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Excision of a Strong Markov Process 

F.B. Knight and A.O. Pittenger 

O. Introduction and Definitions 

Let (~, ~ ~ ,  Xz, Or, P~) be a strong Markov process on a locally compact 
space (EA,J~a) with countable base, where A denotes the usual adjoined 
absorbing point and gA the Borel sets of E A. The definitions and notation follow 
those of [1]. In particular, ~ is complete in ~ relative to the family px  and 
~(~o)=inf{t: Xt((o)=A } is the "lifetime". We assume also that for all o~e~, 
Xt((o)=X(t)=~(t) is right continuous for all O__<t and has left limits on 
0<t<~(~o). 

Now let A o and Bo in ga be fixed, with (i) e{ o n Bo = ~, where ,4 denotes the 
closure of A, and (ii) A e B o. 

The purpose of this paper is to construct a strong Markov process Y from 
X by excising or "splicing out"  the round trip excursions from A0 to Bo back 
to Ao. With A o = {~} and B o =B0 this operation arose in [3] in analyzing the 
local time of a reflected stable process. The proof that the excised process Y was 
again a Hunt process raised unanticipated difficulties not resolved in [-3], and 
led to the present paper. 

A second purpose of this paper is to give a concrete example of a "non- 
Markovian" time change of a process which nonetheless preserves the strong 
Markov property. A different type of such example was given in [4] in the form 
t--+ t+L, where L is an exact coterminal time, e.g., the last exit from a set in 
#a prior to {. 

Our first observation is 

Lemma 0.1. Intervals of excursion from A o to B o back to A o cannot accumulate 
before ~. 

Proof This is clear from the existence of left-hand limits up to ~ and the 
assumption (i). 

Recalling that the passage times 

Dc=inf{t>O" X(t)~ C} 

for Cs#a are ~,-stopping times [-1], we next define successive random times 
T', L, ,  and T* such that the excised excursions occur in the intervals 
['Ln, T,'), n > 1. 

DefinitionO.1. With inf(O)=oo and sup(0)=0, let gd=DAo, TI*=DBo, and 
L 1= sup {t< TI*, XteAo}. Define inductively for n__> 1 

g~'= g* + go o O~,, 

g.*+ , = 7" + T** o 0 ra,  
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and 
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L n + I  = Td + L t o Or; ~. 

LI r~ L2 T,~ L3 

Fig. 1. Excised time S and given time T(S) 

Note  that  T* and 7,' are s topping times but L,  is not. However ,  L , ~ r , .  
In the following definition, if s is the t ime pa rame te r  of Y then N(s, o)) is the 
n u m b e r  of excursions excised by t ime s and T(s) is cor responding t ime of X 
(see Fig. 1). 

o 

Definition 0.21. Using ~ ( ' ) = 0 ,  for 0=<s< oo define 
k = l  

[0 0 ( L1 in1 n ) 
N(s, co)= n; se  L14- (Lk+x--7s  , T,~<oo 

1 

, oo; there is no such n. 

n 

Setting S,(~o)= ~,(?k'--Lk), let 
I 

.C(S)={Soo+SN(s)(~); N ( s ) <  oo 
N(s) = o0. 

The t ime change is p lot ted for a fixed co with 0 < L 1  in Fig. 12. We set 
R , =  Td-S, ,  so that  S. represents  the total  deleted t ime pr ior  to T [, and R. is 
the total  included t ime before T~'. 

The following relat ions are consequences of the definitions: 

{z (0) = O} = {0 < L~}, (0. l) 

{R.< t < R.+ 3 =  { T# < ~(t)< L.+I} 
(0.2) 

= { Td <='c(t)< T'+ I } , 

T (s + 0 = T (s) + ~ (t) o 0~(~). (0.3) 

We can now define the excised process and its probabi l i ty  function. 

1 In definitions by cases, we use the semicolon to separate the functions from their domains of appli- 
cation. 
2 We are indebted to P.A. Meyer for this figure, and for a number of suggestions concerning our 
statement of the problem. 
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Definition 0.3. For A ~ f  and y~EA, 

(P'(A[v(0)=0); W{z(0)=0} >0  
QY(A ) = \I a (cox); otherwise 

where COx(t)= x for all t=> 0 and I A is the indicator function of A. 

y(t)=fX(z(t));~ pX(O) {,(0)= 0} >0  
Y~(co)= 

[X(0);  pX(O) {3 (0) = 0} = 0, 

~y(co)=inf{t: Y(t)=A}. 

Note that QY--Py if y is regular for A o. We cannot assert, however, that Qy 
is #A-measurable. If one wishes to obtain this property it seems to be necessary 
to assume 

(iii) A o and B 0 are open or closed, 

(iv) X is a standard process. 

We record here two propositions related to these extra assumptions. 

Proposition 0.1. Under assumptions (i) through (iv), QY{Y(t)eA} is d A-measur- 
able for each A~da. 

Proof. If A o and B 0 are both open, then all of the variables in Definition 0.1 
are fr~ where f o  is the minimal, pre-completed a-field, and thus 
setting Bl={X: Px{z(O)=O}=O}-{A} we have Bled~ If A o (or Bo)is closed, 
we may find, by [1, I, Corollary 10.17-1, a decreasing sequence of open sets whose 
passage times converge to that of A o (or Bo, respectively) W almost surely for 
each x. Using these limits in place of DAo and DBo, QY and B1 will be unchanged, 
and we can define a new process equal to X(z(t)) for all t a.s. Qy for each y. Since 
the new process is fr~ the proof is complete. 

Proposition 0.2. With the notations and assumptions of Proposition O.l, for 

Y~E~-BI' QY{Y(t)~EA-B 1 for 0 N t <  oQ} = 1. 

Proof. Since QY is absolutely continuous with respect to W and X has the 
strong Markov property at each T', it is enough to show that W{DB,<L1}=O 
for all y in E~-B1. By [1, I, Corollary 10.17] there is an increasing sequence 
of compact sets K, cB1 such that DK. ~ DB,, PY a.s. Thus we have 

W {DB, < L1} = lira PY {DK. < 0% DK. < L1} 
n ~  oo 

< lira E y [O~. < 0% px(m,.) {z (0) = 0}-1 
n ~ o o  

~0, 
since X(DK.)eB 1 on { D ~ <  oe}. 

In view of Proposition 0.2, we may pose 

Definition 0.4. 
[0~(t) ((9); X(0) e E~ - B 1 0~ r (co) 

-- "~[co; otherwise. 

Under (i)-(iv), we then have (see (0.3)) Yt ~ 0~ r =  Y~+t for all s, t>0 ,  except on a 
Q(')-null set. 
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We give three final remarks before stating the theorem. First, under 
assumptions (i)-(iv), it is possible that T2=L,+~ a.s. for all n with T,'<oo. In 
this case, one has Q. { .y=DAo}=I for y ~ E - B  1. To exclude such a degenerate 
case, and at the same time to insure that PY= Qy for all yeAo,  it suffices to assume 

(v) Every point of A o is regular for An. 
Indeed, this implies that T2<L,+ i a.s. on {T,'<oo} for each n. Second, we 

have Qy{Y(O)=y} = 1 for all y~E~. However, the set {Y(0)~B1} is clearly foreign 
to the excised process, and is retained only to avoid reducing the original state 
space. Third, Y(t) is right-continuous, with left limits on 0 < t < (y. 

1. Statement and Proof of the Theorem 

We let N~ denote the a-field on f2 generated by Y(s), O<s<t ,  and let 
~ ( t )  be the usual completion of N~ in ~ t  = ~ ( o o )  with respect to {QY, y~E~}. 

Theorem. I f A o and B o satisfy conditions (i) and (ii), then Y= ([2, o~, ~y( t ), Y( t ), Qy) 
is a strong Markov process on (EA, OZA) where ~ is the collection of  universally 
measurable sets of  E~. 

Corollary. I f  (i)-(iv) are assumed, and /f A o-= {c~} and c~ is regular for {e}, 
then Y= ([2, ~y, ~y(t), Y(t), 0 [, QY) is a standard process. I f  moreover, c~ is recurrent 
(i.e. for each N, X( t )=e  for some t > N  a.s.) then Y is a Hunt process. 

Proof of  the Theorem. In view of [1, I., Thin. 7.3] it suffices to prove the strong 
Markov property for o~~ times Ty ( {Ty<t}eY~  for all t). In 
particular, this will imply the right-continuity of ..~(t). The key to the proof is 
the introduction of a sequence T,, n > 0, of Y-stopping times such that T n = z(Ty) 
on {N(Ty)= n}, and we begin with T o. 

By definition of N~ there is a Borel function f (xl, x2,. . .)  on the usual 
infinite product space, and a sequence s~, s2, ... with s ,< t, such that 

I{r, < t} = f  (Y(sO, Y(s2), .-.). 

To simplify the notation, we suppress the dependence of the s, on t, and assume 
that f takes only the values 0 and 1. Note that we have 

Tr(co)=inf{s: 0 =  [ I  (1- f i (Y(sO,  Y(s2) . . . .  ))}. 
r < $  

r r a t i o n a l  

Definition 1.I. Let f (co) = f  (X(sO, X(sz), ...) and 

T o=inf (s :  0 =  [-I (1-f i(X(s0,  X(s2) . . . .  ))), 
r < s  

r r a t i o n a l  

where the countable family {si, s~ < r} appearing in fi depends on r. 

Lemma 1.1. T o is an ~-stopping time. Moreover, 

{N(Tr) =0} = {N(To)-=- 0} = {To = Tr}. 

Proof The first assertion follows from 

{To<t}: U {L(co)=l}e~. 
r < t  

r r a t i o n a l  

9* 
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Now if N(Tr)=O, then for some ~>0, Xs=Y ~ for O<s<Tr+e  , To=Tr, and 
N(TO)=0. Conversely if N(TO)=0, there must be a hit of A o after time To and 
before OBo. Hence X(s)= Y(s) up to TO+e for some ~>0, Tr= To, and N(Tr)=O. 

To define T,, n > l ,  we first introduce a sequence of mappings ~o,: O ~ O  
which "splice out" the first n round trips from Ao to Bo back to Ao, if such exist. 

Definition 1.2. For all cocO, let q~o co=co and for n>  1 

N(t)<n 
(cP'co)(t)=(co(t+S,); N(t)>=n 

where co (oo) = A and S, is as in Definition 0.2. Then letting A, = { T o o % + S,_ 1 > L,}, 

T, (co) = { o~ lop, co) + S, (co); co~A, 
�9 cocAS. 

As before we have for n > 1 

Lemma 1.2. T. is an ~-stopping time, and 

{N(Ty)=n} - {N(TO o %)=n} ~ {T. = z (Ty)}. 

Proof By adding T.' - L. to both sides of the inequality defining A. we observe 
that T" < T.. An examination of the definition shows that S. is ~-ra-measurable, 
and that the definition of A. depends on co(s) only for s < L . - S . _  1 + S. = T~. 
Hence A. ~T; , .  

Since {T.<t}=A.c~{7-d<t}c~{Too~o.+S.<t},  it suffices to show that the 
last set is in ~ .  But this follows from the same argument--the dependence on 
co (s) is only up through ( t -  S.) + S. = t. 

Now suppose that t is any time and N(t, co)=n. Then for some e>0  

x( o, co(s))= Y(s), 
Consequently if N(Ty) = n, then 

Z(V(Sl), r(s2), ...)=Z(X(~o, co(s0), X(~o, co(s2)) . . . .  ) 

for all r <  Tr+e, some e>0, and Tr= To o cp,. I fN(T  o o q~,)= n, the same argument 
applies. Since T.= To o cp,+S,=z(Tr) on {N(Tr)=n}, the proof is complete�9 

To prove the theorem we need one more lemma, whose proof will be postponed 
to follow that of the theorem itself�9 

Lemma 1.3. For each Ao~~ and each n>O there exists a I'nE~Tn such 

that ~ n  {N(TO o cp,)= n} =Aoc~ {N(Tr)=n } . 

Granting this lemma, and replacing A e ~ ( T r )  by a W-equivalent A o e ~  ~ (Ty), 
we have for A ~ ,  

W(A, z(O)=O, N(Tr)=n;  Y(Tr+t)~A ) 

= W(F., z(O)= O, N(Tr)> n, z (0) o Or. (co)= O, X(T. + z (t) o OT.)~ A) 

= E~ (Q~ (~o) ( x  (~ (t)) ~ A); r. ,  ~ (o) = o, N (T~) = n) 

=EY(QY(TY)(Y(t)~A); z(O) =0, A, N(Tr)= n) 
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where the second equality follows from the strong Markov property for X and 
the definition of Q~'. Noting that 

0 {N(Tr)=n}={Tr<(r}  
n = 0  

we have after a summation over n 

Q"(A, Ty < (r, Y ( Ty + t)~ A)= E'(QY(T~)( Y (t)s A); A, Ty < (y), 

where /~Y denotes the conditional expectation given z(0)=0. Since both sides 
are universally measurable, for any probability measure /~ we can integrate 
to obtain 

Q"(A, Ty<( r ,  Y (Ty + t)~ A)= E~(QY(T~)(Y(t)~A); A, Ty<(y).  

Over {Ty>~r} the analogous result is obvious, completing the proof of the 
strong Markov property. 

We return to the proof of Lemma 1.3. For each t, let ht(Xl, x2, ...) be a Borel 
function such that 

Iao(co) l(r~ <t~(co)= ht(Y(sO, Y(s2) . . . .  ) 

where as before the countable family {s~, s~<t} depends on t and h t takes on 
only the values 0 and 1. Let h t (co)= ht(X(~o . co(s1)), X(cp~ co (s2)) . . . .  ), and introduce 
the functions 

kt = l~ (1 - hr (co) I(ro ~ < ~I); otherwise. 
r < t  

r r a t i o n a l  

One notes that kt is non-decreasing in t, left-continuous, and takes on only the 
values 0 and 1. Moreover, it is 1 only if T o o (Pn < t. To handle a technical detail, 
we require the rather cumbersome last restriction in the following definition. 
Let F t={k t= l ,  and for all rational r ' < r < t ,  (kr-k,.,)llroo ~ ..... , i=0! We show 
first that F r is non-decreasing in t, and second that F,=limF, i~ the: , : s i red set. 

t ~ o G  

Suppose, indeed, that for s< t ,  Fs-Ft+~3. Then for coeF~-F t we have k,=kr  1, 
and so (kr-kr,)I~rooe,<r,~=l for some r '<r<t .  Then kr,=O and hence r'<s. 
But since k t is left-continuous, there is also an r<s with kr= 1, contradicting 
coeF~. Similarly, if coeF, c~{Tooq~<t } then for s>t, coeF~ implies k, .=l for 
t - ~ < r < s  for some e>0,  and hence coeF t. Thus F,c~ {T 0 o (p~<t}=F~. 

To prove the lemma, we now show that 

Ao~ {N(Ty)=n, Tr<t ,  N(t)=n} =17,,c~ {N(Tr)=n, T O o cpa<t ' N(t)=tv} 

for each t. If co is in the left hand side then Y(s)=X(cp, co(s)), O<=s<t, and we 
have easily k t = 1 and co ~ F t ~ F~. Together with T r = T o o (p,, this gives the inclusion 
from left to right. On the other hand, if coCA o but satisfies the other conditions 
on the left, then hr(co)=0 for r<t,  kt--0 , and co,Ft. Since To~ % < t ,  coCF~ for 
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u>t, and so coCF~. Finally, to prove that F~@r,,  we have 

F~c~{T~<t}= Q) F,~{Td<t}~{Toop, oo<r<t-Sn} 
g < t  

r r a t i o n a l  

= 0 
r < t  

r r a t i o n a l  

and simply argue as in Lemma 1.2 that the dependence on co does not extend 
beyond ( t -  S~) + S, = t. This completes the proof of the theorem. 

Proof of the Corollary. The measurability conditions and the translation 
operators were discussed in Proposition 0.1ft., and we need only prove quasi- 
left continuity on (0,(r). For Tr=<( r let T, and {N(Tr)=n } correspond to T r 
as before, let Rj converge upward to T r, and let Tn,j correspond in the same 
way to Rj. By [1, p. 36] we may assume that Rj and T r are ~~  
times, and we must show that 

Q"{Y(Rj)~ Y(Ty); Ty<(y}=Q"{Tr<(r}. 

For eoe{N(Ty)=n, Ty<(y} either T~'< T,<L,+I, or else z(Tr)= T~'. In the former 
case, Y(Rj) ~ g(Ty) follows from X(T,,j) ~ X(T,). In the latter case, either Rj = Ty 
for all large j, or else z(Rj)= T,_I,j for all large j a.s., and 

lim Y(Rj) = li.m X(T~_ 1,j) = e = X(T~) = Y(Tr), 
J J 

since Ao = {e}. 
If ~ is recurrent, then T ' =  ~ implies L , =  oe a.s. Since e is regular for {e} 

we have ( = o e  a.s., and also since X(7~')=e, ~(Lk+l- -Tk ' )=oe  a.s. If follows 
k _ ~ 0  

that ( r =  oo, Q" a.s. for each #, and Y is a Hunt  process. This completes the proof. 
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