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Summary. Subspaces Da, a > 0, of D[0, 1] are defined and given cor~p!ete metrics d~ 
which are stronger than the Prokborov metric. The spaces (D~, d~) are shown to be separable, 
and their pre-compact subsets are characterized. A condition which is known to guarantee 
weak pre-compactness of sets of probability measures over D[0, 1] is shown to also guarantee 
weak pre-compactness of probability measures over D~ for appropriate values of c~. Applica- 
tions are made to the weak convergence of measures induced by stochastic processes, and some 
examples are included. 

1. Introduction 

The spaces C[0, 1] and D[0, 1] have been the setting for much of the recent 
work on the weak convergence of stochastic processes, and several criteria which 
guarantee the weak preeompactness of sets of measures in C[0, 1] and D[O, 1] 
are now known. LAMPEI~TI [3] observed that  one of these criteria, due essentially 
to KOL~IOGO~OV ([4], p. 519), actually guarantees weak precompactness with 
respect to the topology of Lips[0, 1] for appropriate values of ~. The transition 
from C[0, 1] to Lips[0, 1] is desirable because, as explained in [3], it enlarges the 
class of continuous functionals. 

Here we obtain an improvement of theorems on the weak convergence of 
stochastic processes in D [0, 1] which is analogous to that  given by LAI~PE~TI for 
C[O, 1]. To do so we need analogoues of (1) ItOLMOGO]aOV'S criterion and (2) the 
spaces Lips[0, 1]. The former has been given by CH]~NTSOV ill. The latter, which 
we have denoted by D~, are discussed in section two and are to the best of our 
knowledge new. In  section three we show that  (a slightly modified version of) 
the CH]~NTSOV criterion does, indeed, guarantee weak precompactness with 
respect to the topology of D~. And in section four we give examples of stochastic 
processes and functionals to which our results apply. 

2. The Spaces D a 

By (D, d) we will understand the complete, separable metric space which is 
constructed in Chapter VI I  of [5] and is a variation on the space D[0, 1] of [6]. 
Thus the elements of D are right continuous, real valued functions which are 
defined on [0, 1], have no discontinuities of the second kind, and are continuous 
at zero and one. The metric d is defined by 

d(/, g) = p(Fy, Fg) + L(my, rag), 

where p(Fr,  Fg) denotes the divergence between the graphs of ] and g ([5], [6]), 
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L denotes the L6vy metric for monotone functions on the line ([2], pp. 38, 39), 
and mf is defined as follows: for 0 < ~ ~ 1 let ~f(~) be the maximum of 

sup I / ( t ) - / (o ) [ ,  sup I / ( t ) - / O ) l ,  
0 ~ t _ _ ~  1 - - ~ t _ _ - - < l  

and 

~f(O) = sup rain {[/(t~) - /(to)[, l/(to) - / (te) I}, 

where the third supremnm is taken over t~, to, t~ e [0, 1] for which 

t 0 - -  ~ =~ t~ =~ to =~ t~ ~ to -~- 5; 

then mr(z) ~- -~l(e z ~- 0) for z ~ 0 and mr = mr(O) for z ~ 0. For ~ > 0 we 
define D~ to be the set of ] ~ D for which 

oo 

fmf(z) e-~zdz < oo, 
- - c o  

and we topologize D~ with the metric d~ defined by  

d~ (/, g) = p (_r~, Fg) + L~ (my, mr),  

oo 

L~ ( ~ ,  . ~ )  = f [ my(z) - . ~  (z) I e - =  dz. 
- - o o  

d~ is a metric because both p and L~ are and because / = g ff and only i f / }  = Fg. 
Moreover, d~ is stronger than d because L~ is stronger than L. 

Our immediate goal is to ascertain some of the topological properties of the 
spaces (D~, d~), which we will denote simply by  D~ in the following. They resemble 
and to some extent follow from those of (D, d), which we will denote by  D in the 
following. 

Theorem 2.1. A subset F o[ D~ is precompact in Do~ i /and  only i/ 

(2.1) sup sup I/(t)l < oo, 
fas  0 ~ t ~ l  

a 

(2.2) lim sup f m1(z) e -~z dz = O. 
a - - ~ - - r  f e F  - - c o  

Proo/. (Sufficiency.) Let  F satisfy (2.1) and (2.2); then the inequality, 

( l o g  6) + 1 

(2.3) ~y(~)=<e~ ~ f m f(z)e-~zdz, O < ~ < e - 1 ,  
- - o o  

shows tha t  ~f(~) -~ 0 as 3 --~ 0 uniformly in / ~ F, so tha t  _P is preeompact  in D 
([5], Ch. VII,  Thin. 6.2). Therefore, i f /n  ~ F, n ~ 1, there exists a subsequence nk, 
k ~ 1, and an /0 ~ D for which d ( /~, /0)  --~ 0 as k --~ oo. Moreover, /0 ~ D~ by  
FATO~Z'S Lemma,  (2.1) and (2.2). Now the convergence of fn~ to [0 in D implies 
the convergence of myn~ (z) to mJo (z) for all z at  which mr0 is continuous and, 
in particular, almost everywhere with respect to Lebesgue measure. (2.2) now 
implies d~ ( /~, /0)  -+ 0 as/c -+ co. The sufficiency follows. 

2 *  
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(Necessity.) I f  F is p reeompac t  in Da,  then,  since da is s t ronger  t han  d, F is 
p reeompac t  in D so t ha t  (2.1) follows f rom the theorem cited above.  I f  (2.2) were 
false, then  there  would exist sequences an e R 1 a n d / n  E F for which an --> --  c~ 
as n --> co and 

a n  

(2.4) l i m i n f  Sm/~(z) e -az dz > O. 
n ----> o o  - - o o  

There  would also be a subsequenee n~, k > 1, and an ]0 e Da for which 
da (]n~, ]0) --~ 0 as k --> c~ and, in part icular ,  

(2.5) lim ~ [ ms~,0(z) - ms. (z) [ e-a~ d z  = O .  

The necessity of  (2.2) follows f rom the incompat ib i l i ty  of  (2.4) and  (2.5). Q.E.D. 

Corollary 2.1. Da is complete. 

Corollary 2.2. Let /n + Da, n > 0; su//icient conditions /or da (In,/o) --> 0 as 
n--> oo are that (1) /n( t )  --~ ]o(t) ]or all t belonging to a dense subset o] (0, 1); and 
(2) that m/,( .)  e-a(") be dominated by an integrable ]unction on (--  c~, 0]. 

Proo/. Corollary 2.1 follows f rom the easily verified fact  t h a t  a Cauchy sequence 
satisfies (2.1) and  (2.2). To establish Corollary 2.2 we need only observe t h a t / n  
is p recompae t  and  t h a t  if  / is any  l imit  point  of  In, then  p ( /} ,  F/0) = 0 so t h a t  
/ = / 0 .  Q.E.D. 

Theorem 2.2. D~ is separable. 

Proo]. Let  D n be the set  of  those / e Da which take  a constant ,  ra t ional  value 
o o  

on each of the  intervals  [(i - -  1)In, i/n), i = 1 . . . . .  n > 1 and  let D O -= [.J D n. 

I f  / e Da and  t~, . . . ,  t~ are cont inui ty  points  of  ] for which i - -  1 < n t  n < i, 
i -= i . . . . .  n, then  there  is an ]~ e D n which differs f rom ] b y  less t h a n  n -~a a t  
each of the  points  t~. I t  follows easily t h a t / n  (t) --~ / (t) as n -~ co a t  all cont inui ty  
points  t of  /, the  to ta l i ty  of  which are dense in (0, 1). Moreover,  we have  
~/~((3) < ~f(~  -~ (2/n)) -[- 2n  -2~ , 0 < (~ ~ 1 - -  (2/n). 
For  example,  

sup ]]n (t) - - / n  (0) l = m a x  [/n (t~) - - / n  (0)[ 
O~_t~O l ~ i < k  

< m a x  I/(t?)-/(o)l + 2 n - 2 a  
l~_i~k 

<-- sup  ] / (t) - -  / (0) ] -4- 2 n -2a 
O<t~_~+(1/n) 

where k is one plus the grea tes t  integer in n~. Since ~/~(5) = 0 for 0 < 5 < (l /n),  
Corollary 2.2 applies to show t h a t  da(/n, ] ) -+ 0 as n ~ co; and  since D o is 
countable,  the  theorem follows. Q.E.D. 

We conclude this section with a discussion of the subspace Ca-----Da n C[0, 1]. 
The  inequal i ty  ([5], p. 235) 

(2.6) cof(~) ~ 2~/ (5)  Jr ~(]) 

where (of denotes the modulus  of  cont inui ty  and U (]) the  max ima l  discont inui ty  
of / shows (1) t h a t  Ca c Lip~ [0, 1] ; (2) t h a t  Ca is closed in Da  (AscoLfs  Theorem)  ; 
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and (3) tha t  the identi ty mapping of C~ into Lip~[0, 1] is continuous. In  the 
other direction we may  only conclude tha t  ff / ~ Lips [0, 1], then / ~ C~ for all 
fl < ~ and tha t  the identi ty mapping from Lip~[0, l / i n t o  C~ is continuous. 

3. Measures in D~ 

By a measure in D~ we will mean a probabil i ty measure defined on the Borel 
sets B~ of D~, and we will denote the space of all measures in D~ by  Ma. The 
topology of M~ is the weak topology it inherits as a subset of C(D~)*, the dual 
space to the space of continuous functionals on D~. The following lemma with 
D~ replaced by  D is proved in [5], p. 251 ; the proof given there extends to D~ 
in a straightforward manner. 

Lemma 3.1. B~ is the smallest cr-algebra with respect to which the/unctionals, 
~t : / --> / (t), 0 <-- t ~ 1, are measurable. 

I f  X(t) ,  0 ~ t _< 1, is a stochastic process, and/~  EM~, we will say tha t  tt 
has been induced by X (t), 0 ~< t --< 1, if and only ff the following equality holds 
for every finite subset T of [0, 1] and every choice o fx t  ~ R 1, t ~ T: 

(3.1) i t ( { / eD~:  /(t) <= xt, t E T}) --~ Pr(X(t)  ~ xt, t E T) .  

By Lemma 3.1 a stochastic process can induce at  most one measure. 

Theorem 3.1. Let X (t), 0 ~ t ~ 1, be a stochastically right continuous stochastic 
process. I /  there exist monotone /unctions qi: (0, 1] --> [0, c~) /or which qi (h) --> 0 

as h ~ O, i = 1, 2, 3, ~ qi(2-k) < c~ i ~ 1, 2, and 
k = l  

(3.2a) Pr(]X(t~+l) - -  X(ti)[ ~h~q l (h ) ,  i = 1, 2) <=hq2(h), 

(3.2b) P r ( [ X ( i ) - - X ( i + h ( - - 1 ) q [  ~h~q~(h))<=q3(h),  i = 0 ,1 ,  

whenever 0 <= tl <= t2 <= t3 ~ 1, t3 -- tl ~ h, and 0 < h <= 1, then X (t), 0 ~ t _ < l ,  
induces a measure in D~. 

Proo/. Define stochastic processes Xk(t) ,  0 ~ t ~ 1, k ~ 1, by  
2 ~ 

x ~  (t) = ~ x (i 2-~) I (2~, i ;  t),  

where I (n ,  i; .) is the indicator function of [i - -  1)/n, i/n), i ~-- 1 . . . .  , n - -  1, and 
I (n ,  n; .) is the indicator function of [(n - -  1)/n, 1]; then each X~(t), 0 <_ t ~ 1, 
induces a measure/ tk  in D~. We will show first tha t  the sequence #~ is preeompact.  
Let  B~, i be the set of / ~ D~ for which 

l / ( ( J  - 1) 2-~) - / (~2-~) l > q~ (2-~) 2 - ~  

for ] = i , i + l  if  1 < i < 2 ~ ,  for / = 1 i f  i = 0 ,  and for ] = 2 ~ i f i = 2 ~ , a n d  

let En = 0 BIr Then 
k = n  i=O 

(3.3 a) En c {/~ D~: ~ / (2-p)  ~ q (2-P) 2-ap, p ~ n} = Fn say, 

(2: ) (3.3b) /~  (E c) < 2 2 (2-P) + q3 (2-n) , k > 1, 
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for n ~ 1 where q(h) = 16(1 -- 2-~)-lql(2h), 0 < h ~ (1/2). That  ~/(2-~) 
q(2-~)2-~P -1, p ~ n, for f E En is essentially shown in [1], Lemmas 1 and 2; 

moreover, [/(~) - - / (0 ) ]  g w and ~/(~) g w imply sup[/(t)  - - / (0 ) [  ~ 2w. Next 
o < t ~  

let Gb be the set of ] e D~ which are bounded by 2b; then for b ~ q((1/2)) and 
n ~ 1 we have 

(3.4) fe~ (O~) =< Pr ~ 0 _ ~  ( max ol X (i 2-~)1 >: b) + fe~ (E~),~ k >= 1, 

which may be made arbitrarily small by taking n and then b sufficiently large. 
Since Fn ~ Ga is compac~ for every n and b, it follows from (3.3) and (3.4) that  
fez, k ~ 1, is precompact. 

Now we claim that  any limit point of fe~, k ~ 1, must satisfy (3.1) -- i.e. that  
fe~ converges to a measure induced by X (t), 0 _~ t ~ 1. We may assume that  X (t), 
0 _~ t ~ 1, is separable and that  T c S, the set of diadic rationals of (0, 1). Let  fe 
be a limit point of fe~, k ~ 1, let T be a finite subset of S, and for each t e T let 
hn, t be a continuous function for which 0 ~ hn, t ~ 1, hn, t(s) : 0 if either s ~ t 
or s ~ t + 2 -n+l, and hn, t(t + 2 -n) ~ 1. Then, since the functionals 

/ ->  sup  h~, t(s) / (s) 
0 g s ~ l  

are continuous on D~ for every n ~ 1 and t E T ([5], p. 249), we must have 

for every choice ofx t  E R 1, t e T. When n -~ ~ ,  (3.1) follows from (3.3b) and the 
stochastic right continuity of X (t), 0 --~ t --< 1. Q.E.D. 

The next  theorem is a straightforward generalization of Theorem 3.1, the key 
observation being that  fe (F~) ~ liminffe~(F~) where fe and fe~ are as in Theorem 3.1. 

k--->oo 

Theorem 3.2. Let Xn(t), 0 ~_ t ~-- 1, n ~ O, be a sequence o/stochastically right 
continuous stochastic processes, each o/ which satis/ies (3.2) with ql, q2, and qa 
independent o /n .  Also let fen be the measure induced by Xn (t), 0 ~ t ~-- 1, n ~ O. 
A su]/icient condition/or fen, n ~ 1, to be precompaet (converge to rio) is that/or 
every /inite subset T = {tl . . . . .  t~} c [0, 1] the /amily o] joint distributions o] 
(Xn (tl), . . . ,  Xn (t~)), n ~ 1, be precompact (converge to the joint distribution o/ 
(Xo (t~) . . . . .  Xo (t~))). 

We conclude this section with a lemma which gives sufficient conditions for 
(3.2) to hold. I t  is an easy consequence of Markov's Inequality. 

Lemma 3.2. I/there are positive constants K, b, bl, b~, fl, and ~ /or which 

(3.5a) E(IXn( t l  ) -- Xn(tz)lb~lXn(t~) -- Xn(ta)[ ~) ~ Kh  ~+~, 

(3.5b) E ( l X n ( i ) - - X n ( i + h ( - -  1)*)]~) g K h v ,  i = O ,  1, 

whenever 0 ~ tl ~ tu ~ ta ~ 1, t3 -- t~ ~ h, and n ~ O, then ]or any 

< min{fi/(b~ + b~), ~/b} 
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the processes Xn(t ) ,  0 <--t <~ 1, n > O, satis/y (3.2) with q l ( h ) =  h~ and q2(h) 
= q3 (h) = K h s / o r  appropriate e, (~ > O. 

4. Examples 

E x a m p  1 e 1. (The sample distr ibution function.) Let  X1,  X2,  . . .  be indepen- 
dent, identically distr ibuted r andom variables whose common distribution 
function F has a bounded densi ty which vanishes off [0, 1]. Define 

Xn(t )  = Vn(Fn( t )  - F(t ) ) ,  0 ~ t ~ 1, n ~ l ,  

where Fn  denotes the sample distr ibution funct ion of  X1 . . . .  , Xn. Then the follow- 
ing is t rue (cf. [1] and [5], pp. 259--267) :  (1) the finite dimensional distributions of  
Xn(t) ,  0 _~ t ~ 1, converge to those of  a normal  process Xo(t),  0 ~ t ~ l, with 
covariance funct ion K(s ,  t) = F(s)(1  - -  F(t)),  0 ~ s <_ t ~-- 1; and (2) (3.5) is 
satisfied with b ---- bl = be = 2 and fi = y ~- 1. I t  follows from Theorem 3.2 tha t  
the measures induced in De by  X n  (t), 0 ~ t ~ 1, converge to t ha t  induced by  
Xo(t),  0 _< t _< 1, for 0 < ~ < (1/4). 

E x a m p  1 e 2. (Convergence to an infinitely divisible law: bounded variances 
case.) Let  Xn,1 . . . . .  Xn, k~, n > 1, be a t r iangular  a r ray  of  r andom variables 
which are independent  and identically distr ibuted in each row. Suppose tha t  the 

k~ 

distr ibution funct ion and variance of  S~,~  = ~ X~  converge to those of  an in- 
k = l  

finitely divisible law (with finite, positive variance). I f  follows f rom the theory  
presented in [2] t h a t  the finite dimensional distributions of  

k~ 

(4.1) X n (t) ---- ~ Sn, k I (kn, k ; t), 0 ~-- t ~ 1, n ~ 1, 
k = l  

converge as n -+ oo to those of  an infinitely divisible process, Xo (t), 0 ~ t ~_ 1. 
Moreover, if 0 ~ tl g t2 =~ t3 =~ 1, It3 - -  tl[ ~ h, and n ~ 0 then 

where O and ~2 are respectively the mean  and variance of  the limit law and K 
is independent  of  n. Thus (3.5a) is satisfied with bl = b~ = 2 and fi ---- 1, and, 
similarly, we m a y  verify t h a t  (3.5b) is satisfied with b = 2 and ~, = 1. Therefore, 
by  Theorem 3.2 the measures induced by  Xn(t), 0 ~< t ~< 1, converge in De to 
tha t  induced b y  X0(t), 0 --< t --< 1, for 0 < ~ < (1/4). 

E x a m p l e  3. (Convergence to a stable law.) Let  X1, X2 . . . .  be independent,  
identically distr ibuted r andom variables whose common distribution funct ion F 
belongs to the domain of  normal  a t t rac t ion  of  a stable law of  characteristic 
exponent  y, 0 < y < 2. For  the sake of  convenience, we suppose also t h a t  F is 

_ _  ~ o ~  ( l / y )  symmetr ic  if  y --> 1. Let  X n  (t), 0 --< t --< 1, be defined by  (4. l) with Xn, ~ ---- ~-~ ,~- ~ , 
k----1 . . . .  , n ;  then, as above, the finite dimensional distributions of  Xn(t), 
0 --< t --< 1, will converge to those of  a stable process, X0 (t), 0 _< t --< 1. We show 
tha t  (3.2) is satisfied for any  ~., 0 < ~ < (1/2 7)" Indeed,  since xV (1 - -  f ( x )  ~- F ( - -  x)) 



24 ~V~.WOODROOFE: 

is convergent as x -~ co ([2], p. 182) and therefore bounded, we have by  a standard 
argument tha t  
(4.2) sup t-~[ ~ (t) - -  11 < B 

t > 0  

where q~ is the characteristic function of X1. The inequality, [z ~ - -  1 { < k I z - -  1 [, 
] z ] = 1, now shows tha t  (4.2) also holds when ~ is replaced by  ~v~, the characteristic 

k 
function of k-(1/~) ~ Xi ; and from the truncation inequality ([4], p. 196) we may  

i = l  

now infer tha t  

([ x~'Pr k-(1/~')~Xi >--x) ~ B1 
i = 1  

is uniformly bounded in x ~> 0 and k ~ 1. (3.2) is an easy consequence: for 
example 

P r ( ] X n ( t ) - - X n ( O ) l  > t a ) < B l t  1-~v, 0 < t _ < l ,  n > l .  

A similar analysis will show tha t  the limit process also satisfies (3.2) for any 
< 1/2y so tha t  Theorem 3.2 applies. 

Examples of continuous functionals on Da which are not continuous on all of 
D are easy to construct. In  particular, any functional of the form 

0 

q5 (/) = S qo (z) mi  (z) e -~z dz,  / e D~, 
- - c o  

where ~0 is a bounded measurable function on (--  co, 0] are continuous on D~ and 
not even defined on all of D. Such functionals might be of interest if, for example, 
one thinks of ~ / a s  measuring the smoothness of / .  Another class of functionals to 
which our results apply is illustrated by  

E x a m p l e  4. (The sample density.) Let  Fn and Xn(t) ,  0 <-- t <~ 1, n > 1, be 
as in Example  1 and define 

In(t) = (Fn(t  + hn) - -  F n ( t - -  hn))/2hn, 0 ~ t <- 1, n > 1, 

where 0 < hn -+ 0 with nhZn Cl-~) -+ co, o~ < �88 [n provides an estimate of the 
density ] of X1, X2 . . . . .  (See [7] and the references given there.) Now 

(4.3)  s u p  (t) - E (t))l = s u p  I X (t + - -  - h . )  1/2 h~V~ 
O_~t~l 0_~t<l  

where Xn (t) = 0 for t < 0 and t > 1. I t  follows easily from (2.6) and Example  1 
tha t  the right side of (4.3) converges to zero in probabili ty as n -+ co. I f  ] is 
continuous, then we also have E (]n (t)) -+ ] (t) uniformly in t ([7]) so tha t  fn will 
be uniformly consistent. While stronger results on the uniform consistency of 
sample densities are available ([7] and the references given there), this is apparently 
the first which makes use of the theory of weak convergence of stochastic processes. 
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