentrations and initial plasma 
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Fig. l. Systolic blood pressures of SHR, WKy and Sprague-Dawley (SD) 
rats and ionic fluxes in their erythrocytes incubated in physiological salt 
solution (PSS). Numbers at bottom of columns denote number of 
animals studied 

Table 2. Blood characteristics in three strains of rats 

Hematocrit Hemoglobin Initial No. of 
% concentration plasma concentration animals 

(g/dl) (gEq/ml) 

Na + K + 

SHR 50.9 * 
(_+0.4) 

WKy 47.1 
(_+0.7) 

SD 49.2 
(+0.7) 

16.0" 140.1 3.4 22 
(_+0.1) (_+0.4) (_+0.1) 

14.8 139.6 3.6 10 
(_+0.3) (_+0.3) (+0.1) 

15.6 142.5 3.4 12 
(_+0.4) (_+0.4) (_+0.1) 

*P< 0.01; SHR vs WKy 

Na + and K + concentrations are given in Table 2. Significant 
differences were observed between SHR blood pressures as 
compared to those from normotensive rats and between SHR 
whole blood hematocrits and hemoglobin concentrations 
when compared with those from WKy rats. SD initial plasma 
Na + concentrations were higher than those from SHR and 
WKy rats. 

PSS incubation. SHR erythrocytes incubated in PSS showed a 
30% greater Na  + influx and a 30% greater K + efflux than 
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Fig. 2. Na + influx in erythrocytes from each strain incubated in PSS or in 
plasma from SHR, WKy and SD rats 
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Fig. 4. Ionic fluxes in whole blood from SHR, WKy and SD rats 
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Fig.3. K + efflux from erythrocytes from each strain incubated in PSS or 
in plasma from SHR, WKy and SD rats 

similarly treated erythrocytes f rom either WKy or SD rats 
(Fig. 1). 

Na + influx. Na + influx in SHR erythrocytes was higher than 
those in erythrocytes f rom normotensive rats when incubated 
in any one of  the three plasmas or in PSS. Erythrocytes 
incubated in plasma showed greater Na  § influx as compared 
to those incubated in PSS. In plasmas from the three strains of  
rats, Na  + influx was increased in the following order: SD 
> WKy > SHR (Fig. 2). 

K + efflux. Regardless of the incubation medium, K + effiux in 
erythrocytes from SHR was significantly higher (P < 0.01) 
than in erythrocytes from W Ky and SD rats. Erythrocyte K + 
effiux was not altered by plasma (Fig. 3). 

Whole blood incubations. No difference in Na + influx was 
observed among the three strains of  rats. In SHR whole blood 
incubations, K + effiux tended to be higher than in those from 
WKy and SD rats (Fig. 4). 

Discussion 

Previous reports have indicated that there are abnormal 
fluxes of  sodium and potassium across the membrane of  the 
erythrocyte from SHR when compared to fluxes across this 
membrane from normotensive rats (Table 1).The purpose of  
this study was to determine whether this difference is due to : 
1) an intrinsic difference in membrane properties or 2) an 
acute action of a humoral factor present in the plasma. We 
observed that erythrocytes from SHR had greater Na  § and 
K + fluxes than those from normotensive W Ky and SD rats 

when incubated in PSS or when incubated in the same plasma. 
Therefore, we conclude that the greater fluxes are due to an 
intrinsic difference between erythrocyte membranes of  SHR 
and those of  the normotensive strains of  rats. 

The current study does not give insight into the nature or 
cause of  the difference. The studies were carried out at 4 ~ C. 
At this temperature the active ion movement driven by Na/K- 
ATPase was considered to be negligible [41]. Furthermore, we 
observed that fluxes at 4 ~ C did not change in the presence of  
10-3M ouabain (unpublished observations). Participation of  
the Na  § § cotransport at this temperature is also unlikely 
[43]. Sen et al. [42] observed that the erythrocytes of  SHR were 
smaller than those of  WKy. If this difference were of sufficient 
magnitude it would be responsible for a greater diffusion 
surface which could cause the greater flux of  the SHR 
erythrocyte. However, calculated from the measurements of  
cell size by Sen et al. [42], the ratio of  cell surface to cell volume 
in SHR was only 3.8 % greater than this ratio in erythrocytes 
from WKy. Since the fluxes of  Na  § and K § were 25 to 30 % 
greater in the erythrocytes of  SHR than in those of  WKy, it 
does not appear that the size of  difference can account for the 
greater flux. Furthermore, as reasoned by Friedman et al. 
[16], " I f  this were due to a simple increase in the area available 
for diffusion, it would be equally evident at all temperatures" 
[11]. They observed that the difference was greater at 3~ 
than at higher temperatures. We have repeated comparative 
studies at 37~ (with and without ouabain) and at 4 ~ C. No  
differences between fluxes of  erythrocytes from SHR and 
WKy rats were observed at 37~ whereas the expected 
difference was seen at 4~ (unpublished observation). This 
greater ion flux in the SHR erythrocyte than in that from 
WKy therefore probably reflects a greater passive cation leak 
of  this membrane. The observations do not distinguish 
among the following possible causes of  the abnormality in the 
erythrocyte membrane of  the SHR:  I) an intrinsic genetic 
difference in membrane structure 2) a neurogenic or humoral 
influence on the membrane during erythropoiesis or 3) an 
action of  a plasma factor that permanently alters this 
membrane. Furthermore, although plasma from SHR does 
not produce the characteristic change in erythrocyte fluxes at 
4 ~ C, the possibility remains that it might have an influence on 
the erythrocyte membrane if it were incubated at 37~ 
Nevertheless, the basic observation that a flux difference does 
occur at 4 ~ C in the absence of  plasma establishes that this 
technique can be used to identify an intrinsic abnormality of  
the membrane of  the erythrocyte in SHR. This difference is 
not dependent on the immediate presence of  a component of  
plasma. 
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Erythrocytes incubated in plasma had consistently greater 
Na + fluxes than those incubated in PSS (Fig. 2). This effect 
does not  parallel the elevation of blood pressure of hyper- 
tension; the increase in Na + influx in plasma from normoten- 
sive rats was greater than that in plasma from SHR. The 
lesser increase in plasma incubations from SHR compensates 
for the greater intrinsic permeability in the erythrocyte 
membrane from this strain, hence, when Na + fluxes are 
studied in whole blood, the more active intrinsic transport 
system of the erythrocyte membrane of the SHR is masked 
(Fig. 4). The mechanism of action by which Na + influx in 
plasma incubations is increased is not apparent from these 
studies. However since plasma contains bicarbonate (our PSS 
did not), and plasma incubations were not performed with 
CO2 in the gas phase, it is possible that the increased Na  + 
fluxes are due to alkalinization of the plasma [4, 17]. 
Furthermore, sodium can enter the cell as part of the anion 
NaCO3. It is known that sodium but not potassium in this 
form can utilize the anion channel to traverse the erythrocyte 
membrane [18, 19]. 

Hematocrit and hemoglobin values were found con- 
sistently higher in the SHR (Table 2). These observations 
agree with those by Sen et al. [42]. 

The relation of altered erythrocyte cation transport to the 
pathogenesis of essential hypertension in humans or spon- 
taneous hypertension in rats is unclear. Wessels et al. [47] and 
Garay et al. [22] have observed that the membrane alteration 
may be genetically linked to the hypertensive process. Na + 
flux in erythrocytes from normotensive subjects with a family 
history of hypertension was greater than that in erythrocytes 
from normotensive subjects without a familial history of 
hypertension [22, 47]. In the current study similar erythrocyte 
fluxes were observed in two unrelated strains of normotensive 
rats. One of these strains (WKy) was derived from the same 
parent strain as was the SHR. Nevertheless, the SHR differed 
phenotypically in both arterial pressure and erythrocyte 
fluxes from both of the normotensive strains. The genetic 
bases for hypertension and for the increased membrane fluxes 
appear together in the SHR strain. We do not have evidence 
to indicate whether this is a coincidental or fixed relationship 
between these two phenotypes. 

Altered cation transport  has been observed in adipocytes 
[39], leukocytes [3, 40], and intestinal smooth muscle from 
SHR [2]. An altered cation permeability in vascular smooth 
muscle from hypertensive animals [15, 28, 29], presumably 
underlies the increased reactivity and sensitivity of vascular 
smooth muscle [46], and this may be responsible for the 
increase in total peripheral resistance that causes the arterial 
pressure elevation. The intrinsic abnormali ty of the readily 
accessible erythrocyte membrane may serve as a marker for a 
more generalized cell membrane defect in hypertension. 
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