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Last Exit Times and the Q-Matrices of Markov Chains 

A. O. PITTENGER 

1. Introduction 

Let P(t) be a stochastic semigroup on a countable state space E, where the 
stochasticity may be assured by the addition of an absorbing point A. Q will 
denote the initial derivative matrix p'ij(O) with the usual properties 

0=<qi j for i~:j; O<=~qij<qi=-qu<=Ov, (1) 
j . i  

and any future reference to a Q-matrix takes (1) as given. Now if A is any finite 
subset of E, we will obtain in Theorem 2 a "last-exit" decomposition of P(t) 
relative to A, thereby generalizing a result given in Chung [1: II. 12]. The com- 
ponents involved in this last exit decomposition may be interpreted probabilistic- 
ally in great detail; in particular we obtain some rather interesting relations 
between the Q-matrix and last-exit times of the process (e.g. Corollary2 to 
Theorem 4). 

A reversal of the decomposition is proved in Theorem 5, and the method of 
construction given there provides the motivation for Theorem 6 which states 
sufficient conditions for a P(t) associated with Q to be unique. Finally, the results 
of this paper are applied to particular Q-matrices with instantaneous states, 
thereby providing alternate proofs for results of Reuter [12] and Williams [13]. 

Those familiar with Chung's work on boundary theory will recognize both 
the notation and some of the techniques used below. This is because the analytic 
method used to prove Theorem 1 is merely the Laplace transform of Chung's 
boundary decomposition given in [21 and more recently in [3]. The author 
employed this version in [9] to obtain results analogous to Chung's for a general 
state space and recently noted that the same approach goes through without 
substantial change if ordinary states of the state space are used as "boundary" 
points. 

We should note that a boundary decomposition under very weak assumptions 
was obtained by Lamb [71 using the Doob-Ray compactification of E. The 
assumptions made for Theorem 1 are of roughly the same generality as Lamb's, 
but since we will be concerned with ordinary states, we will use the one point 
compactification of E and the sample-path analysis available in Chung [1: II. T]. 
This loses the advantage of dealing with a "nearly-Hunt" process, but suffices for 
our purposes and provides as well some insight into the need for fictitious states. 
However, as a hedge against future applications, we will obtain the analytic 
decomposition of Theorem 1 under assumptions which permit a mixture of 
ordinary and fictitious states in A. 
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During the discussions below, we will refer to x(t) as a process associated 
with P(t). By this we will have in mind the right lower semi-continuous version x+ 
defined by Chung in [1 : II. 7] but all of the analysis will hold equally well for 
any well-behaved version and in particular the nearly-Hunt process of Doob [4]. 
We will write x+ only when there is a positive probability that the process could 
be at fictitious states, an event we denote by x+ ~E. 

2. Analytic Decomposition 

For convenience we always assume A ~ A; for explicitness we list our assump- 
tions: 

(c 0 On the ordinary states of E, P(t) is standard: 

p~(t)--,6~j as t--+0 

and all states in I = E -  A are ordinary. 

(fi) For  any i, jEE, Pi.(')~Pj.('); i.e. all states are distinguishable. 

(7) x (t) is strong-Markov for stopping times defined by first hits of sets in E. 

(The definition of the strong-Markov property for fictitious states is a bit 
weaker than the usual one. Since this is not central to our purpose, we omit the 
details here; suffice to say that for equivalence classes of Martin exit points or for 
the Doob-Ray compactification, we have enough strong=Markovianess for our 
purpose.) 

Define F(t) on I x I by 

fir(t) = Pi(T a > t, x(t) =j) 

where TA is the first hit of the set A. If 

Za_~Ta on {co: X(TA--)=a or else x(Ta-)6A, and X(TA)=a } 
otherwise 

then 
Pi('ca<=s + t)-Pi('G <=s)= ~ fo(s)Pj(% <=t), 

I 

and by [-1: Theorem II. 12.4] Pi (% =< t) has a continuous derivative hl (t) on [0, ~ )  
such that h ~ �9 (t) is an exit law: 

h~(s+t)=~fij(t)h~(s), s>O. 
I 

We denote by h~ the function P~(TA= co) which is invariant relative to F(t): 

h ~ (i) = ~ fij (t) h ~ (j). 
J 

In addition to exit laws we will also use (bounded) entrance laws relative to F(t): 

O<w~(s+t)=y~w,(t)f~j(s), t>O, 
T i 

with I (~ w~ (t)) dt < Go for some T > O. We will call an entrance law null if for all j,  
0 i 

wj(t)--*O as t---,0. 
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Finally, we use the same letter for the Laplace transform of a function, although 
no confusion should result: 

0 9  

- - 2 t  a h~(i)= ~ e hi(t)dt=h~(i)-2F~h"(i), * 
o 

(2) 
wa(i)= ~ e-Ztwi(t)dt, 

0 

and similar expressions for pz(i,j) and fz(i,j). Operations such as occur in (2) and 
the symbol (wz, h a) will denote summation over E with the convention 

h~(b)=h"(b)=6ab; 

wz (') and fz(',-) will be set equal to zero if one of the states in A appears as an 
argument, unless a specific definition to the contrary is made. 

We can now state 

Theorem 1. Pz may be decomposed in the form 

pa(i,j)= fz(i , j)+ ~ ~ h~(i) Mz(a, b) wbz(j), (3) 
a b ~ A  

where h~ is defined in (2) and w~ is the resolvent of a bounded entrance law relative to 
F;. with w~ (c)= 6bc wb (b) and w b (b)> 0 iff b is an ordinary state. M;. is a non-negative, 
invertible matrix on A x A with 

M ;  l(a, b)= Lab-  Q(a, b) + Uz (a, b) 

where U~ ( a, b) = 2 (w;, hb), and f2 is a constant matrix with f2 ( a, a) = 0 and ~ f2( a, b) <- 1. 
For all b + a, Ux (a, b) < f2 (a, b). I f  

Ao= {a: du(a, b)-#(p~,  hb)=6ab}, 2 (4) 
then 

Lab = a ~ A o  

and (2,b=O for all a~A o and b~A. 3 

Remark. As mentioned above, this is the Laplace transform of the decom- 
position obtained by Chung [2] for A composed of classes of points in a Martin 
exit boundary. The proof we present here is given in a somewhat more leisurely 
fashion in [9]. 

Proof From the assumed strong Markov property, 

pz (i, j) = fz (i, j) + ~ h~ (i) p,~ (j). (5) 
a 

m 

1 We shall write ha(i) for h~(i)= S h~(t) dt=Pi(z,< oe). 
o 

a . - -  2 We use Pu( )-pu(a, .) interchangeably. 
3 In Chung's terminology A o is the set of recurrent traps. 
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Using the resolvent equat ion P ~ = P . + ( # - 2 ) P u P z  for p~(') in (5), a rearrangement  
yields 

Pu" (3 + (# - 2) Fz) = Z [6~b § (2 -- #) (p~, h~)] p b. 
b 

Adding and subtracting #(p"., h b) within the brackets and using (2), we have next 

a b a P u " ( 6 + ( # - A ) F x ) = ~ [ 6 . b - # ( p u ,  h )+2(pu, (6+(#-2)F~)hb)]P~ b. (6) 
b 

Suppose  now that aeAo  as defined in (4). Then after setting # = 1  Eq.(6) 
reduces to 

P~"(6 + (i - 2) F~) = 2(Pt",(6 + (1-2)F~ h~) P~"). 

Denot ing the left hand side by w~ and setting 

g~ (a, b) = ,~ (w~, h ~) 

we have U, (a, b) = 6.b- It is easy to check that Ux(a, a) > 0 for all 2 by use of (2). If 

w~(b)=6~bpf(a) (7) 
then on E 

w~ = w~(6 + (v - 2) F~), 

which is a reflection of the equat ion 

(6 + (# - 2) F~) (6 + (2 - v) F~) = 5 + (# - v) F~. 

For ar divide (6) by i -du(a, a) to obtain 

w;, ~ (j) = ~ E6.b -- f2~, (a, b) + Uu, ~ (a, b)] pb (j), 
b 

where 

and 

w~,, z (J) = (1 - d.  (a, a ) ) - l ,  pu~ (c5 + ( # -  2) Fz)j, 

(}u (a, b) = (1 - 6.b) (1 -- d u (a, a ) ) - i  du (a, b), 

(8) 

(9) 

(10) 

(11) Uu, z (a, b) = (1 - d~ (a, a))- i  2 (Pf, (3 + (# - 2) F~) hb). 

Clearly ~ f2. (a, b) < 1, and since for # > 2 

2 (h b + (# - 2) Fz h b) < # h b , 
we have 

U.,z(a,b)<-_Ou(a,b), 
for b ~ a  and # > 2 .  

Fix 2 = 2  o and suppose # diverged along {#,} in such a way that Uuk ' zo(a, a)--~oe, 
but all other quantities converged to a finite limit. If we were to integrate 20 h ~ 
on both  sides of (8), divide by U,,zo(a, a), and then pass to the limit, we should 
have dzo(a, a )=  1. This violates aq~A o, and hence {#k} can be chosen so that all 
quantities on the right of (8) converge to finite limits for all a~Ao.  Hence 

W.~o (j) = 2 [6 .o -Q(a ,  b)+ U~o(a, b)] P~o(J) (12) 
b 

where w~o (j), ~ and Uzo are the obvious limits. 
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F i x j e E  and let 0<2=t=2 o. F rom (9) we have 

w~, 4 (j) = w~, 4o ((5 + (2 0 - 2) V4) j . 

Hence defining w~ by 
w~ (j) = W~o (6 + (2 0 - 2) F4) J, (13) 

r w~, 4 (J) - w~ (J) l =< ~ (I t? (a, b) - ~;, (a, b)[ 
E b 

+IUu, zo (a, b ) -  Uzo (a, b)l) (2o + (20 - 2)/2). 

and w"~,4(j)~w~(j) uniformly in j ~ E  as # ~ o e  along {#k}. This suffices to prove 
U 4 (a, b) = 2 (w;, hb). 

Suppose now j =  c EA. If c is fictitious, p~(c) is zero for all b, so is w~,4(c) and 
so will be w~ (c). Suppose c ~ a is ordinary. Since a factor of 

# p~ (c)/(1 - d ,  (a, a)) 

appears in the convergent t?, (a, c), 

% 4 (c) = p~, (c)/(1 - d, (a, a))-~ O. 
I f c = a ,  

w"u, 4o (a) = p~ (a)/( 1 - d, (a, a)) 

must  also converge, the limit is independent of 20, and we therefore have w~(b)= 
g),bW~(a) as a definition consistent with (13) and with the limiting operation. 

Extending (J to Ao and defining L as in the statement of the theorem, we need 
only prove the invertibility of L - f2 + U 4 . For  this we quote 

Lemma 1 [2: Lemma 15.2]. Suppose H is a non-negative substochastic matrix 
on A x A. Then 3 -  H is not invertible iff H is stochastic on a subset C c A. I f  6 -  H 
is invertible, its inverse matrix has non-negative entries. 

We apply this by writing L - f J + U 4 = D 4 ( g ) - H 4 )  where D4(a,b)=C3,b(L,~+ 
U;. (a, a)) and 

t?(a, b ) -  Uz (a, b) 
H4 (a, b) = (1 - 3~b) 

D 4 (a, a) 

Suppose Hx is stochastic on C c A - A  o. Then U4(a, b)=0  for all b and all a~C. 
Hence for a~ C 

P~a = ~  t?(a, c) Pf, 
c 

and this leads to a contradiction of assumption (fl). Thus 6 - H4 is invertible, and 
the proof  is completed. [7 

F r o m  the invertibility of L -  t? + U z, we have 

Corollary 1. I f  b is an ordinary state, 

M~ (a, b) = pa (a, b)/w b (b). 

Corollary 2. Let P(t) be any standard semigroup on a discrete (possibly f ini te)  
state space, and let A be any finite subset orE. (That is all states are ordinary.) 
Then the resolvent Pz considered as a matrix on A • A is invertibte. 
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Corollary 2 is rather striking, and it is reasonable to expect a proof less in- 
volved than the one above. In fact, L. Pitt has pointed out that it is a simple 
consequence of the dominance principle, an assertion which we leave as an 
exercise. 

The invertibility of Px on A x A also occurs in the fundamental work of 
Neveu [8] as well as in Kingman's work on regenerative events [-6]. In fact the 
representations of P~ given there are quite similar to that obtained in Theorem 1. 
For example when A is composed of ordinary states, Kingman [6: Theorem 7] 
gives the matrix equation 

o o  

PZ 1 = 2 6 + A +  ~ (1-e-~')l~(dt),  
o 

where A is a constant matrix and p(dt) a positive matrix-valued measure. In- 
voking the uniqueness theorem for Laplace transforms, it is easy to show that 

~-f2(a ,  b)/w"(a) b:l=a 
Aab = (Laa/wa(a) b = a 

and 
1 

P,b[(t, ~)]  = w~(a ) ~i w~(t) hb(i), 

where w~ (i) is the transform of w~ (t). These identifications will permit probabilistic 
interpretations of A and p from Proposition 5 and Theorem 4 below. Thus, for 
example, if b + a 

-wa(a)A~b=P~ [first hit of A - a  occurs at b]. 

, 

In the proof of Theorem 1, a particular sequence {Pk} was used to define the 
limits needed. For completeness we show here that the results are independent of 
the sequence chosen. The proof uses another result on matrices whose straight- 
forward proof we omit. 

Lemma 2. Suppose M~ is a family of invertible n x n matrices on N x N, and 
that N can be broken up into two disjoint sets: 

N 1 = {k: l i m M z l ( k ,  k)< oe} 

and 
N2= {k: lirn Mz ' (k ,  k)= oo}. 

Suppose further that all other components Md-l(1, k) have finite limits as ~--->oo, 
with limit zero if keN1 and 1 4k.  Then for 1 4k ,  

lira [M2-1 (1, 1) M~ (1, k) M~- t (k, k)] = - lim M~- ~ (1, k) 

and lim M2-1 (1, 1) Mz(1, k)=61k. 

If fictitious states occur in A, a preliminary result is necessary before using 
Lemma 2. Since the proof is completely algebraic and is sketched in [9], we 
merely state 
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Proposition 1. I f  {#k} were chosen so that du(a, b) converged and if vo~-O while 

�9 ((~2(a,b)-Uu~(a,b))(1-du~(b,b)) b(~Ao 
V~b-l~ml(f2(a,b)-Uu~(a,b))/Uu~(b,b) b~Ao, 

then for all b 
Vab =O. 

This result permits 

Proposition 2. The decomposition given in lheorem 1 is independent of {#k}. 

Proof. U~ T with 2, and we can define 

N - - { a :  U~o(a,a)< oo}. 

Hence M x and M2 -~ satisfy the hypotheses of Lemma 2. For a~Ao and b 4= a 

d;. (a, b) 1 + U~ (a, a) ~ ~ Ma (a, c) U;. (c, b) ] 
lim lim l = f2(a, b). 

1-d~(a,a) l+U;~(a,a) ~Mx(a,c)(L~a-f2(c,a)) 
c 

Similarly for j~E,  

[ 1 + u~ (a, a) ~ Mu (a, c) w~ (j) _] 
lira Ewe, (J)] lium w~ (j). 2 D . I_ 1 + U.(a, a) ~M~(a, c)(Lc~-Y2(c, a)) ] 

c 

We record here the result that for a~Ao 

(1 + U,(a, a))(1 -du(a, a) )~ l .  (14) 

Another useful equation is 

[~(w~ +u, hl)= U;~+u(a, b ) -  U2(a, b), (15) 

from which we have 
lira U2.(a, b)=0.  (16) 
2~0 

4. Interpretation of Parameters 

The disadvantage of the Laplace transform is that much of the probabilistic 
content of the process is smeared over. However, motivated by Corollary 1 above, 
we will assume 

(b) A is composed of ordinary states, 

and obtain a probabilistic meaning for all of the parameters which were obtained 
analytically. We begin by collecting together some useful consequences of (b). 

Proposition 3. For all a E A, w ~ (a) > O, M~ (a, b) = p;. (a, b)/w b (b), and 

p~ (j) = ~ p~ (b) wab (j) (17) 
b wb(b) " 

Recalling that p'ab(O)= qab = lira 22p~(b), 

Q(a, b)= w"(a)q.b + U~(a, b). (18) 
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Proof. The first part is immediate from (&). Eq. (18) is trivial for aeAo. If aCAo 

lira Z (1 - dz (a, a)) = lira (1 - dz (a, a)) 2 p~ (a) 
~ p"z(a) (19) 

= w"(a) - t  , 
and hence from (14) 

Uz (a, a) 
lim - w" (a) 
),~oo ~ 

Apply Lemma 2 to complete the proof: 4 

[ Uz(~):UT(z(b,'~2wb(b) ]b)- q.b= lim2ZPfl(b)=lim Uz(a, a)Mz(a, b) Uz(b, b) 

(2 (a, b)-  Uoo (a, b) 
- 0 w"(a) 

(20) 

If TA_. is the first hit of A - a, define 

~ ( 0 = { A  (t) t<TA-,  
t>=TA_. 

with A a new absorbing point. The ff process will be useful below, and related 
quantities will be denoted by a supersign " - " ,  e.g. 

oo oo 

P~(J)= ~ e-~tP~(x(t)=j) dt= ~ e-~tp~(TA-~>t,x(t)=j) dt 
0 0 

and 
oo 

h~(a)= ~ e-Xtp~(Ta_.=~r 
0 

where ~c is defined analogously to zc, using TA_. instead of TA. 

We can then relate ~ to parameters already defined: 

Proposition 4. 
p~ (a) = w ~ (a)/(L.. + Uz (a, a)) 

and for aCAo 

Forj~I and d4=a 

and 

oo 

w"(a)= ~ p~(t)dt. 
0 

w~(j) 
~(J)  = N(a) w. (a)' 

h,~ (d ) -  (2 (a, d) - Ux (a, d) 
Laa + Uz(a, a) 

lim 2h~(d) = q~a- 

'* We  are using the fact tha t  under  a s sumpt ion  (~3), Ua(a , a)~ oo for all a. 

(21) 

(22) 

(23) 

(24) 

(25) 
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Proof If aeAo,all  of the results above are trivial Assume aCAo. For b+a  
the strong Markov property justifies 

p~ (b) = ~ h~ (c) p] (b), (26) 
c ~ a  

as well as 
h~ (c) px (j) (27) N ( J ) = p ~ ( 2 -  ~ - "  c 

c ~ a  

for j E I w a. Multiplying (26) by M ;  ~ (b, d)/w b (b), d =I= a, and summing over b + a, 
we have 

h~(d) = O(a, d ) -  Uz(a, d) [p~(a)-  ~ h~.(c) p~(a)]. 
w~ e*o 

Using (27) 

-o - - ~  (28) h~ (d) - px (a) (Q (a, d) - Ua (a, d)) 
w,(a) 

and Eq. (25) follows by a limiting operation. Using (28) for hi(c) in (27) w i t h j = a  
gives Eq. (21) for p~(a), and (24) is immediate. Finally, a combination of (24) 
and (27) produce the last result, Eq. (23). 

The algebraic manipulations above lead to the first probabilistic interpretation 
of parameters defined in Section 2. 

P r o p o s i t i o n  5. For all a and all b =~ a 

f2(a, b)=P~(TA_a =Tb< oo). (29) 
I f  aCAo, 

U:~(a, 0)= U(a, O) = 2(w~, h ~ = Po(TA_,, = co), (30) 

where we recall that h~ (i)= Pi( Ta = oo). 

Proof For a e A  o (29) is immediate. For ar (29) follows from (16) and (24): 

oo 

(2(a, b)--lira o ~ ~ e-ZtdP(TA-a=Tbedt)  

To prove (30); go back to the definition of f2: 

1 -dz (a ,  a)-d~(a,  0) _ 1 - lira y Mz(a, c) Uz(c, O) 
~2(a, b)= lim c 

b ~-~ ~ 1 - d a (a ,  a )  z ~  ~ 1 - d). (a ,  a )  

and use Lemma 2 and the invariance of h ~ [] 

o 

A deeper insight requires inverting the Laplace transform w]. This inversion 
is justified by 

Proposition 6. w~ is the Laplace transform of an entrance law w(t) on I which is 
continuous and bounded in the sense of Section 2. w"(t) may be written as 

w~(t) = wa(a) [ 2  o wa (1)fu (t)+ V~ (t)] 
l e l  

l l a  Z.Wahrscheinl ichkei ts theorie  verw. Geb., Bd. 20 
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where v"(t) is a null entrance law and 

lim w~(t)= wU(a) �9 owU(j). 
t--*O 

Proof All of the assertions are contained in Neveu [8]; we have separated out 
the factor of wU(a) for convenience below. 

Corollary. For all a~A and t > 0  

lim ~ Puj(O fjk(t) _ w~(k) (31) 
~ o  , e wU(a) " 

Proof By virtue of Proposition 6 we can unwind the Laplace transform and 
express (17) as 

(u) Pub 
Puj (S) = ~ Jo W~ ~ W~ (S-- U) du. 

Hence, the left hand side of (31) is 

; pub(u) w (e+t-uldu 
lim~_~o b 0 J e wb(b) ' 

and the right hand side is the limiting expression. D 

. 

The decomposition now begins to look suspiciously like a last exit decom- 
position, and to make this explicit, we will use some of the technical ideas of 
Chung [2: II. 12], where a last-exit decomposition from one state is obtained. 
The main difference in the approach here is that we already have the wU(t) in 
hand and merely wish to confirm their meaning. 

First of all we state: 

Proposition7. Let i~E, j~I ,  b~A, and t>O be fixed and let y be a random 
variable satisfying the following conditions on Y6 Y {x (s): 0 <_ s <_ t} : 

(a) 0 < 7 < t  
(b) F= {x (0) = i} c~ {x (t) =j} c~ A, where 7 and A are related by 

{7>u} c~ A ~ ~ {x(s); u<=s<=t} 

(c) lim X (s, w) = b. 5 

I f  7 (") is the discrete skeleton of 7 defined by 

n n n + l  
7(")=2,  ' for ~ - < 7 <  2" ' n > 0 ,  

then 
l i fn  P/(x (y ("') = b, A) = P~ (A). 

s This presupposes an order on E; we are using in fact the sample path analysis of Chung [2: If. 7] 
with this notation. 
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Proof This is a slight generalization of [2: II. Theorem 12.1] and the indicated 
property of A allows the proof given there to be applied without any essential 
change, f1 

For  any finite set C c E, define 

~, fsup(s_<t; x(s)sC) 
Yc=[o 

Since we are working with a finite number of ordinary states, 

{7~ < t} = U {7~ = ~ < t}. 
b 

Proposition 8. Forjr  

P~(x(t)=j; % = ~ d = o S P ~  wb(b) du. (32) 

Proof As in [1 : II. Theorem 12.2], we start by writing 

Y ~(Av)= ~ p.~ ~ -  p~,(2-m)f~j t -  , 
v=l  v~l 

where 

A ~= x =b ;  x(s, co)(~A for ~ < s < t , x ( t ) = j  . 

([2'nt] denotes the largest integer in 2rot.) By virtue of the Corollary to Pro- 
position 6, the quantity on the right above converges to the right side of (32) 
as m ~  ~ .  If A-~ {o/~ = 7~4} and 7~ ~') is as in Proposition 7, then with x(0)= a 

, [2mr] ) 
B=-{oo: x(7;(m),co)#b; yb <~2~--,A,x(t, co)=j ~ 

and thus 
[2mt l  

8 (x (t) = j ,  % = ~2,) = Y P~ (A~) + P, (B) 
v = l  

/ [2 ~ t ]  , .\ 

�9 ,(,~ _ , <2-~). -P.(x(t)=j,x(~,b )-a, o < ~ , - ~  

The proof is completed by noting that as m--+ oo, P.(B)--+0 by the preceding result, 
while _P. (7] -- t, x (t) =j) = 0 and P. (0 < 7~, - 7~, < 2-m) also converges to zero�9 D 

All of the machinery is now in hand for an interpretation of Theorem 1 under 
assumption (6): 

Theorem 2. Denote ~, w~ (t) by w~(t). Then 
I 

P~(7~ = 7rAidS; x ( t )= j )=p~b(s )~) -  ds, (33) 

and 
,,, ~,, w~(t-s) 

P.(zb= z AedS)= pab(S) ~ -  ds. (34) 

1 i b Z.Wahrscheinlichkeitstheorie verw. Geb., Bd. 20 
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A version of the conditional probability below is 

and therefore 

P~ (x (t) =J17~ = ;~  = s) = w~ ( t -  s) 
w~i( t_  s) ' 

/ p.b(S) Wb(t--s) w~(t--s) 
P~i(t)= wb(b) w~(t--s) ds 

(35) 

is an expression of the last-exit decomposition 

t 

p , j ( t ) = ~  ~ E,[{y~=ytaeds} ; P~(x(t)=jly~-~7~=s)] ds. 
A 0 

Proof An application of Proposit ion 8 for s < t gives 

P~ (Y~ ~ Y~4 < s; x (t) =j)  = ~ P~ (y~, = Y~4, x (s) = 1, x (u) ~ I for s ~ u ~ t ; x (t) = j )  
1 

w[(s-u) f l j ( t - s )  du 
= 2 Spob(~) wb(b) 

l e l  0 

w~(t-u) 
=~P"b(U) &(b) du. 

0 

(33) and hence (34) are immediate consequences. Furthermore,  

, w~(t-~) 
P~ (Y~ = 73 < s, x (t) =j )  = S P, (7b = 7~4 e du) w~ ( t -  u) ' 

0 

which suffices to prove both statements about  conditional probabilities. 

By using (23) and a repetition of the analysis of Proposit ion 8 and Theorem 2, 
we have 

Corollary. Let 2(t) be the process starting at a and stopped at the first hit of 
A -a .  Then 

w~(t-s) 
P~(~t~ds, Yc(t)=j)=p..(s) w.(a ) ds, 

wT(t-s) 
P~ffteds)=P""(s) wO(a) ds, 

and hence a version of the conditional probability below is 

wj ( t -  s) = p,(y (t) =j i l t ,  ~ s). 
w~(t- s) 

It seems odd at first glance to have w~(t-s)/w~(t-s) represent conditional 
probabilities for both x(t) and 2(t). However, since in both cases the condit ioning 
is that  the process will not hit A in (s, t], the result is quite reasonable. 
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. 

We may apply the results above to obtain a rather detailed analysis for the 
influence of the Q-matrix of P(t). We use 7] and 7~ as before and define 

~sup{t< TA_,: x(t)=a} 
~ = (0 if { } is empty. 

Theorem 3. Suppose a r A o . Then for b ~ a 

P.(~."Aeds, Tb= TA-.edt ,  ~A < TA_.) = O.b(t- s) (36) 

where 
O.b(t--S)==- ~, wy(t-- s--r) hb(r) 

J 

is independent of 0 < r < t -  s. Furthermore 

c ~  

Uo~ (a, b)= ~ O.b(v) dv= P~(~Y~ < Tb= TA_,, < co), (37) 
0 

and hence 
w"(a) q.b =P~(~ = Tb< oo). (38) 

Proof First of all 

P~(r < s < t < T~_a = T~ < oo) 

= ~  P,(7~<s< TA_,; x(s)=l ;  s < t <  TA_o= Tb<oO ) 
1 

=Y, p~(~ < s, ~(s) = 1) p d t -  s < T~= T~< ~ )  
1 

= ~ Lo(u) ~ w~(s-u)Aj(t-s)Pj(r 
d w"(,~) i,j 

from which (36) follows. Eq. (37) follows from the definitions and by integrating 
(36), while (38) is a consequence of Proposition 5. D 

The reader familiar with Chung's work in boundary theory will recognize 
the interpretation of q~b above. (38) shows that with the additional factor of 
w"(a), q,,b is a measure of first hitting A - a  by a direct jump from a to b. We can 
make (38) more familiar by assuming a, beA, T E and assuming a is a stable state. 
If r is the first hit of E -  a, we get in the limit 

o O  

Gb=P.(x(z +)=b)/  ~ P.(~>t, x( t )=a)dt  
0 

o r  

q.b -P.(x(r  +)=b) .  
q. 
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The limitation on the role of Q is also apparent. If for example P(t) were the 
semigroup constructed by Feller and McKean [5] with all instantaneous states 
and q~j zero for i+j, then there is no probability of going directly from a to b. 
This is of course a reflection of the continuity of the sample paths on the com- 
pleted state space and is merely the statement that between two given rationals 
there is a third rational. 

Recall now the representation of the entrance laws guaranteed by Proposi- 
tion 6. For j~I 

]12 Pu"(J)= Z Iz pau(b), kt wb(j) 
b wb(b) 

and a passage to the limit gives 

q,,j = o w" (j). (39) 

Hence, the Q-matrix appears in a component of w" (t), and this leads to the question 
of its probabilistic meaning. 

Theorem 4. Let ~ be the last hitting time of a before TA_a, as above, and let 
j, leI. Then 6 

(a) P.(7~, = Y~ < s, x + (y~) = 1, x + (t) =j) = ~ P.b (u) qb~ f l j  (t -- U) du (40) 
0 

and 

P,(]~ta < s, ~+ (;',) = 1, 2+ ( t )=j)= ~ p,,(u) q,, f t j ( t -u)  du. (41) 
o 

(b) P~(~ds, x+ (~)= 1, T A_. = Tb~dt ) = ~,,(s) %1 h~(t-s) dt ds (42) 

and for aq~Ao 

P~(~ds, x+ (ff~)---1, TA_a= ~)=~a . (s )  qal h~ ds. (43) 

Proof The method follows that of Proposition 8 by showing 

P~(~tb=Tta,X+(Ttb)=l,x+(t)=J) =lim ~ Pab pbl(Z-m) fu  t - ~ -  
nl v =  l 

which is the desired expression. Since {7~=7~, x+(7~)=l} satisfies the require- 
ments of A in Proposition 7, the argument proceeds as before, except that we 
must consider a term of the form 

lira P, [x + (7~ (m)) = b; x + (7~) = 1, x + (y~(") + 2 - ") =~ 1, x (t) = j ] .  
m 

To show this contributes nothing in the limit, let 

~(T~ <= s)= i ht,(v) dv 
0 

6 Recall the discussion of x+ in Section 1. 
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where h~(v) is the continuous function on [0, oo) guaranteed by [1: Theorem II. 
12.4]. Consequently the unwanted term above is bounded by 

lim ~ P,b I h~ (s)(1 - p ~  (2- ~ - s)) ds 
m v 0 

= < i p~b(S)h~(O+)limm ( sup (1--pal(V)))=0. 
0 V= -m 

A repetition of the arguments in Theorem 2 then justifies part (a) above. 

Proceeding to (b), the method is straightforward: 

Pa(~l < S  < t < T A _ a =  T b <  O0, X+ ( ~ ) =  1) 

= Z  P~(7] < s  < TA_,, X+ (7])= 1, X(S)=j)Pj(t--s< TA=Zb< 00) 
J 
s 

=  oo(u)qa, 
0 t 

and (42) is immediate. Eq. (43) follows by an obvious modification of the preceding 
B 

As immediate consequences, we have 

Corollary 1. For s < t 

w b (b) qba f~j (t-- S) = P~ (x + (t) =j ,  x + (~,~) = 117 ~ = 7A = S). 
Wbi(t-- s) 

argument and the invariance of h ~ 

Hence 
wb(b) ~ qbl f l j ( t --s)  

1 

s) = P~ (x + (t) =j ,  x + (v~)eI [ 7~, = 7] = s), 

w b (b) ~ ( t -  s) 
w~(t-s) --P~(x(t)=j'x+(7])r 

and 

(44) 

(45) 

(46) 

Proof. (44) follows from (34) in Theorem 2 and (40) above by a now standard 
argument.  The remainder of the Corollary is then immediate, f1 

We next summarize (38) and the integrals of (42) and (43) above in 

Corollary 2. Suppose a(~Ao. Then for all l ~ E - a  and b~=a 

P~ (x + (~) = 1, T A _, = Tb < oo ) = w a (a) %1 hb (1), 
and 

P~(x+ ( (~)r  a, TA_, = Tb < o0)= wa(a) }imoo (VO(t), hb). 
For l e I  

P~ (x + ((~) = 1, (I < oo = T A_ ~) = w ~ (a) %,  h ~ (1), 
and 

P~(x+ ((~)r I, ~ < oo = TA_,)= wa(a) lim (Va(t), h~ 
t~O 

P r o o f  The second and fourth equations follow from the interpretation of 
~?(a,b) and Eq.(30). 
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Finally we have another expression for wa(a), and we include a striking 
relationship between qa and Va(t). 

Corollary 3. For a(~Ao 

(w a (a))-I = k~ qak (1 -- h a (k)) + lim ~ (v a (t), (1 - ha)). (47) 

I f % -  ~, qak>O for any aEA, then 
k:l: a 

q, = Z qak + lim (v"(t), 1). (48) 
k * a  t ~ O  

Proof (47) follows from 1= ~ ~2(a, b)+ U(a, 0) and Corollary 2. To prove (48) 
we have b 

%=lim2(1--2pz(a,a))=lim2 ~.p~(b) (Lba-f2(b'a)+U~(b'a) 26ba ) 
b wa(a) 

r 2 p~ (a) "L "2 " ha))] = lim |~xT; - , ,  ( . a + (  w~, . 
,,~ --* ao l w-ta) J 

(48) then follows from (47). 

In essence we have obtained by largely analytic methods quantitative ex- 
pressions for the probabilistic influence of the Q-matrix on the process, in parti- 
cular at (•. To get a better idea of the content of the Corollaries, the reader should 
apply them to the Feller-McKean Q-matrix described above and to the case 
when all states are stable, but not necessarily conservative ( ~  qai~qa< 00). 

ie~a 

8. The Construction Problem 

The problem of constructing a P(t) on E=lwA from a given F(t) on I and 
a given initial derivative matrix Q on E • E can be "solved" in the sense that the 
analytic procedure used in the decomposition can be reversed. The unsatisfactory 
aspect is that very strong conditions on the functions {h a, a~A} must be made. 
It is not difficult to define the construction for a mixture of ordinary and fictitious 
states by utilizing the constraint of Proposition 1, but in the spirit of the preceding 
results, we will content ourselves with the case when A is to be composed of 
ordinary states. Our purpose is not really to give yet another construction (see 
e.g. Neveu [8]), but rather (i) to verify that the decomposition can in fact be 
reversed and (ii) to investigate the case when the Q-matrix uniquely defines an 
associated P(t). In this regard we should mention that the recent papers of Wil- 
liams [-12] and Reuter [13] were motivating factors for our efforts here. 

Let us assume that we are given F(t) on I such that f~}(0)--qlj. 

h ~ (i)---- lira ~ fo(t) (49) 
t--*m I 

is invariant to F(t). We assume that we are given {ha(i), aeA} such that 

(i) ~, h a (i) = 1 - h ~ (i), 
a s A  

oo 

(ii) h"(i)= ~ h~(s)ds with h~(s)>O, lira h~(s)=qia, and h"(s) a continuous exit 
0 s ~ O  

law relative to F(t). 
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The remaining assumptions tie the haG) to qa." F~ denotes the Laplace trans- 
form as before. 

(iii) ~ q, ~ fz (i, I) < oo for 2 > 0, 
i 

(iv) ~ %j(1-ha(j))< oo 
j * a  

(we follow the conventions of h "(c) = 3~ and 0. oo = 0). 
(v) If q , -  ~ qal>0,  then there exists a null entrance law va(t) such that 

14=a 
lim ~ v~(t)=qa- ~ %1. 
t ~ O  i l :l:a 

Theorem 5. Subject to (i)-(v) there exists a semigroup P(t) on E with initial 
derivative matrix Q. The resolvent of P (t) is of the form 

pz(i,j)=fz(i,j)+ ~ ~ h[(i) p~(b)wbz(j) 
a b~A wb(b) 

where all components have the same representation as in Theorem 1. 

Proof. The technique used here is almost identical with that of [2] and [9], 
and we shall omit many of the details. 

Let {V], aeA} be the Laplace transforms of null entrance laws, subject to 
the constraints 

lim (2 Vz", 1 - h a) < ~ ,  
2~oO 

the normalization assumption of (v) above and finally V~--=0 if a is stable and 
conservative. Define 

~"~ (i) = ~ qaj fz (J, i) + V~ a (i). 
I 

Let 

define 

and let 

As before 

A o = {a: ~ q a b  + l i .m (/~ w~, 1 - h a) = 0} ,  
b~:a 

wa(a) -1= I ~ qaj(1-ha(j))+)im(]4 lZ~, 1 - h  a) a~A o 

[ (W~, h a) aeA o 

~wa(a) w"z(i) ieI 
w ] ( i )  = (wa(a) ~ai i eA .  

L,b={g ,b  ar 
aeAo, 

f2(a, b)=O for aeA o and otherwise 

O(a, b)= (1 - bob)(wO(a) qab + Uo~ (a, b)) 
where 

U~ (a, b) = 2 (w"a, hb). 

The proofs that L - f 2  + Uz is invertible and that 

P~= F~ + ~ ~ ha~ ( L -  f2 + Uz)2) w~ 
a b 
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satisfies the resolvent equation and is stochastic follows as in [9]. The use of 
w"(a)>O is the only variation on the theme. 

To verify that 2P~(i,j)~ 6ij and that Q is the initial derivative matrix we note 
that 

2 h"~(i)~qi, ie I ,  

2 w~(j) ~ w~ q,j j e I ,  

22pax(b)--.qa b a + b ~ I ,  

2 (1 - 2 p~ (a, b)) ~ %, 

and proceed by cases. The calculations are easy and involve at worst the use of 
Lemma 2. 

Finally the existence of an associated P(t) is guaranteed by Reuter 1-11: 
Section 13 . D 

9. 

We now have the machinery for both the decomposition and construction 
of P(t) relative to (I, A, Q, F(t)) and are in a position to discuss uniqueness: when 
does a given Q-matrix have one and only one stochastic P(t) associated with it? 
In general this will be the exception rather than the rule; however, by limiting 
the degree of freedom found in the construction we can obtain sufficient conditions: 

Theorem 6. Suppose 

(a) qi< ~ for idI. 
(b) F(t) is stochastic where F(t) is the minimal process on E • E constructed 

from 
^ (q~j iEI 
q~J=~0 leA.  

c) There exists no null entrance law V(t) relative to F(t) on I with the property 

lim (v (t), (1 - f . ,  (oo))) < 
t ~ O  " 

for some aeA. 
Then if there exists a stochastic P(t) with initial derivative matrix Q, it is unique. 

Remark. The conditions for existence can be checked by using h"(i)=J~,(oo). 
Note that assumption (c) forces ~qij=q~ for all i~A, while the stochasticity 

j+-i 
of F(t) forces the same equality for ieI.  

Proof Let P(t) be decomposed as in Theorem 1. By definition F(t)>F(t) on 
I x I. By examining the meaning of h~'(i) and J~o(ov) and using the stochasticity 
of F(t), we have 

f i j( t)=fij(t)  i, j e I  

h"(i)=fio(oo) ieI .  
By assumption (c), 

w (t) = qoj (t)) w~ 

and the normalization of w"(a) (see e.g. the definitions in Theorem 5) show all 
components of the decomposition of P(t) are expressible in terms of Q. [] 
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In [12] Reuter treated the case when Q is diagonal on I x I and A =  {a}, 
where a is instantaneous with ~ qaj = oo. As an application of Theorems 5 and 6, 
we have the generalization: J*" 

Corollary 1. Suppose A is finite, Q is diagonal on I • I and 

(a) O<=2qi.j=qi<c~ for i~1 
J 

O<Y'q.j=q.<=oo for a~A. 
J 

(b) Using the convention that qjJqj=O, if qj=0 

%j(1-qjo]q~)< ~ .  
E-a 

(c) For 2 > 0 
qaj 0(3. 

2+qj  < 

Then there exists one and only one stochastic P(t) with initial derivative matrix Q. 

Proof Existence follows from Theorem 5 with f/j (t)= 6ij e-q~ and h a ( i )= qi Jqi. 
Uniqueness follows from Theorem 6. D 

Finally we show that the analysis of this paper may be applied to a generaliza- 
tion of the case discussed by Williams [13]. 

Proposition 9. Suppose A = {a 1 , a2 . . . . .  an} is finite and 
n 

~ q.,j>>_6>O 

for all j ~ I = E - A .  I f  there is a P(t) with Q as an initial derivative matrix then 

(cO ~ qi~=qi< oo for i•A 

while 
~q , j=q ,<oo  for acA 

j ~ a  

if {j: qaj>=b/n} is finite. 

(c2) ~ q,j fz (j, I) < oo, 
J 

where F~ is the resolvent associated with the minimal process on I x I. 
I f  A = {a}, the converse assertion is true as well. 

Proof If P(t) exists, (%) follows at once from the last exit decomposition 
relative to A and the minimality of F). 

To prove (c 0 first decompose relative to A and define Ii=-{j: q,,j>=6/n}. 
Since for all aieA 

E q,,j(1-h"'(j))< oo, 

h"'(j)> I for all but a finite number ofj~I, , .  Hence li~I~ is finite for all ai+aj, 
and we may redefine them so that there is a null intersection. 

From 
oo > ~ ~ q.,jfz(J, I)_~ c~ ~ fz(J, I), 

j i = 1  j 
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it follows that f ( . ,  I) is a finite measure. Hence the only null entrance law v(t) 
with v j ( t )<M< oe is v(t)-O. Suppose now that 1~ is finite. Then using the usual 
notation 

w a, (ai) -1 > ~, vj~ (t) (1 - h a~ (j)) 
J 

=> 2 v~' (t) 2 ha~ (J)- 
j k:~i 

But the last term on the right is >�89 on all but a finite number ofj. Hence v~'(t)-O 
and from (43) 

qad = qa~. 
j:~ ai 

We also have 

2 q.,J Z hal(J)<--wa*(ai) - ' '  
l ~ i  

and hence q., < oe. 

To prove the remainder of (cO decompose relative to A ~ a, where c~ is any 
state in I, and use similar reasoning to find ~ q~j< oe and v'(t)-O. 

j*a  
The converse follows at once by defining h a-- 1 - h ~ and verifying the condi- 

tions preceding Theorem 5. V1 
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