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Swummary. Subspaces Dy, . > 0, of D[, 1] are defined and given complefe metrics dy
which are stronger than the Prokhorov metric. The spaces (De, d.) are shown to be separable,
and their pre-compact subsets are characterized. A condition which is known to guarantee
weak pre-compactness of sets of probability measures over D[0, 1] is shown to also guarantee
weak pre-compactness of probability measures over D, for appropriate values of «. Applica-
tions are made to the weak convergence of measures induced by stochastic processes, and some
examples are included.

1. Introduction

The spaces C[0, 1] and D[0, 1] have been the setting for much of the recent
work on the weak convergence of stochastic processes, and several criteria which
guarantee the weak precompactness of sets of measures in C[0, 1] and D[0, 1]
are now known. LAMPERTI [3] observed that one of these criteria, due essentially
to KoLMOGOROV ([4], p. 518}, actually guarantees weak precompactness with
respect to the topology of Lipy[0, 1] for appropriate values of «. The transition
from C[0, 1] to Lipk[0, 1] is desirable because, as explained in [3], it enlarges the
class of continuous functionals.

Here we obtain an improvement of theorems on the weak convergence of
stochastic processes in D[0, 1] which is analogous to that given by LamprrT1 for
C[0, 1]. To do so we need analogoues of (1) KoLMocoROV’s criterion and (2) the
spaces Lipg[0, 1]. The former has been given by CrENTsOV [1]. The latter, which
we have denoted by Dy, are discussed in section two and are to the best of our
knowledge new. In section three we show that (a slightly modified version of)
the CEENTSOV criterion does, indeed, guarantee weak precompactness with
respect to the topology of Dy. And in section four we give examples of stochastic
processes and functionals to which cur results apply.

2. The Spaces D,

By (D, d) we will understand the complete, separable metric space which is
constructed in Chapter VII of [5] and is a variation on the space D[0, 1] of [6].
Thus the elements of D are right continuous, real valued functions which are
defined on [0, 1], have no discontinuities of the second kind, and are continuous
at zero and one. The metric d is defined by

a(f,9) = pIy, Ly) + L(mys, my),

where p{ls, I'y) denotes the divergence between the graphs of { and g ([5], [6]),
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L denotes the Lévy metric for monotone functions on the line ([2], pp. 38, 39),
and my is defined as follows: for 0 < § = 1 let wys(d) be the maximum of

sup [f(t) —f(0)], sup [f(t)—f(1)],

0st<s 1-6=5i=1
and

w5 (0) = sup min {| { (t1) — f(f) |, |/ (to) — [ (2) |},
where the third supremum is taken over #y, fy, {2 € [0, 1] for which
hh—0=h=<th=ta <to-+9;

then my(z) = wr(e? -+ 0) for z < 0 and my(z) = my(0) for z = 0. For o > 0 we
define Dy to be the set of f € D for which

fmf e dz < oo,

-—co

and we topologize Dy with the metric dy defined by
da(f: g) = p(I}> I19) _l— Ld(mfﬂ mg)’

Ly (mg, mg) = f[mf — mg(2)| e dz.

dy is a metric because both p and L, are and because f = g if and only if Ir=17,.
Moreover, d,, is stronger than d because Ly is stronger than L.

Our immediate goal is to ascertain some of the topological properties of the
spaces (Dy , dy), which we will denote simply by Dy in the following. They resemble
and to some extent follow from those of (D, d), which we will denote by D in the
following.

Theorem 2.1. A subset F of Dy is precompact in Dq if and only if

2.1) sup sup |f(f)] < oo,
feF 0=t=1
a
(2.2) lim sup [mr(z)e®dz=0.

a—>—~oc0 feF —co

Proof. (Sufficiency.) Let F satisfy (2.1) and (2.2); then the inequality,

(log6)+1
2.3) wi(d) Sedr | my@z)ewedz, 0<d<ed,

— 00

shows that ws(d) — 0 as § — 0 uniformly in j € F, so that F is precompact in D
(6], Ch. VII, Thm. 6.2). Therefore, if f, € ', n = 1, there exists a subsequence 7y,
k=1, and an fo e D for which d(f,,, fo) —> 0 as k — co. Moreover, fo € D, by
Farou’s Lemma, (2.1) and (2.2). Now the convergence of f,, to fo in D implies
the convergence of my,, (2) to my, (z) for all z at which my, is continuous and,
in particular, almost everywhere with respect to Lebesgue measure. (2.2) now
implies dg (f,,, fo) = 0 as k — co. The sufficiency follows.

2%
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(Necessity.) If F is precompact in Dy, then, since d, is stronger than d, F is
precompact in D so that (2.1) follows from the theorem cited above. If (2.2) were
false, then there would exist sequences a, € R and f, € F for which a, — — oo
as % —> oo and

n
(2.4) liminf {my, (2) e%2dz > 0.
n—>o0 —o

There would also be a subsequence ng, k=1, and an foe Dy for which
do(fr,» fo) =0 as k — oo and, in particular,

(2.5) lim ]"o | Mg, (2) — Mg, (2)| €2 dz = 0.

k—>oc —o0

The necessity of (2.2) follows from‘the incompatibility of (2.4) and (2.5). Q.E.D.
Corollary 2.1. Dy is complete.

Corollary 2.2, Let fy € Dy, n = 0; sufficient conditions for dy(fn, fo) =0 as
n — oo are that (1) f,(t) — fo(t) for all t belonging to a dense subset of (0,1); and
(2) that my, (-) e=%0) be dominated by an integrable function on (— oo, 0].

Proof. Corollary 2.1 follows from the easily verified fact that a Cauchy sequence
satisfies (2.1) and (2.2). To establish Corollary 2.2 we need only observe that f,
is precompact and that if f is any limit point of f,, then p ([}, I}) = 0 so that
f=Tlo. QE.D.

Theorem 2.2. D, is separable.
Proof. Let D* be the set of those f € D, which take a constant, rational value

on each of the intervals [(i — 1)/n, i/n), i =1,...,n =1 and let DO=|_J D».
=1

If fe Dy and {7, ..., & are continuity points of f for which ¢ — 1 < ni} < ¢,
t=1,...,n, then there is an f, € D» which differs from f by less than n2* at
each of the points &7 . It follows easily that f, (f) — f (f) as n —> oo at all continuity
points ¢ of f, the totality of which are dense in (0, 1). Moreover, we have
w0y, (0) £ wp(d + (2/n)) + 2772, 0 <6 <1 — (2/n).

For example,

I

sup |fu(t) — fn(0)| = max |fn(f}) — fu(0)]

0=t£6 1=i<k
< max |f(t) — [(0)| + 2n-2
1=5i5k
< swp  |f()—(O)] + 202
0=t=6+(1/n)

where k is one plus the greatest integer in 4. Since wy, (6) = 0 for 0 <6 < (1/n),
Corollary 2.2 applies to show that dx(fn,f) =0 as #n — co; and since DO is
countable, the theorem follows. Q.E.D.

We conclude this section with a discussion of the subspace Cy= Dy N C[0, 1].
The inequality ([5], p. 235)

(2.6) wr(0) = 27 (8) + 5(f)

where wy denotes the modulus of continuity and 7 (f) the maximal discontinuity
of f shows (1) that Cy ¢ Lip4 [0, 11; (2) that Cy is closed in Dy (Ascor1’s Theorem);
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and (3) that the identity mapping of Oy into Lipe[0, 1] is continuous. In the
other direction we may only conclude that if f e Lipy[0, 1], then f e Cp for all
f < o and that the identity mapping from Lip,[0, 1] into (3 is continuous.

3. Measures in Dy,

By a measure in D, we will mean a probability measure defined on the Borel
sets By of Dy, and we will denote the space of all measures in Dy, by M. The
topology of My is the weak topology it inherits as a subset of C'(Dg)*, the dual
space to the space of continuous functionals on Dy. The following lemma with
Dy, replaced by D is proved in [5], p. 251; the proof given there extends to Dy
in a straightforward manner.

Lemma 3.1. By is the smallest o-algebra with respect to which the functionals,
a [—>f(1), 0 £ <1, are measurable.

If X(f), 0 =<t =<1, is a stochastic process, and p € My, we will say that u
has been induced by X (¢), 0 < ¢ < 1, if and only if the following equality holds
for every finite subset 7" of [0, 1] and every choice of z; € B, t e T':

(3.1) p{feDy: () Sas,teT}) =Pr(X(t) Sag,ted).
By Lemima 3.1 a stochastic process can induce at most one measure.

Theorem 3.1. Let X (), 0 < t < 1, be a stochastically right continuous stochastic
process. If there exist monotone functions g;: (0, 1] = [0, co) for which ¢;(h) — 0

as h—0,1=1,2,3, zqi(2—k) < oot =12, and
k=1

(3.2a)  Pr(|X(tir) — Xt)| = h*qu(h), i =1,2) <hgs(h),
(3.2b) Pr(| X (i) — X@--h(—= 1) Zhtq1(h) = gs(h), i=0,1,

whenever 0 <t St Sl =1L ts—H =Zh, and 0 <h <1, then X(t), 011,
tnduces a measure in Dy.

Proof. Define stochastic processes Xz(#), 0 <t <1,k =1, by

Zk
Xy(t) = > X (127F) (2, 51),
i=1
where I (n, ¢; ) is the indicator function of [¢ — 1)/, é/n), i =1,...,n — 1, and
I(n,n;-) is the indicator function of [(r — 1}/n, 1]; then each Xp(f), 0 <t <1,
induces a measure gy in Dy. We will show first that the sequence uis precompact.
Let Bj ; be the set of f € Dy for which

[F((G—1)27%) — [ (127F)| = g1 (27F) 2-oF
for j=1,i+1if 1 <i< 2% for j=1if {=0, and for j = 2% if { = 2%, and

oo 2k
let B, = m Byg,;. Then
0

k=n 1=

(3.3a) EBpc{feDy:ws(277) £q(2-7)2-22,p =0} =F, say,

(3.31) e () = 2( S 0:27) + s (2-n)>, F=1,

D=n
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for » =1 where g¢(h) = 16(1 — 2-*)"1¢1(2k), 0 <k < (1/2). That @&s(2-?)
< ¢(2-2)2-2p-1 p = n, for f € B, is essentially shown in [1], Lemmas 1 and 2;
moreover, |f(d) ——f )| = w and @ (8) < w 1mply sup|f () — f(0)| < 2w. Next

let G be the set of f e D, which are bounded by 2 b then for b > ¢((1/2)) and
n = 1 we have

G4 (6D < Pr( max | X2 2b)+ (), k21,
0<i<2n
which may be made arbitrarily small by taking » and then b sufficiently large.
Since F,, N Gy is compact for every n and b, it follows from (3.3) and (3.4) that
fr, k=1, is precompact.
Now we claim that any limit point of ug, & = 1, must satisfy (3.1) — i.e. that
Hx converges to a measure induced by X (), 0 =<t = 1. We may assume that X (2),
0 <t £ 1, is separable and that 7' c 8, the set of diadic rationals of (0, 1). Let u
be a limit point of g, £ = 1, let T be a finite subset of S, and for each t € T let
ha, s be a continuous function for which 0 < kg ¢ < 1, by, (s) = 0 if either s < ¢
or s = -+ 2=+, and hy,;(t 4 2-%) = 1. Then, since the functionals
f— sup hn,(s)f(s)

0<s<1

are continuous on Dy, for every n = 1 and t € T' ([5], p. 249), we must have
,u({f: sup by, () f(s) <y, te T}) =Pr (supkn,t(s)X(s) <a, te T)

0<ss1 ses
for every choice of x; € R1, t € T. When » - oo, (3.1) follows from (3.3b) and the
stochastic right continuity of X (1), 0 < ¢ < 1. Q.E.D.

The next theorem is a straightforward generalization of Theorem 3.1, the key
observation being that y (F¢) <liminf uz(F¢) where y and uy are asin Theorem 3.1.
k~>c0

Theorem 3.2. Let X, (8), 0 <t =<1, n = 0, be a sequence of stochastically right
continuous stochastic processes, each of which satisfies (3.2) with q1, g2, and g¢s
independent of n. Also let py, be the measure induced by X, (1), 0 <t =1, n = 0.
A sufficient condition for pn, n =1, to be precompact (converge to ug) s that for
every finite subset T = {t1, ..., tx} C[0, 1] the family of joint distributions of
(Xn(t1), -..s Xn(tr)), n =1, be precompact (converge to the joint distribution of
(Xo(t1), ..., Xo(tx)))

We conclude this section with a lemma which gives sufficient conditions for
(3.2) to hold. Tt is an easy consequence of Markov’s Inequality.

Lemma 3.2. If there are positive constants K, b, by, b2, B, and y for which
(3.5a) E (| Xn(t1) — Xn(t2) ™| Xn(ts) — Xnlts)|”) = KA1,
(3.5b) E(| Xn()) — Xu(@ +A(=1H[)) = Kh?, i=0,1,
whenever 0 <t <y <3 = 1,3 — ;1 < h, and n = 0, then for any
o < min{f/(bs + ba), y/b}
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the processes Xp(t), 0 Zt <1, n =0, satisfy (3.2) with q1(h) = k0 and gs(h)
= q3(k) = Kk* for appropriate e, § > 0.

4, Examples
Example 1. (The sample distribution function.) Let X1, X5, ... be indepen-
dent, identically distributed random variables whose common distribution
function F has a bounded density which vanishes off [0, 1]. Define

Xu()=)n(Fa() — F(), 0=<t<1, n=1,

where F,, denotes the sample distribution funetion of X5, ..., X,. Then the follow-
ing is true (cf. [1] and [5], pp. 259—267): (1) the finite dimensional distributions of
Xn(@), 0 =<t <1, converge to those of a normal process Xo(¢), 0 < ¢ < 1, with
covariance function K(s,t) = F(s)(1 — F(t)), 0=s=t=1; and (2) (3.5) is
satisfied with & = b1 = bs = 2 and § = y = 1. It follows from Theorem 3.2 that
the measures induced in Dy by X, (¢), O g = 1, converge to that induced by
Xo(t), 0 =t <1, for 0 < < (1/4).

Example 2. (Convergence to an infinitely divisible law: bounded variances
case.) Let Xy 1,...,X,;,,n =1, be a triangular array of random variables

which are independent and identically distributed in each row. Suppose that the
kﬂ

distribution function and variance of S, ;, = ZX % converge to those of an in-
E=1

finitely divisible law (with finite, positive variance). It follows from the theory

presented in [2] that the finite dimensional distributions of

kﬂ
(4.1) Xnlt)=> Snxl(kn, ks1), 0=<i=<1,n=1,
k=1

converge as n —> oo to those of an infinitely divisible process, Xo (), 0 < ¢ < 1.
Moreover, if 0 < ¢ <8y <t3 =<1, [tz — #1| =, and n = 0 then

(ﬁ (Xult) — tzﬂ»)zglc(hauet(h@ﬂ)%

where @ and ¢2 are respectively the mean and variance of the limit law and K
is independent of »n. Thus (3.5a) is satisfied with b; = by = 2 and § = 1, and,
similarly, we may verify that (3.5b) is satisfied with &6 = 2 and y = 1. Therefore,
by Theorem 3.2 the measures induced by X, (f), 0 ¢ < 1, converge in D, to
that induced by Xo(f), 0 <t <1, for 0 < o < (1/4).

Example 3. (Convergence to a stable law.) Let X;, X, ... be independent,
identically distributed random variables whose common distribution function #
belongs to the domain of normal attraction of a stable law of characteristic
exponent y, 0 <<y < 2. For the sake of convenience, we suppose also that F is
symmetricif y = 1. Let X, (f), 0 <t <1, be defined by (4.1) with X, = Xn-1/n),
k=1,...,n; then, as above, the finite dimensional distributions of X, (£),
0 <t = 1, will converge to those of a stable process, Xy (), 0 <t < 1. We show
that (3.2) is satisfied for any o, 0 <o << (1/27). Indeed, since z¥ (1 — F(x) -+ F(—x))
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is convergent as x —> oo ([2], p. 182) and therefore bounded, we have by a standard
argument that
4.2) supt~¥|@() — 1| =< B

t=0

where @ is the characteristic function of X;. The inequality, |2¥ —1| <k|z—1],
|2] =< 1, now shows that (4.2) also holds when g is replaced by ¢z, the characteristic
[

function of £~(/v) ZX% ; and from the truncation inequality ([4], p. 196) we may

i=1
mﬂ?r(

is uniformly bounded in # =0 and £ = 1. (3.2) is an easy consequence: for

example
Pr(| Xa(t) — Xn(0)| =19 = Bytlwv, 0=t=<1,n=1.

A similar analysis will show that the limit process also satisfies (3.2} for any
o << 1/2y so that Theorem 3.2 applies.

Examples of continuous functionals on D which are not continuous on all of
D are easy to construct. In particular, any functional of the form

now infer that

E—1/7) i X;

=1

)Z%)éBl

0
D(f) = [p()ms(z)e~=dz, [eDy,

where g is a bounded measurable function on (— oo, 0] are continuous on Dy, and
not even defined on all of D. Such functionals might be of interest if, for example,
one thinks of wy as measuring the smoothness of f. Another class of functionals to
which our results apply is illustrated by

Example 4. (The sample density.) Let Fj and X,(1), 0 =t <1,n =1, be
as in Example 1 and define

fnl) = (Fu(t + hp) — Fu(t — ha))2hy, 0=t<1,n=1,

where 0 < hy — 0 with nAh20~% = oo, « < 1. f, provides an estimate of the
density f of X1, X3, ... . (See [7] and the references given there.) Now

(4.3) sup | fu(t) — B (fa(®)| = sup | Xn(t + hn) — Xu(t — hn)|[2ha]/n
0=t=1 0=e<1

where X, (t} = 0 for { < 0 and ¢ > 1. It follows easily from (2.6) and Example 1
that the right side of (4.3) converges to zero in probability as n — co. If f is
continuous, then we also have E (f5(t)) — f(t) uniformly in ¢ ([7]) so that f, will
be uniformly consistent. While stronger results on the uniform consistency of
sample densities are available ([7] and the references given there), this is apparently
the first which makes use of the theory of weak convergence of stochastic processes.
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