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There is a classical technique for determining the equilibrium probabilities of 
M/G/1 type Markov chains. After transforming the equilibrium balance equations 
of the chain, one obtains an equivalent system of equations in analytic functions to 
be solved. This method requires finding all singularities of a given matrix function 
in the unit disk and then using them to obtain a set of linear equations in the finite 
number of unknown boundary probabilities. The remaining probabilities and other 
measures of interest are then computed from the boundary probabilities. Under 
certain technical assumptions, the linear independence of the resulting equations is 
established by a direct argument involving only elementary results from matrix theory 
and complex analysis. Simple conditions for the ergodicity and nonergodicity of the chain 
are also given. 

Keywords: Matrix analytic method, transform method, ergodicity. 

1. Introduction 

Transform techniques have proved useful in the study of  Markov  chains of  
M/G/1 type. With this approach, the balance equations of  the Markov  chain are 
t ransformed to obtain an expression for the generating function of  the state 
probabilities, typically, queue occupancy probabilities. The expression thus 
obtained usually contains some unknown boundary  probabilities, the determina- 
tion of  which involves the analyticity of  the generating function in the open unit 
disk. As part  of  the procedure of  solving for these unknown probabilities, one needs 
to determine the singularities of  a given matrix function within the unit disk. These 
singularities are then used to obtain a set of  linearly independent equations, the 
solution of  which yields the required unknown boundary  probabilities. This 
provides a characterization of  the generating function of  the equilibrium state 
probabilities. 
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The above procedure is well-known and has been applied extensively in the 
analysis of Markov chains of M/G/1 type. However, to the best of our knowledge, 
only Bailey [1] proved the independence of the linear equations obtained from the 
zeros for a certain subclass of chains (see also [3]). The goal of this paper is to 
establish the independence of the linear equations whose solution yields the 
unknown boundary probabilities for rather general M/G/1 type Markov chains. 
The algorithmic analysis of these chains has been pioneered by Neuts [8]. However, 
the work presented here is in the spirit of the early papers of Neuts [7] and ~inlar [2], 
in which a rigorous transform approach to these problems was carried out. We 
consider discrete time Markov chains, since the analysis of continuous time Markov 
chains of M/G/1 type is similar. 

2. M]G/1 type Markov chains 

For some positive integer M let the pair of integers ( i , j ) ,  i>_ 0, 
0 _< j _< M - 1, denote the states of an irreducible discrete time Markov chain of 
M/G/1 type. Typically, in queueing systems the integer i corresponds to the number 
of customers in the queue (the level) and can take arbitrary nonnegative values�9 The 
integerj  corresponds to the phase or the stage of the system and is assumed to take 
finitely many values. For  j = 0, 1 , . . . ,  M - 1, l = 0, 1 , . . . ,  M - 1, k > 0, and a 
positive integer N, the one step transition probabilities of the discrete time Markov 
chain are given as follows: 

bi,k;j/= P[transition from state (i,j) to state (k,/)], 0 < i < N - 1, 

ak;j,z = P[transition from state (i,j) to state (k + i - N, t)l , i _> N. 

Thus the one step transitions from state (i,j) are homogeneous starting at level 
N, i.e., for i >_ N, transitions from (i, j)  to (k, l) depend on i and k through the 
difference k - i. Naturally, we have 2~__0E~o lbi,k;j,t = 1 and P~=0EMo lak;j,t = 1 for 
all i,j. 

Denote the irreducible one step transition probability matrix of the Markov 
chain by P. When written in matrix form P is 

p_~ 

r bo,o bo, l ""  bo,:v-1 bo,N bo,N+i  

: : " . .  : : : 

bN-1 ,0  b N - l , 1  � 9  bN_l,N_ 1 b N - I , N  b N - 1 , N + !  

ao a l  � 9  a N _  1 aN a N + l  
t 

0 ao " �9 �9 a N - 2  a N -  ! aN  

: : " . .  : : �9 

�9 o . 

(1) 
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where 

ak ~- 

ak;O,O ak;O,1 � 9  a k ; O , M _  1 

ak;1,O ak;1,1 � 9  a k ; 1 , M _  1 

: : " . .  : 

a k ; M - l , O  a k ; M - l , 1  �9 . . a k ; M _ l , M _  1 

b i , k  ~= 

bi,k;O,O bi,k;O,1 � 9  b i , k ; O , M _  1 

bi ,  k; 1,0 bi,k;1,1 " ' " bi ,k;  1 , M -  1 

: : " . .  : 

b i , k ; M -  1,0 b i , k ; M -  1,1 " " " b i , k ; M -  1 , M -  1 

Our interest is in determining ~ri, j, the equilibrium probability of state (i,j), when 
these probabilities exist. Let IIi&[Tri,o,Tri,1,...,Tri, M_l] be the 1 x M vector of 
equilibrium probabilities associated with the ith level, and let II = [II0,111,...]. 
The equilibrium equations II = I IP  for the chain are 

N -  1 N + k  

IIk= ZII ib i ,k  + EIIiaN+k_i, k >_ O. (2) 
i=0 i = N  

Define the following generating functions: 
OQ 

Bi;j,t(z) his;j,1?, 
k=0 

OO 

ALl(z) A E ak;j, lz2' j, l = O, 1,o.., M - 1, 
k=0 

Gl(z) zx E 7c z i-N = i,l 
i = N  

j , l  =O, 1 , . . . , M - 1 ,  i = 0 , 1 , . . . , N -  1, 

I = 0 , 1 , . . . , M -  1. 

Note that the functions Bi;j,l(Z), Aj,l(Z ) are analytic in the open unit disk and 
continuous in the closure. This is also true of the functions Gt(z) when the 71-i, ] exist. 
Next define G(z) & [G0(z), G~ (z), . . . ,  GM-a (z)], and let 

A(z)  

Ao,o(Z) A0,1 (z) . . .  AO,M-I(Z) 
AI,o(Z) Aa,I(z) ""  A1,M-I(Z) 

: �9 . . .  : 

AM-I,O(Z) AM-I,I(Z) ... AM_I,M_!(Z ) 
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B i ( z ) ~  

Bi;0,0(z) B i ; o , l ( z )  . . .  

Bi;1,o(Z) Bi;1,1(z) " .  Bi;1,M_I(Z)  

: : ' . .  : 

B i ;M-I ,0 (Z)  B i ;M- I , I (Z )  " .  B i ; M _ I , M _ I ( Z  ) 

The functions A(z) and Bi(z) may be regarded as matrix generating functions, 
namely, A(z) --- P~=0ak zk and Bi(z) = 2~=obi,~z k. Transforming (2) we obtain 

N-1 
G(z)[zNIM -- A(z)] + y'~ ni[ZilM - Bi(z)] = 0, (3) 

i-0 

where I g  is the M x M identity matrix. Note that A(1) and Bi(1), 0 < i < N - t, are 
stochastic matrices. Equation (3) is the fundamental  relation for the discrete time 
Markov chain of  M / G / 1  type. We discuss the determination of the probability 
vector II in the next section. 

Example." Bailey's bulk queue 
Consider a discrete time queue with c servers. The service time of  a customer 

is one slot, and the probability of  k customers arriving at the system during a slot is 
ak (customers that arrive in a slot can be served only in a subsequent slot). For  this 
queueing system M = 1 and N --- c. Let i correspond to the number of  customers in 
the queue at slot boundaries. We have that b~,k;0,0 = %o,o = C~k, 0 < i < c -  1, 
k _> 0. Therefore, Bi;o,o(Z) = Ao,o(Z) = Nk~Oak zk = a(z) ,  and 

e-1 

G0(z ) [ z  - +  i,0[z i -  = 0. 
i=0 

In [1] Bailey considered a discrete time Markov  chain defined at the departure 
instants of  a continuous time bulk queueing system. Customer arrivals to the 
bulk queue were assumed to be Poisson with rate ~, and the time between departure 
epochs was assumed to have mean ~ and Laplace transform/3(s).  This embedded 
chain is a special case of  the discrete time system described above with 
c~(z) =/3(~ - ,~z). It was shown in [1] that if , ~  < c, then z ~ - a(z) has c distinct 
simple zeros in the unit disk when/3(s) = [#/(s + #)]P. Furthermore,  a direct proof  
that these zeros yield c linearly independent equations for the c unknowns 7ri,0, 
0 < i < c - 1, was also given in [1]. Note that in this scalar example the functions 
Bi;o,o(Z) = Ao,o(z) for all i. The simplified structure when all B i ( z ) =  A(z) also 
appears in several nonscalar examples, such as the c server queue with constant 



H.R. Gall et al./Linear independence of root equations 325 

service times and a versatile Markovian arrival process (see [8]). 

Example: An A T M  multiplexer 
Consider a slotted system for which voice and data traffic is to be multiplexed 

over a single channel [6]. Time slots are aggregated into frames, with N slots 
constituting a frame. Voice connections become active or inactive at the beginning 
of a frame, and at most K < N connections can be active during a frame. The 
number of active voice connections is governed by a K + 1 state irreducible 
aperiodic Markov chain with transition matrix Q = [qj,t]. Each active voice con- 
nection occupies one slot of the frame, and the remaining slots are allocated to 
data packets�9 Each data packet is one slot in length, and there is an infinite buffer 
for them. The arrival process of data packets is given by a generating function 
R(z), and packets that arrive during a frame can only be transmitted in subsequent 
frames. Let i = 0, 1, . . .  correspond to the number of data packets in the system at 
the beginning of a frame, and le t j  = 0, 1 , . . . ,  K correspond to the number of active 
voice connections at the beginning of a frame. The resulting Markov chain is of 
M / G / 1  type with 

A(z) = R(z) 

qoo qo l  �9 �9 �9 qOK 

ZqlO Z q l l  ' �9 " Z q l K  

z K q K o  z K q K 1  . . .  z K  q K K  

Also, Bi(z) = R(z)Q for 0 < i < N -  K, and for i - -  N -  K +  1 , . . . , N -  1, 

Bi(z) = R(z)  

qoo qot "'" qOK 

: : " . .  : 

Z q N - i +  1,0 Z q N - i +  1,1 ' " " 2 q N - i +  1 ,K 

: : " . .  : 

zK-N+iqK o 2X-U+iqK 1 . . .  2X-U+iqr.x 

In this case we have 

N - 1  

G(Z)[ZNIK+I A(z)] + Z zi - I I i [  - B i ( z ) ]  = 0 .  

i=0 

Remark 
For a general M/G/1  type Markov chain, the transition matrix has the 
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expanded form (see [8]) 

P &  

b-1,-1 b-l,0 b-l,,~ " ' "  b - l , N - 1  b - l , N  b - l , N - I  

b0,_ 1 bo,o bo, 1 - -" bo , N -  1 bo ,N b0,N+ 1 

: : : " . .  : : : 

b N - 1 , - 1  bN-1 ,0  b N - l , 1  - . .  b N _ I , N _  1 bN-1,N b N - 1 , N + I  

0 a o a 1 �9 �9 �9 a N _  1 a N a N +  1 

0 0 a o  " "~ a N - 2  a N -  I a N  

: : : " . .  : : : 

~ �9 , (4) 

where b-l,-1 is K x K, b _ l ,  k is K x M for k = 0, 1 , . , . ,  and bi ,_  1 is M x K for 
i -- 0 , . . . ,  N - 1. That is, there are K additional boundary states that cannot be 
reached from the homogeneous part of the chain. However, the analysis of such 
chains reduces to the previous case (K = 0) in the following way. 

Transforming the equations II = I I P ,  with II = [H_l,  IIo, I l l , . . . ] ,  we obtain 
the set of equations 

N-1 

- E IIibi,_l + lI_l[IK - b_l,_l] = O, (5)  
i=0 

N-1  
G(z)[zNIM - A(z)] + E IIi[zilM -- Bi(z ) ] -  II_IB_ l(z) = 0, (6) 

i=0 

with B_1 (z) = N~_ob_l,kZ k. Since P is irreducible, the spectral radius of b-1,-1 must 
be less than 1, which implies that IK -- b-l , -!  is invertible. We thus may solve (5) for 
II_l as 

N-1 

II-I = E Ilibi,-1 [IK - b - 1 , - l ] - l "  
i=0 

Substituting this expression into eq. (6), we obtain 

N - I  
G(Z)[zNIM -- A(z)] + E I I i I z i l M  -- B~(z)] = 0, (7) 

i=0 

where for i =  0 , . . . , N -  1 

B~ (z) = Bi(z) + b i , _ l  [I  K - b_l _1]-1B_1 (z) (8) 

= B i ( z )  + ~bi_ l [b_ l ,_ l ] lB_!(z ) .  (9) 
1=0 
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Thus  (7) has the same form as eq. (3). 
Clearly, B~ (z) has nonnegat ive power series coefficients. Also, it is easy to see 

that  B~ (1) is a stochastic matrix. Simply use B 1 ( 1 ) 1 = 1 - b _ 1,- 11 = [IM - b_ 1,- 1] 1 
and eq. (8) to obtain 

B~(1)I = Bi(1)I + bi _1[I K - b_l _I]-IB_I (1)1 

= Bi(1)I + b i _ l l  

=1 .  

The M / G / 1  type Markov  chain that  is represented in eq. (7) is the embedded  chain 
obta ined by considering those times when the original chain is not  in the K addi- 
tional boundary  states. This can be seen directly f rom the representation of  B,-* (z) 
given in (9). A transit ion f rom a boundary  level i = 0 , . . . ,  N - 1 to a level k > 0 
may  either occur in one step via the t e rm  Bi(z) or it may take place when the original 
process first enters the addit ional  boundary  states, remains there for l steps, and 
then enters level k. This embedded  chain is irreducible, and the study of  chains 
with the addit ional  boundary  states reduces to the study of  chains of  the form given 
in (1). 

3. Assumptions and main results 

In this section we introduce several assumptions about  the matrices A(z) and 
Bi(z), 0 < i < M - 1. We then state and prove the main results of  our  paper.  As 
explained in Section 2 the first step in the analysis of  (3) is the determinat ion of  
the singularities of  the matrix function A(z) = J I M  - A ( z )  within the unit  disk. 
Recall that  A(z) and Bi(z), 0 < i < M -  1, are analytic in the open unit  disk 
and cont inuous  in its closure. Th roughou t  the paper  we make  the following 
assumptions:  

(A1) All zeros of  det A(z) in the closed unit  disk are simple. 

(A2) The funct ion det A(z) does not  vanish on the unit  circle except at z = 1. 

Under  these assumptions,  the number  and location of the zeros of  det A(z) in the 
closed unit  disk depend on the quanti ty 

d z=l" = ~ d e t  A(z) (lo) 

Note  that  7 r 0 since z = 1 is a simple zero of  det A(z). The following result is 
known  [8]. 
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LEMMA 1 

Let assumptions (A1)-(A2) hold. 

(i) I f7  > 0, then det &(z) has exactly M N  - 1 zeros in the open unit disk and a 
simple zero at z = 1. 

(ii) If 7 < 0, then det A(z) has exactly M N  zeros in the open unit disk and a 
simple zero at z = 1. 

Now we can exploit the analyticity of Gl(z), 0 < l < M - 1, in the open unit 
disk. We rewrite (3) as 

N-1 

G(z) det &(z) = Z IIi[Bi(z) - ZilM] adj A(z), (11) 
i=0 

where adj A(z) is the classical adjoint of the matrix A(z). Since Gl(z),  0 < l < M - 1 
are analytic functions in the open unit disk, the vector on the righthand side of (11) 
must be zero whenever det A(z) vanishes there. Note that each zero of det A(z) 
yields M equations for the unknowns 7ri,j, 0 < j  < M - 1, 0 < i < N - 1. However, 
we will prove that it yields only one linearly independent equation. We first prove 
two lemmas that give known results about the adjoint of the matrix &(~) when 
is a simple zero of det A(() (not necessarily in the unit disk) and the known structure 
of harmonic vectors X the entries of which satisfy xi --+ O. 

LEMMA 2 

Suppose ~ is a simple zero of det A(z). Then the rank of the matrix adj &(~) 
is 1. 

P r o o f  
From the equation 

A(~) adj A(~) = det A(()IM = 0, (12) 

we see that the columns of adj A(~) are right null vectors of the matrix &(~). 
Since the dimension of the right null space of A(() is 1 when ( is a simple zero of 
detA(z) (see [41), it follows that the columns of adj &(~) are all multiples of the 
same vector. [] 

LEMMA 3 

Suppose P X  = X and the entries of X satisfy limi_~ xi = 0. Then X = 0. 

P r o o f  
Since xi ~ O, there is some entry of X, say xl, such that Ix,[ >_ tXil for all i. 
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N o w  p n x  = X for all n, so 

O(3 

K ' p ( , )  x. ' Xl ~ ~ l,j J 
j=0 

where pl,~) is the (l , j)  entry of W. Using the fact that pn is stochastic, we obtain 

o ~  o(3 

(n) 
[Xl[ - Z..~ < p p(')lxl,j' j - < ~-~Pl,j[Xll = [Xl[. 

j=0 j=0 

This shows that [xj[ = [x,[ for all j such that p},~) r  But P is irreducible, so for 
every pair (l , j)  there exists n = n(l , j )  such that p ) J  r 0. Thus all entries of X 
have the same modulus. Since limi__+~ xi = 0, this common value must be zero, 
i.e. X = 0. [] 

THEOREM 1 

Suppose ~ is a simple zero of det A(z) in the open unit disk. Then there is 
exactly one linearly independent equation among the M equations 

N-1 
- (ilM] adj A(() = O. 

i=0 

P r o o f  
There is at most one linearly independent equation among the M equations 

by lemma 2. The existence of at least one equation, i.e., not all of the coefficients 
[Bi(~)- ~iIM] adj A(~) are zero, is proved as follows. We begin by defining the 
M N  x M matrix function 

a( )" Z -.~ 

IM -- Bo (z) 

ZlM -- BI (z) 

Z N- I[M -- B N -  1 (Z) 

Defining the oc x M matrix E(z) as 

I /  

z I  M 

E(z )  -~ I Z2iM , 

L 
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we have that (I is the ec x cc identity matrix) 

I M - B 0 (z) 

ZlM -- B1 (z) 

[I - PIE(z) = zN-1IM -- BN_ l(z) 

z N I M  --  A(z) 

z N + I I  m --  zA(z) 

] z z X ( z )  �9 

L { 

(13) 

Multiplying this equation by adj &(z) and using (12), we obtain that at a zero 
of det A(z) 

[ I -  P]E(~)adj A(~)=  [B(~)adj A(~)0  ]" (14) 

Therefore, if B(~)adjA(~)= 0, we have PX = X where X=~ E(~)adj A(~). But 
limi_~ xi = 0 since 1([ < 1, so X = 0 by lemma 3. This is impossible, since 
adj A(~) # 0 by lemma 2. [] 

Let C(~) be a nonzero column ofadj A(~). The simple zero ~ ofdet &(z) yields 
the equation 

N-1  

E IIi[Bi(~) - ~ i l M ] C ( ~  ) = 0 
i=0 

(is) 
for the unknowns 7rij , 0 ~ j <_ M - 1, 0 < i < N - 1. 

Suppose assumption (A1) holds, and enumerate all the (simple) zeros of 
det A(z) in the open unit disk as ~1,~2,... ,~R, where R = MN - t if 7 > 0 and 
R = M N  if 7 < 0. The question we now address is whether the equations in (15) 
for the different zeros are linearly independent�9 We prove the following: 

T H E O R E M  2 

Let assumptions (A1)-(A2) hold. When 3' # 0, the R linear equations 

N-1  

~_. , I I i[Bi(~r)-~IM]C(~r)  =0 ,  1 < r <  R, (16) 
i=0 

are linearly independent. 



H.R. Gail et al./Linear independence of root equations 331 

Proof 

To prove the theorem we need to show that the MN x R matrix (recall that 
R <_ MN) 

B* ~ [B(~I)C(~I) B(~2)C(~2)""" B(~R)C(~R)] 

has linearly independent columns, i.e., B* has rank R. Consider a linear com- 
bination of the columns which is equal to the zero vector. That is, let O~r, 
1 < r < R, be a set of (complex) scalars such that 

R 

Z arB((r)C(~r) = 0. (17) 
r = l  

We will show that ar = 0 for 1 < r < R. 
From the definition of C(~) and using (12), we obtain that at a zero ~ of 

det A(z) 

[I - P]E({)C(~) = [B(~) : ({)  ].  (18) 

Therefore, (17) yields 

Define the vector 

R 

E ~ r [ I -  P ]E(~)C(~)  = 0. (19) 
r = l  

R R 

X~= Z arE(~r)C(~r) = Z ar 
r = l  r = l  

(20) 

Then from (19) we have PX = X, i.e. X is regular (harmonic) [5]. 
Since [~r[ < 1 for all r, we have that limi~o~xi = 0. By lemma 3 we have 

X = 0. Now from (20) we therefore obtain 

R 

r = l  

c( r) 

= 0 .  (21) 
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In particular we have that 

R 

r= 1 

~c(~) / 

r  

= 0 .  (22) 

Define the M R  x R matrix U as follows: 

U A 

c(r c(r . . .  c(r ] 

r ~2c(~) -.. ~Rc(r I. 

~f-lC(r  c R - I c ( ~ 2 ) . . ,  CRR-IC(r J 

We now prove the following lemma. 

LEMMA 4 
The rank of the matrix U is R. 

Proof 
We first write U = VW, where V is the M R  x M R  matrix 

V ~  

IM IM "'" IM 

~IlM ~2IM "'" ~RI~t 

~f-~IM ~;-1I~  . . .  ~g-~I~ 

and W is the M R  x R matrix 

W -~ 

-C(~l) O "'" 0 ] 

o c(r .-. l �9 . " . ,  

o o . . .  c ( ~ )  

Since each vector C((r) r 0, W clearly has rank R. We next claim that the matrix V 
is nonsingular. To see this, note that by interchanging rows and columns V is 
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equivalent to the block diagonal  matr ix 

V 1 ~- 

V* V* . . .  0 

�9 " . .  ; 

. . �9 

where each of  the M diagonal  blocks is the R x R matrix 

V*& 

1 1 ... 1] 
. " . .  �9 

Now V* is a Vandermonde  matr ix [4] with all ~r distinct, and thus it is nonsingular.  
Therefore, V1, and hence V, is nonsingular.  This implies that  rank U -- rank W = R, 
since mult ipl icat ion by a nonsingular  matrix preserves rank (see [4]). 

It follows f rom lemma 4 that  the columns of  U are linearly independent .  Since 
the linear combinat ion  of  these columns in (22) is zero, we obtain that  oz r = 0 for 
1 < r < R. This shows that  the columns of  B* are linearly independent  and com- 
pletes the p roo f  of  the theorem. []  

When 7 < 0, theorem 2 implies that  the M N  linear equations of  (16) in the 
M N  unknowns  7r;,j, 0 _< j _< M - 1, 0 < i < N - 1 are linearly independent .  There- 
fore, the unique solution of  the set of  equat ions in (16) is zci, j = 0, 0 _<j _< M - 1, 
0 < i < N -  1. It then follows f rom (2) that  7ci, j -- 0 for all i,j. Consequently,  we 
conclude: 

C O R O L L A R Y  1 

Let assumptions (A1)-(A2) hold. When 7 < 0, the Markov chain is not ergodic. 

When  7 > 0, theorem 2 implies that  the M N  - 1 linear equations of  (16) in 
the M N  unknowns  ~ri4, 0 < j < M - 1, 0 < i < N -  1 are linearly independent�9 
That  is, the set of  equations in (16) has a one dimensional  solution space�9 When  
determining the equilibrium probabilities, an addit ional  equat ion for the unknowns  
is obtained f rom the zero at z = 1. However,  substi tuting z = 1 directly into (3) does 
not  yield a new equation,  since one obtains the identity 0 - 0 f rom 

N - 1  

G(z) det A(z)[z= 1 = E I I i [ B i ( z )  - ZiIM] adj A(z)lz= I. 
i=0 

To see this, first note  that  the left-hand side is zero, since det A(1) = 0. Further ,  the 
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right-hand side is also zero, since each Bi(1) is stochastic and it will be shown in 
lemma 5 that adj A(1) has constant columns. 

Therefore, we use L'Hospital 's rule to obtain the equation 

N-1 d } 
l { i~o IIi-dT[Bi(z) - SIM] adj A(Z)'z=, �9 G(1) = ~ .= (23) 

Let 

d i B;(z)] adj A(z), (24) Di(z) = ~zz[Z Im - 

and let eM denote the M x 1 vector with all entries 1, i.e., em = [1 ! . . .  1] r. Then 
multiplying (23) by eM, we obtain that 

I N-1 ] N-1 
7 1 - ~ I l i e  M = - Z I I i D i ( 1 ) e M .  

i=0 .1 i=0 
(25) 

Here we used the fact that the probabilities sum to 1, i.e., 

ec N-1 
G ( 1 ) e g  = Z IIieM = 1 - Z II;eM. 

i=N  i=0 
(26) 

Equation (25) can be rewritten as 

N-I 
IIi[TIM -- Di(1)]eM : ~, (27) 

i=0 

which is an additional equation for the unknowns rci, j, 0 < j  <_ M - t ,  
0 < i < N - 1 .  

For Bailey's bulk queue (M = 1, N = c), the c eqs. (16) and (27) take the form 

c - I  

i=O 
c-1 

7ri,o[C - -  i] = 7, 
i=O 

l < r < c - 1 ,  

assuming z c - a(z)  has simple zeros. Since the structure of the matrix correspond- 



H.R. Gail et al./Linear independence of root equations 335 

ing to these equations is essentially that of a Vandermonde matrix, it follows 
that the equations are linearly independent [1]. The question we now address is 
whether eq. (27) and the equations in (16) are linearly independent in the general 
case. 

We first prove a known result about the structure of the adjoint of A(1). 

L E M M A  5 

The matrix adj z~(1) has constant columns, i.e., 

61 62 . - .  6 M 
adjA(1) = . ". . (28) 

1 62 .. .  6 

Further, the 6j are nonnegative, and 2M16j is positive. 

Proof 
Since A(1) has zero row sums, its right null space is generated by the M x 1 

vector all entries of  which are 1. Therefore, as in the proof of lemma 2, the adjoint 
has the form (28). To show that the ~Sj _> 0, first observe that the j th  diagonal entry of 
adj z~(1) is 6j = ( -1 )  j+j det Aj, where Aj- is the matrix obtained by removing the j th  
row and j th  column from A(1). Using A ( 1 ) = I M - - A ( 1 ) ,  it follows that 
6y = det [IM -- Kj], where Ks- is identical to A(1) except that i ts j th  column is identi- 
cally zero. For 0 _< t < 1, the matrix IM -- tKj is invertible, because it is a strictly 
diagonally dominant matrix. Thus det [ I M -  tKj] > 0, since this holds for t = 0 
and det J IM-  tKj] is never zero for 0 < t < 1. Letting t---, 1, we have that 
6j = det JIM -- Kj] _> 0. Finally, since the rank of adj A(1) is nonzero by lemma 2, 
at least one 6j is positive, completing the proof. [] 

T H E O R E M  3 

Let assumptions (A1)-(A2) hold. When 7 > 0, the M N  linear equations 

N-1 

Z IIi[B~(~r) - ~IM]C(~r) = O, 
i=0 

N - 1  

E IIi[TIM - Di(1)]eM = 7 
i=0 

1 < r < M N - 1 ,  

are linearly independent�9 
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Proof 
We begin by defining the M N  x M matrix function 

D() ~ Z 

D~ - 7Ira 1 

- ], 
| 

DN-1 (Z) -- "yI m j 

where we recall that the definition of Di(z) is given in (24). To prove the theorem we 
need to show that the M N  • M N  matrix 

= [B(~I)C(~I)  B(~2)C(~2) . . .  B(~MN_I)C(~MN_I) D(1)eM] 

has linearly independent columns, i.e., I] is nonsingular. Consider a linear com- 
bination of the columns which is equal to the zero vector. That is, let 3 ,  
1 < r < M N  - 1, and/3 be (complex) scalars such that 

MN-1 
Z 3rB(~r)C(~r) + 3D(1)eM =0 .  (29) 
r=l 

Without loss of generality we may assume that 3 >- 0. We will show that/3r = 0 for 
l < r < M N  - l a n d  t h a t  /3 = O. 

From (13) we have that 

~zz{[i _ d  P]E(z) adj A(z)} = 

d 
~zz{[Im - Bo(z)] adj A(z)} 

d {[zIm - Bl(Z)] adj A(z) ) 

d {[z~_qM _ BN-I (~)] adj ~X(z)) Tzz 

~z {det h(z)Ist} 

d {  zdet A(z)IM) 
dz 
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Therefore, 

and so 

d 
dzz {[I - P]E(z) adj A(z) }l==l = 

Do(l) 
DI(1) 

DN-I(1) 

TIM 

TIM 

[ I -  P] ~ {E(z) adj A(z)}[z=l -- 7E(1) = 

Multiplying the above equation by eM, we obtain 

[ I - P ]  {E(z) adj A(Z)eM}tz=l -- 7e = 

where e is an infinite vector with all entries 1. From (29) we have that 

MN-1 
E fir[I-  P]E(~r)C(~r) +/~{[I - P]ff-~{E(z)adjA(z)eM}lz=l-Te} =0 ,  (30) r=l 

where we recall that/3 > 0. Define 

( MN-I ) fl d 
Y~Re / ~ ~rE(~r)C(~r) + dz{E(z)adjA(Z)eM}lz=l. (31) 

Taking real parts in (30) yields [I - P]Y =/37e, since ~ is real. 
We now claim that the entries of Y are bounded below. To see this, first note that 

6"% + K 
d {E(z) adj A(z)eM}]~=I = 2~eM + K ' j 
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where K � 8 8  ( ~ ) ( a d j  A(Z)eM}[z=l, 8 =  E~l(Sj, and 6j is the common value of the 
entries from the j th  column of adj A(1). From lemma 5 we know that ~ > 0. Since 
also/3 > 0, the vector 

/ 3 d  {E(z) adj A(z)eM}lz=l = 

/3K 

/36e M +/3K 

2/33e M +/3K 

/3K 
>- /3 

has entries that are bounded below. In addition, Re{2~N-~/3~E(~)C(~r)} has 
bounded entries, since [~r] < 1 for all r. Thus Y has entries that are bounded below, 
completing the proof  of the claim. 

This shows there is a constant u _> 0 such that Z & Y + ue _> 0. Note also that 
[ I -  P]Z = [ I -  PlY, so 

[I - P]Z =/37e. 

Since/3 _> 0 and 7 > 0, we have Z > PZ, i.e., the vector Z is nonnegative super- 
regular (superharmonic) [5]. Therefore, 

Z > PZ >_ . . .  _> Pn- lZ _> PnZ > . . .  _> 0. (32) 

From (32) we see that PnZ is a decreasing sequence which is bounded below (by 0), 
and so L & l i m n ~  PnZ exists. Since Z = P Z  + 33`e and P~ is stochastic, we obtain 
PnZ = pn+Iz  +/33`e for all n > 0. Letting n ~ ec yields L = L + 33`e. Thus/33` = 0 
since L is finite, and so/3 0 since 7 > 0. Therefore, MN-1 = ~r=l /3r[I--" P ] E ( ~ r ) C ( ~ r )  = 0 
from (30), which is the same as (19). From previous arguments, it then follows that 
3r = 0 for all r, completing the proof of the theorem. []  

Note that since 3' # 0, the (unique) solution of these equations is nonzero. It 
is well-known in this case that the solution is positive [5]. Thus, when 3  ̀> 0 we 
obtain the unknown boundary probabilities from (16) and (27). Consequently, we 
conclude: 

C OROLLARY 2 

Let assumptions (A1)-(A2) hold. When 3  ̀> 0, the Markov chain is ergodic. 

Although the quantity 7 defined in eq. (10) may not seem to have prob- 
abilistic significance, it can be given an interesting interpretation as follows. Differ- 
entiate the equation {adj A(z)}A(z) = det A(Z)IM with respect to z, evaluate the 
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result  at z = 1 and  mul t ip ly  on  the right by  e u .  This yields 

d z= 1 {adj A(1)}A ' (1 )eM + ~zz adj A(z)  A(1)eM = 7eM. 

Using A(1)eM = 0 and  evaluat ing A'(1) ,  we ob ta in  

{adj A(1)  ) [NI  M - A'(1)]eM = 7eM. 

Since {adj A(1)}~,(1)  = 0, the rows o f  the adjo in t  are mult iples o f  the s ta t ionary  
p robab i l i ty  vector  !! o f  A(1).  Fur the rmore ,  f rom lemma 5, these mult iples are all 
posi t ive and  identical,  and so 

adj A ( 1 ) = c  , 

where  c > O, lle M = 1, and  q = IIA(1). Thus  

3' = c[N - nA'(1)eM], 

so that  - 7 / c  is the one step drift  in the h o m o g e n e o u s  par t  o f  the chain. 
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