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Normal Approximation and Large Deviations 
for the Robbins-Monro Process* 

MICHAEL WOODROOFE 

Section 1. Introduction 

By a Robbins-Monro Process (RMP) we will understand a Markov Process, 
X,, n----1, of the following form. Let G(.:x), xeR, denote a one parameter family 
of distribution functions for which G (y:.) is measurable for every y e R and 

#(x) = S Y G(dy: x) 

is finite for every xeR. Let X 1 be any square integrable random variable and let 

X . + l = X . - a . Y  ., n>l,  (1.1) 

where an= a/n with a > 0  and the conditional distribution function of Yn given 
X 1 . . . . .  X, is G(.:X~) for every n > l .  This process was introduced in [5] as a 
method of solving the equation 

# ( x ) = 0  (1.2) 

when # is unknown, and the Y,'s are observable. Thus, theorems which assert 
the convergence or non-convergence of X,, to a root of (1.2) are of interest. In 
particular, it is known that if (1.2) has a unique solution xo, and if G is suitably 
well-behaved, then ]/n(X,,-Xo) has an asymptotic normal distribution (see [3] 
and/or [6]). Here we will supplement this information by investigating the rate 
of convergence of the distribution function of ]/~(X,-xo) to normality end the 
probability of large deviations by X . - x  0 - t h a t  is, the probability that Xn-x  o 
is either >e  or < - ~  where e is a small positive number which does not vary 
with n. In studying these questions, we may without loss of generality (and will) 
restrict our attention to the case that x o = 0. 

Section 2. Preliminaries 

We will have repeatedly to deal with products of the form 

fl.k= f i  (1 - f l a j )  (2.1) 
j = k + l  

where a j =  a/j with a > 0, fl > 0, and by convention an empty product is one. The 
inequalities 1-x__<exp(-x) ,  xeR, and exp(-x-x2)<=l-x ,  O<=x<~, show 
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immediately that 

[ k + l t"~ m<k<_n.  (2.2) 

fl, k > exp(-a2 fl2/k), m<=k <-_n, (2.3) 

where m is the greatest integer less than 5 ct fl/2. Some useful consequences of (2.2) 
and (2.3) are the following. (1) If a fl > �89 then 

, a 2 [ (kt2"'-1 ] 
2 - ~ n  2 2 1 - - -  +o(1) (2.4) 

75nk-- a; f l , j -  2 a f t - 1  \ n ! _1 
j = k  

2 2 and o(1) is uniform in m<k<n.  In particular, -c,,,~ where (2.4) defines T, nk 
aE/(2afl--1) as n ~  ~ .  (2) If a f t >  1, then 

max akfl,k <2a/n, n>=m, (2.5) 
m<_k<_n 

min akfl, k>dl/n, n>=2m, (2.6) 
n < 2 k < 2 n  

where d 1 is a positive constant depending only on a and ft. Finally, (3) 

~ n  2 3 3 2 aj fl, j<2az,k ,  m<_k<_n, (2.7) 
j = k  

follows trivially from (2.5). We will also need 

Lemma 2.1. I f  a fl >= 1 and 0 < 6 < 1, then there are constants d 2 and d 3 , depending 
on a, fl, and 6, for which 

2 - 2  - 6  ~ naZfl.kZ.k k <=d2n-6(l+logn), (2.8) 
k=m 

]/nak fl.k r2k ~ k-6 < d3 n ~- 6(1 + log n) (2.9) 
k =m 

for  all n > m. 

r . k > d l ( n - k + l ) / n  for 2k>n>2m,  and therefore, Proof From (2.6) we have 2 2 
2 2 Z.k>dj/2 for 2k<n and n>2m. It follows that 

2 n 
.c_2 k_6. < 8a V k_ ~ 

2 k < n  

- 2  -6  8 a 2  
E na2fl2kZ,k k <=~ln~ ~ k  -1 

2 k > n  k=l 

for n_>_ 2 m. (2.8) follows easily, and (2.9) may be established by a similar argument. 

Section 3. Normal Approximation 
Our study of the rate of convergence of the distribution function of ]/nX.§ 

to normality will be conducted under several assumptions. First, we will assume 
the regression function # to be approximately linear near 0 by requiring 

#(0)=0 and ff(O)=fl>O (3.1) 
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where'  denotes derivative. Our bound on the rate of convergence will then involve 
the sequence g,k = E (g (Xk)) where g (x) = I/~ (x) -  fl x], x e R. The case #'(0) < 0 may, 
of course, be reduced to the case/l' (0)> 0 by considering - X , ,  n > 1. 

We will also place some conditions on the conditional distribution of Z, = 
Yn-# (X , )  given X,. Let F(z:x)=G(z+12(x):  x), x, zeR ,  so that F(':Xn) is a 
version of the conditional distribution function of Z, given X,. We will require 
the conditional variances 

0.2(x)=~ z2 F(dz:x) ,  x ~ R ,  

to be bounded, say 

0.2(x)<cl, x~R .  (3.2) 

We will also require the conditional characteristic functions 

qo(t:x)=~ eitZF(dz:x), t, x e R ,  

to be smooth near the point (t, x) = (0, 0) in the following sense. Let u(t:x)= 
log rp (t : x), which exists and is bounded for [ t ]< l / l /q l  and x e R  because 
]@(t:X)-- 1[ ~_0.2(X) t2/2 for t, xeR .  Then, we require the existence of positive 
constants c 2 and h 1 < 1/l/q- 1 for which 

lu(tzx)-u(t:O)l~c2 t 2 Ixl (3.3) 

for ]t[ =<hi and all x~R.  Finally, we will require 

c3 =6 J z3 ] F(dz:O)< oo. (3.4) 

0 0 2 
Condition (3.3) will be satisfied if the mixed partial derivative 0x- 0t - ~  (p (t:x) 

exists and is continuous in some neighborhood of (0, 0). For then, observing that 

8 0 u(t:x) = o = O = ~ u ( O : x ) f o r s m a l l x ,  w e m a y w r i t  e 
8x 8t 8x 

x t 0 02 u (s :y )dsdy  
ol oI(t-s) oy Os 

for small t and x, while u(t:x) is bounded for small t and all x, as observed above. 
2_o_2 2 where 0.a=a2 2 is defined by 2 = E ( X 2 ) ,  k > 1,  l e t  a n - % m Let v k = . (0) and T,,, 

(2.4), and let �9 denote the standard normal distribution function. 

Theorem 3.1. Let X, ,  n> l, be an R M P  which satisfies conditions (3.1), (3.2), 
(3.3), and (3.4). Suppose also that 0.2=a2(0)>0 and that a f l> l. Then, there is a 
constant c for which 

C n 
[Pr(1/nX.+  +c E ( ha2 e -e - - -1 flnkVk Z.k + ]/nakfl,  kgk Z,k ) (3.5) 

V lq k=m 

for all xER and n>m. The constant c depends on a, fl, c l , c 2 , c 3 , h l , v m ,  and 0.2. 
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Before we prove Theorem 3.1, let us investigate its consequences in the case of a 
quasi-linear RMP by which we mean an RMP for which 

p(O)=O and ?~<#(x) /x<y2,  x4:0,  (3.6) 

where Yt and 72 are positive constants. If X,, n > l ,  is a quasi-linear RMP for 
2 < cJk ,  k > 1, where c4 is which a7 l>  �89 then it can be shown (cf. [2]) that v k 

independent of k. If. in addition, ~ is twice continuously differentiable near zero, 
then we will also have g (x) < cs x2, x s R, where c 5 is independent of x, and therefore, 
~,k<= C~ c5/k, k >  1. Combining this remark with Lemma 2.1 now produces 

Theorem 3.2. If, in addition to the hypotheses of Theorem3.1, X , ,  n> 1, is a 
quasi-linear R M P  with ayt>�89 and g(x)<=cs x 2, x e R ,  then there is a constant c' 
for which 

~ -  C' 
[Pr (]//nX, +1 <= x) - q) (x a ;  1)[ = ]//~ (1 + log n) 

for all x e R  and n>m. 

Let (p, denote the unconditional characteristic function of X,+I, n > 0. Then, 
to prove Theorem 3.1, it will suffice to exhibit a positive h, depending on a, fl, q ,  ca, 
Ca, hi, v,,, and a 2, for which 

h v~ dt 
�9 ~2 ~2 ( 3 . 7 )  S ]~oo(tV~)-e - :  " I itl 

-hl /~ 

does not exceed the right side of (3.5). Theorem 3.1 will then follow from Theorem 2 
of [4], pp. 196-200. 

To derive the desired bound for (3.7), we begin with the remark that 

E (e itx~ +'l Xk = x) = q) ( -- t ak:x ) exp (i t x -- i t ak/2 (x)) 

for t, x E R  and k > l  by Eq. (1.1). For [takl<h 1, x e R ,  and k > l ,  this may also be 
written 

E (e itxk +1 [X  k = X) = qO ( - -  t ak:O) [e itx(1 - flat:) ~_ Rk (t, X)] (3.8) 

where 

Rk(t, x ) = e x p ( u ( - - t  ak: x ) - - u ( - - t  ak:O)+ i t x - - i  t akl~(x))--exp(i t x - - i  t x fl ak). 

Moreover, by condition (3.3) 

IRk(t, X)[ <exp( lu ( - - t  ak:X)--u(-- t  ak:O)])-- i 

+ lexp(-  i t  a k l~(x))-  e x p ( - i t  x fl ak) l 

~=c6 a~ t 2 I x l + l t l  akg(x )  

(3.9) 

for I t ad  <-- hi, x ~ R, and k _> 1 where c 6 = c 2 e 2. (Here we use the fact that ]u (t: x)[ < 1 
for It[ <- U V ~  o) Now replace t by s = t i /n  fl,k, where I tl < 1/~ hl/2 a, apply inequality 
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(2.5), take expectations in (3.8), and iterate for k = n . . . . .  m to obtain 

~On(t ] / /~)= (Pm--1 (t ] / n  ~nm--1) f i  q)(-- t ]/~akflnk:O ) 
k=m 

k=m j=k 

where by (3.9) 

(3.10) 

(3.11) 
ak fl, gVkt + ]/nakfi, kgg[tl ~ C 6 I"1 2 2 2 

for k=rn, ...,n and n>m. 
n 

We will obviously need an estimate of the products l~P(- t l /na~f l , /O) .  
j=g 

An appropriate one may be obtained from Taylor's Theorem and the inequality 
]u'"(t:O)]<=Tc 3 for [t[<=a3/Sc3 ([-4], p. 203). Together, they imply that for It[< 
1/na3/lOac3 and k >m 

_ t 2  2 7 t3 3 3 j=k = T O 2 T n k " ~ - O C 3  ] / ~ a i f l . j  (3.12) 
j=k 

where 0 is a complex number of modulus at most one. Observe that by (2.7), the 

absolute value of (3.12) does not exceed ~ ~ 1 " 2  2 2 r ~ Znk for [tl<=]/no2/14ac3 and 
k>m. 

We are now prepared to estimate (3.7). Let h be the minimum of hl/2a, 
aa/lOa%, and ~2/14ac3. Then, by (3.11) and (3.12) 

~, r.k(t ) (p(- t] /najf i ,  j:O) dt 

a k fl, kVkltl+l/nakfl, k~,g) e %x~ (3.13) 
k=m 

2 2  <= (5c6nakfl, kVka-2Z2k2+5]/nakfl, k~,k~Z-~Z2k 1) 
k=m 

for n>m. Moreover, it follows from (3.12), (2.7), and the inequality 1~%_1(s)-11 
<v~ Isl that 

hurl ~Om- l (t r  finm-1) -laSt2[ dtltl 
-h l/n k=m 

~ / n v m f l , ~ m _ l + 7 a c 3  n ~ . ~  ] e 31a2 dt (3.14) 

< ]f~ (2 m v m aft '  + 7a c 3 z,2m aft 3)/]f~ 

for n>m. (3.10), (3.13), and (3.14) now combine to give the desired estimate for 
(3.7), thus completing the proof of Theorem 3.1. 
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It is interesting that the finiteness of 

Iz31F(dz:x) (3.15) 

for x + 0  is not explicitly required in Theorems 3.1 and 3.2. Nor is it implied by 
their other hypotheses. The R M P  determined by a =  1, # (x )=x ,  x e R ,  Xa =0, and 

(p(t:x)= 1+ exp l + x  2 " ' 

~3 
satisfies the hypotheses of Theorem 3.2. However, ~ ( p ( t : x )  fails to exist at 

t = 0  if x + 0 ,  so that (3.15) must be infinite if x + 0  for this process. 

Section 4. Large Deviations 

In this section we will study the rate of convergence to zero of Pr (X,  + 1 < - ~), 
where X,,  n>  1, is an R M P  which satisfies the conditions listed below, and e is 
a small positive number which does not vary with n. We will assume throughout 
this section that X,, n>  1, is an R M P  which satisfies conditions (3.2) and (3.6) 
of the previous section and that, moreover, a ~1 > 1 in condition (3.6). These two 
assumptions will not be repeated in the statements of our lemmas and theorems. 
We will also require the existence of moment generating functions which we will 
denote by the symbol (p, thus changing our notation from that of the previous sec- 
tion. Explicitly, we require the existence of positive constants hi and c 2 (possibly 
different from the h~ and c 2 of the previous section) for which 

(?(t:x)= S etZF(dz:x)<c2 (4.1) 

for 0 <  t < 2 h  1 . Here (4.1) defines (p, and F is as in the previous section. We will also 
require the existence of an integer r> 5aTz /2 ,  where 72 is as in condition (3.6), 
for which E(e -tx ')  is finite for small positive values of t. In this case we will have 

E(e-'Xr)<=e3, O<_t<_h 2 (4.2) 

for appropriate values of h 2 > 0 and e 3 . An easily checked condition which implies 
(4.2) will be given at the end of this section. 

Lemma 4.1. I f  (4.1) is satisfied, then there is a constant b, depending on hi, c1, 
and c 2 , for which cp (t: x) < exp (�89 b t 2) for 0 <- t < h 1 and all x ~ R. 

Proof  By Taylor's Theorem and an obvious inequality, it will suffice to exhibit 
a b for which ~" (t:x)__< b for 0_< t _  h I where ' denotes derivative with respect to 
t. This follows from 

0 oo 

cp'( t :x)= ~ zZ e tZF(dz:x)+ ~ zZ e~ZF(dz:x) 
- - o o  0 

--<~2(x)+ V-~ ~0(t+hl:x), 

condition (3.2), and condition (4.1) with b = c I + 4c2/h ~. 
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Theorem 4.1. Let X, ,  n> l, be an R M P  which satisfies conditions (4.1) and 
(4.2). Let qo, denote the unconditional moment generating function of X ,  + 1, n > r -  1, 
let fl,k be defined by (2.1) with fl=71, and let h=min(hJ2a,  hz/r ). Then, q~,(-nt)< 
(n+c3)exp(�89 b 2 2 z,~ t )for O <_ t < h and n >= r where b is as in Lemma 4.1. 

Proof It follows easily from Eq. (1.1) and condition (3.6) that 

E(e-~X~+~lXk= x)<qo(t ak:x)[e-t(1-"~)x + 1] 

for O<=tak<_<_h I and k>r. Now replace t by ntf i ,  k, take expectations, apply 
Lemma 4.1, (2.2), and (2.5), and iterate to obtain 

n 

( p , ( - n t ) < t p , _ l ( - n t  fi,~_l)exp(�89 ~ exp(�89 bznkt2 2) 
k=r 

< (n + ca) exp (�89 n b z~ t 2) 

for O<_t<_h and n_>r. 

Corollary 4.1. Let the hypotheses of Theorem 4.1 be satisfied and let d be an 
upper bound for b z2,r, n > r. Then, 

I -1 2 
e x p ( ~ - n x  )" O < x < d h  

Pr(X'+l < - X ) < ( n + c 3 )  [exp (--~-~ nhx)"  x>dh .  

Moreover, if O<s<h/2, then Pr(X,+I < -x )~(nq-c3)  e x p ( - 3 n s x / 2 )  for x>4ds .  

Proof. The corollary follows easily from Theorem4.1 and Bernstein's In- 
equality, P r ( X , + 1 < - x ) < e - " t X q ) , ( - n t ) ,  t ,x>O, on setting t=x/d,  t=h, and 
t =  2s in the three cases respectively. 

We will now obtain a more precise estimate of Pr(Xn+l< -5) than that pro- 
vided by Corollary 4.1 under some additional assumptions. Let u (t :x)= log q0 (t:x) 
for 0_<t<2h I and x~R.  Then, we will require the existence of h3>0 and c~ for 
which 

[ U ( t Z X ) - - u ( t : O ) ] ~ C  4 t 2 IX t (4.3) 

for O<_t<_h 3 and x~R.  We will also require condition (3.1) to hold, and we will 
use the notation g(x)= ]#(x)-f i  x], x s R ,  where fi=/~'(0). Observe that g(x)=o(x) 
as x --* 0 and that a fi > 1 since a 71 > 1. In the remainder of this section, we will use 
fl =/~' (0)in the definition of fi,k (see (2.1)). 

Lemma 4.2. I f  conditions (3.1) and (4.1) are satisfied, then 

n 

qo (t) = lim (l/n) log [ I  q~ (n t a k fl, k: 0) 
k=r 

exists as n ~ oo .for 0 <- t <_ ha/a. Moreover, letting 0 -2 = 0 .2 (0) and ~ = a 2 0"2/(2 a f l  - -  1), 
we have qo(t)=�89 t 2 +o( t  2) as t ~ O. 
23 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 21 
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Proof Let O<_t<_hl/a and define f , ,  n__> 1, on (0, 1] by f , (s )=u(ntakf l ,k:O ) if 
k - l < _ n s < - k  where r<_k<_n and fn(s)=0 for s < ( r - 1 ) / n .  Then, by (2.2), (2.3), 
(2.5), and (4.1), f ,  converges boundedly to f as n ~  Go where f ( s )=u(a t s "~ - l :0 ) ,  
0 < s =< 1. Therefore, 

1 1 
qo (t) = lim ~ f ,  (s) ds = S f (s)  ds (4.4) 

o o 

exists as n --, o% as asserted. Moreover, the expansion f (s)= �89 ~r 2 a 2 t 2 s 2 a~- z + 0 (t 2) 
as t ~ 0 may be integrated in (4.4) to yield qo( t )= te  t 2 +o( t  2) as t ~ 0. 

The probablistic significance of the lemma is the following. If # were linear, 
say # (x)= fi x, and the random variables Z, = I1,-# (if,) were independent, then 
the moment generating function of - n  X, +1 would be 

n 

q~r-1 ( - n t  fi, r-1) [ I  q~(ntakfl~k:O)" 
k = r  

Moreover, an easy adaptation of the argument presented in [1], pp. 1017-1018, 
would show that for small positive e lira (l/n)log Pr (X~+I__< - e ) =  Po (5) as n-~ 
where po(O=min(qo( t ) -e t ) .  That analogous behavior obtains without the 

t 

assumptions of independence or linearity is the content of our final theorem. 

Theorem 4.2. Let conditions (3.1), (4.1); (4.2), and (4.3) be satisfied. Then, as 
n -~ ~ ,  q (t) -- lim sup (l/n) log ~o, ( -  n t) is finite for 0 < t < h, and 

q (t) =< qo (t) + o (t 2) (4.5) 

as t--~O. Moreover, defining p ( O = m i n ( q ( t ) - e t )  for 5>0, we have 

lim sup (i/n) log Pr (X~ + 1 < - e) < p (5) 

as n ~ oo for all e > O. Finally, if  a 2 > O, then 

__5 2 
p (e) < ~ + o (5 2) = Po (0 (4.6) 

a s ~ O .  

Proof The first assertion of the theorem is a trivial consequence of Theorem 4.1, 
and the third is then a trivial consequence of Berstein's Inequality. Moreover, 
relation (4.6) follows easily from relation (4.5) and Lemma 4.2. Thus, it will suffice 
to demonstrate (4.5). Let Hg denote the unconditional distribution function of 
Xg, let k>__r, and let O<_s<_h/2. Then, by condition (3.6), Lemma4.1, and some 
familiar conditioning arguments 

-6  
~Pk(- -kS)~  ~ e x P ( � 8 9  2 s 2 - - k s x ( 1 - - a k 7 1 )  ) Hk(dX) 

- -  0 0  

o 
+ ~ e x p ( - k s x + k s a k # ( X ) ) ~ o ( k s a k : x ) H k ( d x )  

-6 

+ ~ exp (�89 b a 2 s 2 - k s x (1 - ag Y2)) Hk(dX) 
o 

= I1 + / 2  + / 3  s ay ,  
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where b = 4 ds and d is as in Corollary 4.1. Integrating I x by parts, we find easily that 
11 < 8 (k + c3) exp (�89 b a 2 s 2), while obviously 13 < exp (�89 b a 2 s2). Therefore, Iz + 13 < 
k c 5 where c 5 is independent of k > r and 0 < s <= h/2. To estimate 12 let 0 <_ s < h3/a 
and k > r. Then, 

(o(k s ak: x) e x p ( - k  s x + k s ak#(X)) =e(x)cp(kSak:O ) e x p ( -  k s x(1 -flag)) 

where for - ~ < x < O ,  e(x)<exp(c6s3+asgl(s) )  with c6=4da2c4 and g1(s)= 
sup{g(x): - 6 < x < O } = o ( s )  as s--*0. (The bounds on e follow easily from (3.1) 
and (4.3).)It now follows that I2 <exp(c6 s 3 +asgx(s))qo(ksak:O ) (Pk-I(--ks(i--flag)) 
for O<_s<-h3/a and k>r.  Therefore, 

(pk(--ks)<exp(c6 S 3 +as  g~ (s)) qo(ks ak:O ) qok_~(- k s(1 --fiak))+k c s 

for 0_< s_< h a = min (h/2, h3/a ) and k > r. Now replace k s by n t fin k, apply (2.5), and 
iterate to obtain 

tl 

qo~(, n t)<(c 3 +n  2 c5)exp(8 c 6 n t 3 + 2 a  n t g1(2 0 ) [ I  (p(n t akfl, k:0) 
k=r 

for 0 <_ t <_ h J 2  and n > r. (4.5) follows easily. 

Two questions left unanswered by Theorem4.2 are the following: (1) does 
lim(1/n) log P r ( X ~ + I < - e )  necessarily exist as n ~ oe under the hypotheses of 
Theorem4.2 (or some minor variation theorem); and (2) if so, is it necessarily 
equal to po(e)? We have been unable to answer the first of these questions, but 
we have found an example of an R M P  for which the hypotheses of Theorem 4.2 
are satisfied, and q(t)<qo(t  ) for 0_<t_<l. Since the latter inequality implies 
p(e)<po(e ) for sufficiently small e>0 ,  the answer to the second question must 
be "no". 

The example is quite simple. Let X,, n > 1, be the RMP  determined by a = 1, 
/~(x)= x, xe  R, X 1 =0, and u(t: x )= �89 a2 (x) t 2, t, xe  R, where 

2 x  
a2(X)= l q  1+2X2 , x ~ R .  

For  this process, an argument similar to that given in the proof of Theorem 4.2 
will show that 

- -  t 2 0 < t < l  q o , ( - n t ) < c n e x p  2 ,k , - -  

where c is a constant independent of n, and the array t,k is defined by t , , = t  and 

t .~=[1- t~]  t.~+~, k__>~-l. (4.7) 

[1  1 ~n-k 
Since for 0 - < t < l ,  t ,k>r  \ - ~ - !  , there is a 3 > 0  independent of n > l  and 

0<t__<l, for which t~k>t~ for 0=<t<l ,  k>n/2, and n > l .  Let sk=log t,k. Then, 
23* 
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Sk--Sk+l < --t6/21C, k>n/2, by (4.7), so that tnk <-_t('k/n)t6/2 for 0<t_-<l ,  k>n/2, 
and n > 1. Therefore, 

q ( t )<=_ l t2 [2+ ix t~  ) 

for 0_< t_< 1, as asserted. 

We conclude with two remarks concerning our assumptions.  The first is the 
obvious  comment  that if (4.1) and (4.2) are changed to 

(p( - - t :X)~C2,  O<t<-2h 1, xeR, (4.1') 

E(etXr)<c3, O<t<h 2, (4.2') 

then we would obtain bounds  for (p, (n t) which are exact analogues of the bounds  
derived for ( p , ( - n  t) in Theorems 4.1 and 4.2. The second remark is that if (4.1) 
and (4.1') are both satisfied, and if E(etX 9 is finite for all t in some (two-sided) 
ne ighborhood  of zero, then (4.2) and (4.2') are both satisfied for all r >  1. This 
follows by induct ion from the inequality ~0 k (t) < c 2 [~o k_ t (t) + (Pk- 1 ( - t ~2 ak)], 
which is valid for [tak] < 2 h  1. 
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