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SUMMARY. This paper develops three theoretical models to predict 

the numbers generated by Ss in an experiment described by Baird 

and Noma, 1975, Exp. II. The models (digit, base, and quarter) 

are each grounded on different assumptions about the process 

underlying number generation without the constraints of physical 

stimuli usually present in psychophysical tasks. Each of the 

models proved applicable to a restricted subrange of the physical 

continuum from I-1OO0. A combination of models seems necessary 

to adequately predict number generation. 

INTRODUCTION 

Francis Galton (1880) clearly understood that a person's concep- 

tion of the mathematical number scale provides fascinating but 

complex material for theoretical study. In the initial part 

of this work (Baird and Noma, 1975), it was shown that Galton's 

view of the problem was somewhat more realistic than the views 

held by some modern theorists interested in perception of the 

number continuum. Most importantly, we found that the perception 

of numbers is not a simple function of physical scale values, 

although Ekman's (1964) formulation of a logarithmic relation 
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between perceived and physical number is reasonably correct at a 

molar level of analysis. However, the details of the function 
are considerably more intricate. In tasks requiring Ss to gener- 

ate numbers within boundary values (e.g., 1-100, 10-1000), the 

probability of number occurrence depends upon several factors, 

including the size of the boundaries, the location of the number 

within the range, and whether the number is a multiple of certain 

special integers, such as I, 5, and 10 (Baird and Noma, 1975). 

The purpose of this article is to develop several quantitative 

models to predict the numbers (and their frequencies) produced" 

under the conditions tested in these experiments. Succeeding 

parts of this study deal with methodological applications of 

numbers as stimuli in standard psychophysical tasks (Weissmann, 

Hollingsworth, and Baird, 1975), as well as with the broader impli- 

cations of this research for theories of scaling involving other 

stimulus attributes (Baird, 1975, a,b). 

There are two aspects to this problem. The first concerns 

predicting the probability that a number falls within different 

log10 cycles (e.g., 1-10, 10-1OO, 100-1000). That is, when Ss 

are asked to generate numbers within boundaries enclosing two or 

more log cycles, the probability of number production among cycles 

is not equal. This aspect is considered to be peripheral to the 

major problem of predicting frequencies within a log cycle although 

we attempt to include both aspects in the models. 

Cycle Selection. Once a stimulus range is given, there is a certain 

probability that a number will be chosen within each of the 

appropriate log cycles. A model of cycle selection can specify 

these probabilities, although at present, we have no adequate 

explanation for them. 

We start with a few definitions. A number (N) is defined as 
falling within a cycle if I0 n S N < I0 n+l . Since the highest 

cycles in the ranges are statistically indistinguishable (Baird 

and Noma, 1975; Komogorov-Smirnov tests, Tab. 1), we define the 

upper complete cycle of a stimulus range as R n. The ranges under 
consideration will be restricted to "unit digit" cases: 1-10, 

1-100, 1-1000, 10-1OO, 10-1000, and 100-1000. These ranges cover 

at least one complete cycle and one number from the next highest. 

For example, for the range 10-100, a response in the upper cycle 
is 101S N < 102 , but responses of 102 were allowed, so these are 

considered to fall within the next highest cycle 102 % N < 103 . 

This applies to the stimulus range (R). A similar definition is 

assumed for response cycles (C). 

Turning now to some data, the relative frequency of a number 
falling within different response cycles (C) can be calculated 

for each of the stimulus ranges. Cycle C n is always the highest 
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cycle; therefore Cn+ 1 covers the relative frequency of a response 

equal to the upper boundary (10, 100, or 1000) in the unit digit 

cases. We can simplify matters considerably by redistributing 

these frequencies among the remaining response cycles. That is, 

assuming responses to the upper boundary were disallowed, how 

would the remaining frequencies redistribute? This can be found 

(with reasonable assumptions) for each of the cycle frequencies 

p(C x) by applying Eq. 1 

P (Cx) ( 1 ) 
P(Cn) + P(Cn-1) + P(n-2) ' 

where p(C x) is successively set equal to P(Cn) , P(Cn_1) , and 

P(Cn_2). The results from Eq. I are given in Tab. I, examina- 

tion of which suggests that P(Cn) is quite similar for each of 

the ranges containing more than one cycle. The average value 

of p(C n) over the three multiple-cycle ranges is .7. For two- 

cycle ranges, this means that P(Cn_ I) = .3. For the three-cycle 

range 1-1OO0, we assume from the data that P(Cn_ I) = .I and 

P(Cn_2) = .2 (see Tab. I) are reasonable values. I 

This allows us, then, to formulate a descriptive model of response 

cycle selection conditional upon stimulus range. 

1-10, 10-100, 100-1000 

all multiple-cycle ranges 

1-100, 10-1000 

1-1000 

p(C n) I R n = I.O 

p(C n) l ( R n + R n -  I ...Rn_x)=e= .7 

P(Cn-1)l (Rn+Rn- 1) = 1-p(Cn) 

p (Cn- I ) l (Rn+Rn_ 1+Rn- 2) =Y= • 1 

p (Cn_ 2 ) I (Rn+Rn_ I +Rn_ 2 ) =I -~-Y 

Table I. Relative frequency of response values. Data given for 

different log cycles for each of six stimulus ranges used by Baird and Noma, 

1975 

Log Cycles 

C C C C 
n+1 n n-1 n-2 

Range 1 -10 - 1.O - - 

1 o  - t o o  - i . o  - - 

i O O - l O O O  - i . o  - 

i -100 - 0.79 0.21 - 

10 -I000 - 0.64 0.36 - 

1 -1000 - 0.68 0.12 0.20 

1 
p(C x) will henceforth be referred to as a probability. 
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These descriptive equations are clearly limited by a lack of 

theoretical understanding about the psychological variables 

important in selection of a cycle, but they can serve as an initial 

step toward further work. Larger stimulus ranges must be tried 

before further generalizations are attempted. 

Number Selection. Three models of number selection are suggested 

here: the digit model, the base model, and the quarter model. 

We will first describe each and then show the degree of corres- 

pondence between their predictions and the empirical data obtained 

for the six unit-digit ranges. None of the models is completely 

satisfactory for all ranges, although a combination of the base 

and quarter model shows the most potential for quiding future 

work. 

The Digit Model 

This model gives the probability of selecting one or more signifi- 

cant digits within each of the stimulus ranges. The actual selec- 

tion of a nonzero digit (1, 2,. . 9) is assumed to be a random 

process. 

Tab. 2 gives the relative frequencies for one, two, and three 

significant digits occurring in a number generated by Ss within 

each of the stimulus ranges (R) once the response cycle is 

specified (C). These frequencies are adjusted values based on 

Eq. I in order to eliminate responses equal to the upper stimulus 

Table 2. Relative frequency of significant digits in response numbers. Data 

based on six stimulus ranges used by Baird and Noma, 1975 

Response C 
n-I 

Range (C) 

Stimulus Range (R) 

1-10 10-1OO 1OO-1OOO I-1OO 10-1OOO 1-1OOO 

Signi- 

ficant 

Digits 

1 0.97 0.68 0.64 

C 2 0.03 0.32 0.22 
n 3 - O.14 

1 

2 

3 

I 

C 2 
n-2 

3 

0.59 O.64 0.65 

O.41 O.17 O.15 

- O.19 O.2O 

O.96 O.58 O.54 

0.04 0.42 0.45 

0.99 

0 . 0 ]  
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boundary. From these data, it can be seen that the probability 

of obtaining one significant digit is predominant and similar for 
all response cycles, except for cases involving the range 10 ° < N 
< 101 . In the latter instance, the probability is close to 1.O 

that numbers will contain one significant digit. Excluding these 

cases, the mean relative frequency is .61. Formalizing matters, 
we conclude that the probability of one significant digit (D I ) 
can'be found by Eqs. 2 and 3. 

P(D1) I[C n = (IO°<N < 101)] = 1.O (2) 

P(DI) I (Cn; Cn_1; . Cn_x) =~ = .6; Cn # (100 < N < 101 ) (3) 

Then, the probability of two significant digits (D 2) for response 

cyles C n and Cn_ 1 (associated with stimulus ranges I-1OO and 
10-1OOO) is seen to be 

P(D2) l(Cn; Cn_ 1) = 1 - 8; Cn_ 1 # (10 ° < N < 101 ) (4) 

The d~termination of D 2 for the three response cycles (Cn;Cn_1; 
Cn_ 2) associated with the ranges 1OO-1OOO, 10-1OOO, and 
1-1OOO requires one further assumption. Namely, we assume that 
the probability of adding a significant digit is always equal to 

(I- 8) times the total available numbers at ~hat point. This 

assumption does little violence to the empirical data and reduces 
the free parameters in the model. Therefore, 

P(D3) ] (Cn; Cn_1; Cn_ 2) = (1 8) 2 - ; Cn_ 2 # (10 ° ~ N ~ 101 ) (5) 

Finally, since the probabilities for one, two, and three signi- 
ficant digits must add to 1,O, 

2 2 
P(D2) I (Cn;Cn_1;Cn_ 2) =I-p(DI)-P(D3)=I-(B) - (1-B) = 8- 8 (6) 

Eqs. 2 through 6 constitute a model for selection of significant 

digits within the constraints provided by the stimulus and 

response ranges given in Tab. 2. The model has one free para- 

meter (8). The selection of a specific digit (I 9) 
is assumd to be a random process. 

The Base Model 

The empirical data suggest rather strongly that Ss generate cer- 
tain numbers much more frequently than others and that these 
"preferred" numbers tend to be multiples of 1, 10, 1OO, 5, and 

50. The base model elaborates on this theme by claiming that 
these are the only numbers worth considering when describing the 
response distribution. 
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Dealing first with multiples of I, 10, and 1OO, the results can be 
described by a process functioning according to a mathematical base 

10 system, where only one significant digit is used. We will refer 

to these responses as "preferred numbers" (N). The values for N 

can be found by applying a single exponential function: 

N = kb n , (7) 

where b is the base 10, n is the place integer (O, I, 2, . etc.), 

and k is the category integer ranging from 1 to b - I. 

Preferred numbers generated by a base 10 system are clearly the most 

prevalent in the data (Baird and Noma, 1975, Fig. 2). Multiples of 

5, 50, and 500 are also important, although not at equal strength 

for all multiples. In fact, a closer look at the individual mul- 

tiples suggests that numbers such as 15, 25, 75, and 250 are much 
stronger than multiples such as 35, 85, 140, or 260. These preferred 
multiples suggest that a base 5 system is operating here in addi- 

tion to base 10. If b = 5 in Eq. 7, the preferred numbers from 

this system can be obtained. Examples of preferred numbers for 

bases 10 and 5 are given in Table 3. The important aspect of the 

base system for our purposes is its generation of selected multiples. 

The actual base notation is unimportant. Therefore, entries in the 

table represent an evaluation of Eq. 7 in decimal notation for 

both bases. Assuming a preferred number can be obtained from either 

of these two bases and that outputs from two bases do not add, we 

can write out the transformation for any region of the number con- 

tinuum. For instance, selecting the range of numbers from I to 

1OOO, we have the following preferred states written in base 10 

notation: I, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 ~, 20, 25 ~, 30, 40, 50, 

60, 70, 75 ~, 80, 90, 1OO, 125 ~, 200, 250 ", 300, 375 ~, 400, 500, 

600, 625 ~, 700, 800, 900, 1OO0. The asterisk indicates integers 
generated by base 5 alone. It is the contention of the base model 

that these numbers represent the major share of generated responses. 

Moreover, we assume that each preferred number is equally likely. 

Table 3. Preferred states generated by base 10 and base 5. 

Entries are in decimal notation. 

b n b n 
3 2 1 o 3 2 1 o 

10  10  10  1 0  5 '5  5 5 

1 1 0 0 0  1 0 0  10 1 1 125  25  5 1 

2 2 0 0 0  2 0 0  20  2 2 2 5 0  5 0  10  2 
k , , , , , k 

' ' ' ' ' 3 3 7 5  75  15 3 I , I , , 

9 9 0 0 0  9 0 0  9 0  9 4 5 0 0  1 0 0  20  4 
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The Quarter Model 

Although the base model captures the preferred numbers generated 

from 1 to 100, it does not seem as applicable to numbers greater 

than 100, at least for base 5. For example, this base system 

predicts that numbers such as 375 and 625 are important, and they 

clearly are not, either in our experiments or in psychophysical 

studies (Baird, Lewis and Romer, 1970). 

The quarter model maintains the importance of I, 10, and 1OO 

but not necessarily within the context of the base model. These 

numbers are simply preferred multiples. In addition to these 

multiples, the model assumes that beyond 10, a log cycle is 

divided into quarters to produce the further preferred numbers 

25,50,75,1OO,250,500,750, and 10OO. These quarter values and the 

multiples of 1,10 and 1OO are then weighted differentially. 

Finally, the model assumes additivity. These weightings are then 

used to predict probabilities of occurrence for each of the 

numbers falling within a particular stimulus range, The proba- 

bility of a generated value falling within different log cycles 

is predicted by the same cycle selection model used for the 

digit and base models. 

Kolmogorov-Smirnov Tests 

The adequacy of the digit, base, and quarter models was determined 

by Kolmogorov-Smirnov tests of the differences between the theo- 

retical and empirical distributions for each of the six unit- 

digit ranges reported in Baird and Noma (1975). This test con- 

siders the maximum absolute difference between the theoretical 

(FM(X)) and empirical (Fs(X)) relative frequency distributions: 

D = max IFM(X) - Fs(X) I (8) 

With the value of D and a good approximation for a continuous 

distribution from the large number of responses, the Kolmogorov- 

Smirnov test of goodness of fit may by used. 

The parameter values for log cycle selection were identical for 

the digit and quarter models and were taken to be those deter- 

mined from the data summary given in Table I. That is, e = .7, 

and y = .I. Slight iteration of ~ provided better fits for the 

base model, and for these tests, e = .78, and y = .06. 

For the digit model 8 = .6 for selection of significant digits, 
and for the quarter model the multiples of 1, 10, and 1OO were 

weighted by 1.O, while the quarters were weighted by .5. These 

weights were determined to be optimal (by inspection) across 
stimulus ranges, as determined by iteration procedures. 
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The results of the Kolmogorov-Smirnov tests are presented in 

Fig. I through 5 for five ranges, with the exception of I to 10, 

for which all models provided an excellent fit. In each figure, 

it is possible to assess the degree of fit between the empirical 

data (presented in the lower part of the figure) and the theo- 

retical models throughout the stimulus range (omitting the upper 

boundary, 10,1OO, or 1000). The upper three sections of each 

figure show the differences in cumulative relative frequency 

distributions for each of the models. The solid horizontal lines 

through zero indicate perfect agreement between empirical and 

theoretical data; the upper and lower horizontal lines are the 

boundaries (plus and minus) of nonsignificant differences (p < 

.05). The obtained differences are shown by the irregular con- 

tinuous curves. The way to read these graphs is as follows: 

The predictions of the model are significantly different from the 

empirical data if the curve lies outside the boundaries in either 

a positive or negative direction for any point along the x-axis. 

This type of display allows one to specify more exactly the 

regions where the models have difficulty, an advantage clearly 

lost when one reports only the maximum difference used to deter- 

mine statistical significance. In particular, negative devia- 

tions from zero indicate that the cumulative frequency of the 

empirical distribution up to x was greater than that of the 

theoretical distribution (Eq. 8). The opposite is of course 

true for positive deviations. 

0.1 Bose 

.~ 0 . . . .  ' "¢ '~"  

i:5 
~ - 0 . 1  

o.I Dig# / / k .  

~ , , , , , , , ,  
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i5 
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4 0  
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I - I 0 0  
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Fig.l. Relationship between em- 

pirical data and theoretical mod- 

els for the stimulus range 1-100. 

Bottom part of the figure gives 

empirical results. Top sections 

present results of Kolmogorov- 

Smirnov tests (Eq. 8) for the 

base, digit, and quarter models. 

Nonsignificant differences be- 

tween the two cumulative fre- 

quency distributions are indicated 

whenever the obtained curves re- 

main within the positive and 

negative horizontal lines (p = 

.05). For more details, see 

the text. 
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Fig. 2. Relationship between em- 

pirical data and theoretical mod- 

els for the stimulus range i-iOOO. 

Bottom part of the figure gives 
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Smirnov tests (Eq. 8) for the base, 

digit, and quarter models. For 

more details, see the text and 

Fig. 1 
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Fig. 3. Relationship between em- 

pirical data and theoretical mod- 

els for the stimulus range 10-1OO. 

Bottom part of the figure gives 

empirical results. Top sections 

present results of Kolmogorov- 

Smirnov tests (Eq. 8) for the 

base, digit, and quarter models. 

For more details, see the text 

and Fig. i 
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Range 1-10. All models offer an excellent fit to the data for 

this range. 

Range 1-100. Results are presented in Fig. I. The predictions of 

the base model are not significantly different from the empirical 

results. Both the digit and quarter models exceed the positive 

boundary. Specifically, the theoretical distribution leading up 

to 10 becomes increasingly greater than the empirical function. 

However, the region falling outside the boundary is not extensive. 

Range 1-1000. Results are presentedin Fig. 2. Both the digit and 

quarter models are not significantly different from the empirical 

distribution, whereas the base model fails, primarily in the 

log cycle from 10 to 100, where empirical results are particularly 

scarce. 

Range 10-100. Results are presented in Fig. 3. Both the digit and 

quarter models fail rather decisively, whereas the base model is 

adequate (one point is barely outside the boundary). 

Range 10-1000. Results are presented in Fig. 4. All three models 
are inadequate. The empirical function has too many responses at 

the low end (e.g., 11, 12, 13, 14) and none of the models is 

able to recover from the initial negative drop induced by this 
situation. 

Range 100-1000. Results are presented in Fig. 5. Only the quarter 

model handles this range satisfactorily. The digit and base models 

break down at different locations within the range. 

In summary, each of the models seems applicable to different stimu- 

lus ranges. Although separate iteration of parameters for each 

range improves the fits, the overall pattern does not change dra- 

matically. Furthermore, it appears that the base model is most 

applicable for numbers 1 to 1OO (independent of the subrange se- 

lected), while the quarter model is more viable for numbers greater 

than 1OO. Hence, a combination of the major characteristics of 

both models would provide the best predictions for data generated 

in a variety of stimulus ranges. We will return to this possibi- 

lity after presenting the three models' predictions of relative 

error (standard deviation divided by the mean) and uncertainty 

measures for each of the ranges. These predictions offer statis- 

tical summaries of the theoretical distributions used in the 

Kolmogorov-Smirnov tests (same parameter values). 

Relative error. Fig. 6 shows the relation between theoretical re- 

lative error, as predicted by each of the models, and empirical 

relative error for each of the six ranges. In most cases, the 

theoretical values are less than the empirical ones, although 
agreement is fairly high for all three models. Considerably 
better fits can be obtained through individual iteration of 
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Fig. 6. Relationship between em- 

pirical standard deviation divi- 
m 

ded by the mean (SD/M) and theo- 

retical values obtained for the 

base, digit, and quarter models 

employing the parameter values 

stated in the text. Data are 

shown for each of six stimulus 

ranges. 

parameters, but such optimization leads to less satisfactory 

agreement in terms of the Kolmogorov-Smirnov tests just dis & 

cussed. 

Uncertainty Measures. Response uncertainty measures were calculated 

according to Eq. 9 for each range on data generated by each model: 

N 

U = - ~ P(xi)log p(x ),i 
i=1 

(9) 

where x i was a single response category of the total N. These 

results are shown in Fig. 7, where empirical uncertainty is 

plotted against theoretical uncertainty. The base and quarter 

models have a limited number of response categories compared to 

the digit model, and this is reflected in the uncertainty meas- 

ures. The uncertainties are higher for the digit model than for 

the empirical results, whereas the base and quarter models yield 

measures which are generally smaller than the empirical values, 

The existence of some low probability random categories (from 

the digit model?) to represent noise in the base and quarter 

models would bring theoretical predictions more in line with 

actual values. 
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2 
OVERIEW 

The empirical and theoretical work presented in this and the first 

paper of the series permits us to devise a satisfactory picture 

of the number behavior of our subject population. The most obvious 

conclusion is that Ss prefer to use certain numbers at a much 

higher frequency than others, suggesting discrete steps in number 

preferences along the physical continuum. These preferred numbers 

are captured quite adequately by the three models described here, 

although each is most applicable to a different region of the 

continuum. Drawing upon the results presented here, as well as 

upon psychophysical studies requiring numerical responses (Baird 

et al., 1970), it is possible to provide a general description 

of number preferences (in terms of usage) for the range 1 to ioo0. 

However, no single model seems able to handle all the results. 

Assuming an equal weighting of log cycles in terms of the prob- 

ability of number occurrence (this will no doubt depend upon 

the specific experimental conditions), we can describe number 

behavior for each log cycle separately. (1) For the range 1 to 

9.9, the base model can be applied with only base 10 operating. 

Each preferred number is equally weighted in importance. (2) 

For the range 10 to 99, the base model is applicable using base 

5 and base 10. As in the quarter model, these two bases can be 

All three models can also reproduce the function between rank order of 

response magnitude and the geometric mean described by Baird and Noma, 1975 

(Fig. 5) and by Banks and Hill, 1974. Hence, this phase of the empirical 
results will not be discussed further. 
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weighted differently and their outputs assumed to be additive. 

Reasonable weights would appear to be 1.0 for base 10 and .5 for 

base 5. Hence, numbers such as 30, 40, and 60 are weighted by 

1.0; numbers such as 25 and 75 are weighted by .5, and numbers 

such as 10 and 50 are weighted by 1.5. (3) For the range 100 

to 999, the base 10 system continues to operate with a weighting 

factor of 1.O. However, the quarter model is used to obtain the 

numbers 250, 500, 750, which are weighted by .5. Numbers such 

as 100 and 500 receive strength from both the quarter and base 

10 values and, hence, these receive the summated weight, 1.5. 

Another way to view the quarter values is that they represent 10 

times the previous cycle of the base 5 system (i.e., I0(k52), 

where k = the integers I to 4). If the base 5 system were appli- 

cable for ranges extending past 100, the proper multiple would be 

5 (i.e., 5(k52). Hence, it can be claimed that Ss are applying 
1 

an inappropriate multiplier for numbers over 100. 

Assuming equal weight for each log cycle and the foregoing model, 

we generated a frequency diagram for the continuum between I and 

1000. This diagram is given in Fig. 8 and represents a predic- 

tion of the relation between the use of numbers and the physical 

scale (although random noise in the form of low frequency cate- 

gories could be added). The close agreement between number 

generation data and data obtained from psychophysical studies 

(Baird et al., 197o) suggests that all such results are biased 

by relations similar to that given in Fig. 8 and would conse- 

quently have to be "corrected" in order to reveal the underlying 

scale appropriate for perception of the physical attribute (e.g., 

light, sound) under investigation. 

P 
h 

i0 o 500 
IIII 

so " ib '  
Numerical Response Category 

iI 
II, 
103 

Fig. 8. Hypothetical frequency diagram for the range 1-999. Data were 

generated on the assumption of equal response frequencies among log cycles. 
The base model was employed for the range i to 1OO, whereas for numbers 

greater than IOO, the quarter model was employed. Weigh[ts for particular 

types of response numbers are stated in the text 
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