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Summary. The glutamate dehydrogenase structural gene, 
gdhA, was mapped at 38.6 rain on the genetic map and 
at 1860 kb on the physical map. A detailed map of this 
region is presented. 
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The enteric bacteria have two primary pathways of assi- 
milatory ammonia metabolism, each leading to forma- 
tion of glutamate. One pathway involves the enzyme 
glutamate synthase (GOGAT) together with glutamine 
synthetase. In Escherichia coli, GOGAT is encoded in 
the gltBDF operon at 69.4 rain on the genetic map 
(Bachmann 1983) corresponding to coordinates 3420- 
3430 on the physical map (Kohara et al. 1987). Gluta- 
mate dehydrogenase (GDH) also mediates glutamate 
synthesis. Its structural gene, gdhA, is located at 27 min 
on the Salmonella typhimurium chromosome, close to 
pncA (Rosenfeld et al. 1982). Mutations causing loss of 
GDH in E. coli and in Klebsiella aerogenes have been 
mapped near trp, also at about 27 min. In this report 
I show that the GDH structural gene (gdhA) in E. coli 
maps at about 38.6 min, close to pncA. This corresponds 
to the S. typhimurium location when a large rearrange- 
ment distinguishing the two species from each other is 
taken into account (Sanderson and Hall 1970). 

Mutants that are singly deficient in either pathway 
have no growth factor requirement, but glt gdh double 
mutants require aspartate or glutamate (Reitzer and Ma- 
gasanik 1986). Aspartate is convertible to glutamate and 
is utilized more readily than glutamate (Pahel et al. 1978; 
Rosenfeld et al. 1982). I observed an aspartate-requiring 
mutant (Asp- phenotype) among colonies appearing 
after plating from a culture sample frozen after 728 gen- 
erations of glucose-limited growth in a chemostat (Hell- 
ing et al. 1987). However the mutant, designated RH448, 
grew without supplementation anaerobically, unlike a 
bona fide glt gdh mutant obtained from the E. coli Ge- 

netic Stock Center. Enzyme assays showed the mutant 
to be deficient in GDH, as was the parent strain, JA122. 
RH448 showed GOGAT activity during anaerobic 
growth, but not in air. The parent strain had normal 
GOGAT activity. The mutation affecting GOGAT ac- 
tivity mapped to the region of the gltBDF operon and 
is complemented by the Clarke-Carbon clone bank 
(Clarke and Carbon 1974) plasmid pLC9-34, containing 
gltBDF (K. Corrado and R. Helling unpublished re- 
sults). 

Mating with a set of Hfr strains (Singer et al. 1989) 
showed that a gene conferring an Asp + phenotype to 
an RH448 derivative (RH461) was transferred by an 
Hfr (RH470) transferring counterclockwise from 
61.5 min as well as by Hfrs transferring the gltBDF oper- 
on. However no such recombinants were obtained from 
matings transferring counterclockwise from 35min, 
across the putative locus of gdh at 27 min. 

RH470 (Table 1) was found to transfer the gene for 
Asp + after gyrA (Na r, at 48 rain) and TnlO (Tc r, at 
43 min) had been transferred by the same donor. Among 
Asp + Kn r recombinants, 58.3% were Na ~ and 80.6% 
were Tc ~. Application of an appropriate mapping func- 
tion (Low 1987) suggested that the gene for Asp + was 
located at approximately 38 rain. 

Transduction experiments showed that the gene for 
Asp + cotransferred with a TnlO integrated at about 
37.4 min (Table 2), at a frequency suggesting that the 
two loci were over 1 min apart (Low 1987). The gap 
locus is known to map at 39.3 min (Bachmann 1983), 
or 1880 on the physical map (Branlant and Branlant 
1985). If the gene for Asp + were located clockwise from 
37.4 min, it would be expected to map between 37.4 and 
39.3, and to cotransduce with gap. Indeed the genes did 
cotransduce at a relatively high frequency (Table 2), and 
direct assay showed that an Asp + gap-3 transductant 
had GDH but lacked GOGAT. Asp ÷ transductants ar- 
ise from incorporation of genes at either of two different 
regions of the chromosome (at 38 rain and at the gltBDF 
operon at 69 min), thus complicating the use of the co- 
transduction data to estimate distance. Nevertheless it 



Table 1. Strains 

Strain Relevant characteristics Source or reference 

Escherichia coli: 

JA122 F- araD139 thi-1 gdh 
supE44 hss-l(2) plus 
plasmid pBR322A 5 

RH448 Asp- JAI22, lacks plasmid 

RH542 A (xthA-pncA)90 

RH461 RH448::Tn5 (Kn ~) 

RH470 KL16 zed-3069::TnlO 
gyrA (Na r, 48 min) 

RH474 zdh: :Tnl0 

RH480 gap-3 

RH481 gap-7 

Lambda phages: 

4B8 (328) 
12H7 

Plasmids : 

pLC7-10 
pLC10-4 
pLC26-8 
pLC40-t 3 
E1923 

Helling et al. 
(1987) 

Clone from frozen 
sample taken after 
728 generations of 
glucose-limited 
culture of JA122; 
Helling et al. (1987) 

Received from 
B. Weiss as strain 
BW9115, a deri- 
vative of strain 
BW9101 of White 
et al. (1976) 

Infection with 
2L71 :Tn5 (the 
location of Tn5 was 
not determined) 

L. Peruski ; 
CAG5055 of Singer 
et al. (1989); spon- 
taneous Ma r mutant 

D. Friedman (the 
TnlO is 3' of himA 
and was used to obtain 
the hirnA deletion 
strain K1299 
(Friedman et al. 1984)) 

B. Bachmann 
(CGSC5585); 
DF225 of Hillman and 
Fraenkel (1975) 
B. Bachmann 
(CGSC5953 ; 
DF240, a derivative 
of DF234 of Hitlman 
and Fraenkel (1975) 

Y. Kohara, A. 
Ishihama and T. 
Nagata; Kohara 
et al. (1987) 

R .  Van Bogelen; 
Clarke and Carbon 
(1974) 

S. Tabata; Tabata 
et al. (1989) 

Tc r indicates tetracycline-resistance, Kn r indicates kanamycin-resis- 
tance, and Na r indicates nalidixic acid-resistance 

seemed likely that the gene for Asp ÷ in the 38 min region 
was about 30-40 kb to the left of  gap (as oriented in 
the map in Fig. 1). 

Therefore a set of  cloned D N A  segments from the 
gap region was examined in order to identify those that 

Table 2. Cotransduction of gdh and nearby loci 

509 

Donor Selected Unselected Frequency of 
(number scored) (number observed) cotransduction 

RH474 Tc r (50) Asp ÷ (2) 0.04 
RH474 Asp + (252) Tc r (4) 0.02 
RH480 Asp ÷ (205) gap-3 (49) 0.24 
RH48t Asp + (5t6) gap-7 (15t) 0.29 

In every case the recipient was RH461 (Tc s Asp-) and the vector 
was Plbt. Transductions were carried out by standard procedures 
(Lakshmi and Helling 1976). Selection for Asp + was on minimal 
medium (Helling et al. 1987) containing succinate (0.2%) plus gly- 
cerol (0.2%) as carbon and energy sources. Inability to grow on 
glucose minimal medium at 40 ° C indicated the presence of a gap 
mutation, gap-7 mutants grow on glucose at 30 ° C but not at 40 ° C 

contained a gene conferring an Asp + phenotype on 
RH448. RH448 infected with 24B8 gave prototrophic 
recombinants. Enzyme assays on one such recombinant 
showed it to contain G D H  but to be still deficient in 
GOGAT.  No protrophic recombinants appeared follow- 
ing infection with 212H7, which contains a cloned D N A  
segment partially overlapping that in 24B8 (Kohara 
etal.  2987). Transformants containing the plasmid 
pLCI0-4 or pLC26-8 were also Asp +, but no proto- 
trophs appeared following transformation with plasmids 
containing adjacent segments of  cloned E. coli D N A  
(pLC7-10 and pLC40-13). The plasmid E1923 contains 
a cloned E. coli D N A  segment that completely overlaps 
the D N A  in )~4B8, pLC10-4, and pLC26-8. However 
transformants of  RH448 containing E1923 remained 
Asp- .  Cells with this plasmid are strongly selected 
against and plasmid loss or rearrangement is observed 
frequently (S. Tabata, personal communication; my ob- 
servations), so it is likely that the gene from 24B8, 
pLC10-4, and pLC26-8 that converts RH448 to Asp + 
was not present in a functional from in the E1923 plas- 
mid that was used. 

The sequence of  gdh has been determined in two 
laboratories (McPherson and Wootton 2983 ; Valle et al. 
1984). I compared the restriction map of gdh and its 
flanking region with the restriction map of the entire 
E. coli chromosome (Kohara et al. 2987). The two maps 
coincided at physical coordinate 1860 on the overall 
map, corresponding to about 38.6 min on the genetic 
map. The map of  the gdh locus failed to match the chro- 
mosome in the region of  27 min or indeed at any location 
other than 1860. The segment containing gdh is present 
on 24B8 and on pLC10-4 and pLC26-8, but is absent 
from the other clones tested. I conclude that the structur- 
al gene for G D H  (gdhA) is at coordinate 1860, and that 
RH448 and its parent JA122 are deficient in G D H  be- 
cause of mutation at that locus. 

Several other genes known to be in this region of 
the chromosome have been sequenced. I have correlated 
the sequences with each other and with the regional re- 
striction map to give the detailed genetic and physical 
map shown in Fig. 1. Other genes have been reported 
within this region but have not been mapped precisely. 
These include a gene suppressing formation of  deletions 
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Fig. 1. Genetic and physical map of the region containing gdhA. 
The physical map coordinates are from Kohara et al. (1987; the 
genetic map positions from Bachmann (1983). Gene positions are 
based on the physical map. Note that 1 rain on the genetic map 
would correspond to 47 kb if there were a strict linear correlation 
of genetic and physical maps. The lower line indicates the known 
extent of the xth-pnc deletion (White et al. 1976), Absence of the 
functions of gdh, ansA (or nit), and selA in the deletion strain 
but not in the parent was shown, respectively, by direct assay, 
by inability to use asparagine well as nitrogen source, and by lack 

1880kb 

of production of gas from glucose anaerobically. References for 
the sequences are: celABCDF (Parker and Hall ] 990), xthA (Sapor- 
ito et al. 1988), gdhA (McPherson and Wootton 1983; Valle et al. 
1984), topB (DiGate and Marians 1989), selD (fdhB; Leinfelder 
et al. 1990), sppA (Ichihara et al. 1986), ansA (Jerlstr6m et al. 1989), 
gap (Branlant and Branlant 1985). A restriction map of kate is 
presented in Mulvey et al. (1988). No gene within this segment 
was included in the recent alignment of about 50% of the E. coli 
data base sequences with the overall physical map ( R u d d e t  al. 
1990) 

(topB?; Yi et al. 1988), a gene for utilization of aspartate 
as carbon source (nit?; Spring et al. 1986), ackB (sppA 
or topB?), feo (Hantke 1987), pncA, and in Sahnonella, 
the pncX gene (Hughes et al. 1983) and the nit gene, 
which controls use of aspartate, asparagine, and many 
other organic nitrogen sources (Broach et al. 1976). The 
pncA gene is known to map midway between xthA and 
gap in E. coli (White et al. 1976). On the basis of three 
point crosses it has been reported to map to the right 
ofsppA (Suzuki et al. 1987), and well to the left ofansA 
(Del Casale et al. 1983). These results are inconsistent 
because sequencing has shown the E. coli sppA (Ichihara 
et al. 1986) and ansA (Jerlstr6m et al. 1989) genes to 
be adjacent (Fig. 1). 

The pncA gene of Salmonella is the second gene of 
a two-gene operon transcribed divergently from gdh 
(Hill-Chappell et al. 1986) and is located on the opposite 
side of gdh from nit (Rosenfeld et al. 1982). Possibly 
pncA is the second gene of the ansA operon (Jerlstr6m 
et al. 1989), and pncJ(in Salmonella is the gene for aspar- 
aginase I (ansA). Both the asparaginase and nicotina- 
mide amidohydrolase (from pncA) enzymes are pro- 
duced constitutively (Jerlstr6m et al. 1989; Hill-Chappell 
et al. 1986). The amidohydrolase is found in the periplas- 
mic space, and the 5' end of the gene following ansA 
encodes what appears to be a typical signal sequence 
for membrane transport (Jerlstr6m et al. 1989). The sub- 
strates of the two enzymes have similar structures and 
the reactions appear to be nearly identical. On the other 
hand, if pncA maps to the left of ansA it is presumably 
close to gdh. Genetic distance measurements in this re- 
gion are not linear (White et al. 1976), and three factor 
crosses have given incorrect gene order in other regions 
also (Williams et al. 1988). 

Nevertheless there is an alternative explanation for 
the seemingly contradictory mapping results that does 
not invoke unusual genetics, nit mutants are impaired 
in utilization of many organic nitrogen sources including 
asparagine, and it is reasonable to think that the general 
impairment would also extend to use of nicotinamide. 
If the putative pncA mutant selected and used in map- 

ping studies by Del Casale et al. (1983) were in fact mu- 
tant in the nit gene, the results could be rationalized 
with a map order nit-gdh-sppA-ansA-pncA-gap. It is 
plausible that some putative ansA mutations are actually 
nit mutations, and this would also confuse mapping. 

A well studied deletion extends between xthA and 
pncA (White et al. 1976). The deletion mutant is known 
to lack sppA (Suzuki et al. 1987) and also the gene sup- 
pressing formation of deletions (Yi et al. 1988). I found 
that the mutant lacks the functions controlled by gdh, 
ansA (or nit), and seID (formerly fdhB; Haddock and 
Mandrand-Berthelot 1982; Leinfelder et al. 1990) as well 
(Fig. 1), unlike its parent which is proficient for them. 
Thus the deletion removes DNA from at least coordi- 
nates 1850 through 1868. 

These results show unambiguously that gdhA, the 
structural gene for glutamate dehydrogenase, is located 
at 38.6 rain. How then could the location have been as- 
sumed to be at 27 rain? In part it is because this seemed 
to correspond to the location of gdhA in Salmonella, 
at about 27 rain (Rosenfeld et al. 1982). However Salmo- 
nella and Escherichia differ by a large inversion of the 
segment between about 25-27 and 35-39 min, and by 
smaller rearrangements near the inversion endpoints (Ri- 
ley and Krawiec 1986). The current results suggest that 
gdh was included within the overall rearrangement to- 
gether with the closely linked gene pncA, known to be 
at 25 rain in Salmonella and at about 38.5 rain in 
Escherichia. In S. typhimurium, the functional equivalent 
of selD of E. coli is selA (Leinfelder et al. 1990), which 
maps in the general region of 21 rain (Kramer and Ames 
1988) and so is probably also in the rearranged segment. 

The primary mapping of gdh to about 27 rain in E. 
coli (Pahel et al. 1978) was based on a whole-cell, single- 
colony assay and a total of three cotransductant colo- 
nies. In one cross, 2 of 78purB + transductants were 
gdh. In a second cross, 1 of 52 trp + transductants was 
gdh. The same gdh gltB strain (Berberich 1972) was used 
in selecting for the cloned DNA segments containing 
a gdh ÷ gene that were sequenced (McPherson and Woot- 
ton 1983; Valle et al. 1984). The cloned gene was verified 



511 

as the gdh s t ruc tura l  gene (Sanchez -Pescador  et al. 1982; 
Valle et al. 1983; M a t t a j  et al. 1982), and  marke r - r e scue  
exper iments  sugges ted  tha t  the  c h r o m o s o m a l  m u t a t i o n  
causing loss o f  G D H  act iv i ty  was in the gdh s t ruc tura l  
gene (Ma t t a j  et al. 1982). 

Subsequen t ly  Vogler  et  al. (1989) d i scovered  a new 
gene (gtmX) affect ing a m i n o  sugar  m e t a b o l i s m  tha t  
m a p p e d  to 26.8 rain, be tween  trp and  purB. However ,  
using the same gdh gltB s t ra in  as Pahe l  et al. they found  
no c o t r a n s d u c t i o n  o f  gdh with trp, glmX, or  e i ther  o f  
two o the r  genes in this region.  They  conc luded  tha t  gdh 
was no t  loca ted  near  27 rain. [Note  tha t  their  Table  5 
has e r rors  suggest ing c o t r a n s d u c t i o n  o f  gdh and  trp. N o  
c o t r a n s d u c t i o n  o f  gdh was f o u n d  with  any  gene in this 
reg ion  (J. Lengeler ,  pe r sona l  communica t i on ) ] .  I have 
used tha t  same s t ra in  in ma t ings  and  o b t a i n e d  results  
cons i s ten t  wi th  the loca t ion  o f  the  gdh m u t a t i o n  near  
38 min,  bu t  f o u n d  no Hfr  gene tha t  confe r red  an  Asp + 
p h e n o t y p e  and  m a p p e d  wi thin  the  reg ion  immed ia t e ly  
coun te rc lockwise  o f  35 rain. I conc lude  tha t  the or ig ina l  
m a p p i n g  o f  gdh in E. coli was in er ror ,  and  tha t  subse- 
quen t  resul ts  a re  cons i s ten t  with the  m a p  loca t ion  re- 
p o r t e d  in this paper .  

The  gdh gene was also r e p o r t e d  to m a p  close to trp, 
at  a b o u t  27 rain,  in K. aerogenes (Bender  et al. 1976). 
C o t r a n s d u c t i o n  o f  gdh was obse rved  wi th  bo th  trp and  
pyrF. Signif icant  number s  o f  di f ferent  ca tegor ies  o f  
t r ansduc t an t s  were o b t a i n e d  and  the d a t a  are  self-consis-  
tent.  The  gdh m u t a t i o n  was c o m p l e m e n t e d  by an  F '  car-  
ry ing  a segment  o f  E. coli ex tend ing  f rom a b o u t  21.5 
to 27 min.  I have  used the same F '  (F ' I 26 )  in ma t ings  
wi th  a N a  ~ der iva t ive  o f  the E. coli s t ra in  used in the 
or ig ina l  m a p p i n g ,  and  with  RH448.  The  F '  p l a smid  
failed to c o m p l e m e n t  the  gdh m u t a t i o n  o f  e i ther  E. coli 
recipient .  Thus  it seems unl ike ly  tha t  the  gdh m u t a t i o n  
o f  K. aerogenes is in the G D H  s t ruc tu ra l  gene. The  na-  
ture o f  the K. aerogenes gdh gene remains  to be deter-  
mined.  
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Note added in proof 

Both a recent map of E. eoli DNA sequences (Kr6ger, Wahl and 
Rice, 1990, Nucleic Acids Res 18:2549) and the recent E. coli genet- 
ic map (Bachmann, 1990, Microbiol Rev 54:130) include several 
of the genes shown in Fig. I but in incorrect order. Sak, Eisenstark 
and Touti (1989, Proc Nat Acad Sci USA 86: 3271) located xthA 
but in incorrect orientation, nadE is an essential gene that may 
be in this region (Hughes, Olivera and Roth, 1988, J Bacteriol 
170:2113. The order and orientation of genes in Fig. i is correct 
with the possible exception of gap. The orientation of gap could 
be incorrect because the scarcity of restriction sites at this locus 
makes correlation with the map of Kohara et al. (1987) difficult. 


