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1. Introduction

In this paper we continue the study of the zero set of a stable process on the
line. In [20] one of us showed. that the zero set of the Wiener process has Hausdorff
dimension 1/2 and zero AY?-measure, with probability 1. This result was partially
extended by BLUMENTHAL and GETOOR [2] to the symmetric stable process of
index ¢ > 1; they showed that in this case the zero set has dimension § = 1 — 1/a.
There is of course no problem when « =< 1, for then the zero set is almost surely
trivial.

In 1957 Paul Lfvy suggested that for the Wiener process it should be possible
to determine an exact measure function for the zero set Z = {¢: X (f) = 0}. By this
is meant a function ¢ (A) defined for small 2 = 0, vanishing at the origin, increasing
and continuous, such that the random quantities

are almost surely positive and finite. Here ¢ — m(#) denotes the Hausdorff
p-measure of the set Z; the definition is recalled in section 5. The main objectives
of the present investigation are to find such a measure function ¢ for a general
(not necessarily symmetric) stable process X (¢) of index « > 1, and to identify the
resulting stochastic process as defined by (1). In fact we show that this stochastic
process, which should be thought of as measuring the extent of the zero set in the
time interval [0, £], can be identified, apart from a constant of proportionality,
with the local time at zero in the sense of BoyvaN [4] or BLUMENTHAL and GETOOR
[3]; cf. section 3 below. To formulate this precisely let us state our main result.

Theorem 1. Suppose X (£) is a stable process of order o. > 1 on the line, with zero
set Z and local time at zero A (8). Then there is a finite positive constant c1 depending
on the paramelers of the process such that almost surely

p—m(ZN0,t]) =crLA(t)

for all t > 0, where p(h) = hb(log |log h|)1-8, =1 — 1/a.

The plan of the paper is as follows. Section 2 contains the basic definitions and
asymptotic relations needed in the sequel. In section 3 we review properties of the
local time and of its inverse function 7 (f). Local asymptotic laws for 7 and A4 are
derived in section 4, and their counterparts at infinity are stated, generalizing a
result of KusTEN [11] for the Wiener local time. Methods of CresErski and
TAYLOR [4] are modified in section 5 to obtain a positive lower bound for the
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g-measure of Z; a finite upper bound is obtained in section 6, by a method similar
to that in [27]. The paper concludes with the proof of the main theorem in section 7.
Positive constants whose value is unimportant occur frequently: these will be
denoted by ¢y, ¢2, ..., Co5.

2. Preliminaries

Throughout this paper we will be considering versions of stable processes on
the real line which satisfy Hunt’s hypotheses (4): they are strongly Markovian,
and have right-continuous and quasi-left-continuous paths almost surely. (The
reader unfamiliar with Hunt’s contribution [9] will find an admirable summary of
the meaning of these conditions in Grroor [8].) The general stable process of
index «, see Lifvy [14], is a process X (f) = X (f, w) starting at the origin, having
stationary independent increments, and for which the characteristic function
Ef{expif X (#)}is exp {— tp (0)} where, for0 <a <lorl<a =2,

@) p(6) = a| 0] {1 + iy (sgn 0) tan (7/2)},

in which ¢ > 0, —1 <y =< 1. If y = 0 then X () is symmetric. When o = 2 we
may as well take y = 0 in (2); then X (f) is the Wiener process. When o = 1 it is
necessary to modify (2), but the stable process of index 1 will play no role in our
discussion. In fact from this point on we will agsume that we are discussing a fixed
process X (f) with index o > 1. It is well known that in this case the process is
point recurrent, so that the zero set Z is unbounded almost surely.

Ifin (2) we have y = —1 and 0 < o <C 1 the corresponding process has non-
negative increments and is called a stable subordinator. To distinguish this case we
will denote a stable subordinator by z(f) and call its index 8, 0 << § << 1. The
range of a stable subordinator is the random point set

Q={r(t):0 <t < oo}.

Whenever X and 7 occur together in a discussion it is understood that § = 1 — 1/a.
The Laplace transform of the distribution of 7 (f) is given by

(3) - B {exp (~sv(1)} = exp (—btsh)

where b is a positive constant. Note that since 7 (f) is increasing, the closure @ of
the range differs from @ only in the countable set of left limits = ( — 0) at points of
discontinuity.

We require estimates for the tails of the distribution of 7 (1), which we collect
now for ease of reference; these are stated for the case b = 1, the corresponding
results for general b being obtainable by a scale change. Let F(x) = P{z(1) < «}
be the distribution function of 7 (1). Then

4 F(z) ~ caaf20-Pexp (—egn= 0P, 20,
with ¢g = (2%63)112, cg = (1 — /3)‘81*3; and
(5) 1 — F(2) ~ cazb, w->o0,

where ¢4 = 1/I'(1 — §).

The relations (4) and (5) are easily deduced from the corresponding results for
the density #” (z), due respectively to LINNIK [74] and PoLLARD [16]; cf. also the
convenient tabulation in SkoroHOD [18].

The following lemma is due to DyNxgIN [6].
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Lemma 1. T'he probability that an interval [a, b) contains a point of Q is equal to

bla
cs ful(u — 1)-Bdu
1

where ¢c5 = w1 sin 7 f.

3. The Loeal Time and its Inverse Funetion

In [2] BLUMENTHAL and GETOOR generalized a result of LEvy by showing that
Z and @, the closures of Z and ), are stochastically the same in the following
sense:if {I3},k =1, 2, ..., n, is any finite disjoint collection of open intervals then
the two events
ZnIp«0,k=1,2,...,n}
and
NIy +0,k=1,2,...,n}

have the same probability. This equality of probability then extends to the
g-algebra generated by such events, but it is not always technically easy to check
that a given event of interest belongs to this ¢-algebra. This complication is
circumvented and the stochastic identity of the two random sets is neatly account-
ed for by the theory of local times, which we now proceed to sketch.

It was shown by TroTTER [22] for the Wiener process, and by Boyrax [4] for a
wide class of processes including our X (), that with probability one there is a
function L (¢, z), called the local time at x, which serves as a density function for
the occupation times of the process. That is, for each sample path outside a fixed

null set the equation
|1

JIp(X (w))du = [ L(t, x)dx

0 B

holds for every Borel set B and each ¢ > 0. The function L is jointly continuous in
both arguments and non-decreasing in ¢. (Applying the machinery of additive
functionals of Markov processes BLUMENTHAL and GEToOR [3] have developed a
similar and in some ways more extensive theory of local times. Neither they nor
we are concerned with the dependence of the local time on the space variable 2,
and it is not difficult to verify that Boyraw’s L(f, 0) and BLUMENTHAL-GETOOR’S
A (¢) may be identified.) SToNE [19] then showed that the function inverse to 4 (t),
namely

T(t) = 1(t, 0) = inf {u: 4 (u, w) > 1},
is a stable subordinator of index § = 1 — 1/« and scale factor b given by
b = a(sinmwet)al*[Re {(1 + iy tan (7wa/2) Y11,

(It should be clear that all of the functions X (f, ®), 7 (¢, w), A (¢, w), are defined on
a single probability space 2 of points w.) He showed further that @, the closure of
the range of 7, is almost surely equal to the zero set Z, which in turn is almost
surely a closed set, the set of points of increase of 4 (£). These results are valid for a
slightly larger class of Markov processes (which SToNE calls ,,semi-stable’) that
need not have independent increments; in particular all stable subordinators of
index 8 < 1 appear as inverses of appropriate local times, whereas only those for
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which 8 < 1/2 arise from our X (#), since then § = 1 — 1/x and o < 2. Our results,
depending as they do on those of SToNE, are thus valid for the zero sets of semi-
stable processes; in the definition of the exact measure function ¢ we have only
to take §§ as the primary parameter.

This means that we can consider the subordinator 7 (t) as the primary process,
so that A becomes the “hitting time” process for 7, given by

A(u) = A (u, w) =inf {£:7(f) > u}

and we may as well study ¢ — m (@ N [0, ¢]) instead of (1), sinece § — Q is count-
able and Z = @. It is clear from (3) that a change in b amounts only to a change
in the time scale of the subordinator, and therefore does not affect the range Q.
Then it is a consequence of STONE’s results that the stochastic structure of the
zero set Z does not depend on the parameters a, . Hence it will be enough for us to
prove Theorem 1 in the case b = 1; the general case will follow on replacing ¢; by
bcl.

4. Local Asymptotic Results

Our main object in this section is to obtain an asymptotic law for the sub-
ordinator T(f) as t — 0. Although the result of the next theorem is an immediate
corollary of results recently obtained by FrIsTEDT [7] we present a proof, as we
need some auxiliary estimates not contained in [7].

Theorem 2. If z(f) is a stable subordinator of index 8, 0 < f< 1, b =1, and
() = 1Y (log |log t])! ~Y/# then with probability 1

lim inf 7 (0 (1) = d,

t—0
where d = c{l— PP,
Proof. We first show that the lim inf is almost surely at least d. Given a positive
2 <1 choose q between Af and 1, and set ¢ = g%, k = 1,2, .... Since 7(f) and
ultimately 7 () decrease with ¢ we have, for tz11 < ¢ < t; and k large,
(6) T(O)/n ) = T(tera)/n () .

Let Ay be the event that the right member of (6) is less than Ad. Since the distribu-
tions of 7 (£) and $/# 7 (1) coincide we have

P{Ar} = P{z(1) < Adiz 1Mfn(tr)}
= F (g~ 2d{log k + log |log q| }} /%)
~ cg(log k) exp (—cgloghk), k—>oo.
Here ¢g, c7 are unimportant constants, while cg = (qA-£)/A~8 > 1. Therefore
> P(4x) < co. In view of (6) and the arbitrariness of 2 < 1 the Borel-Cantelli
%
lemma then implies that lim inf ¢ (£)/% (f) = d.
t—0

The opposite inequality could now be easily deduced from Borel-Cantelli
arguments applied to the right member of the inequality

lim inf 7 (¢) /7 (tx) < lim inf {7 (t5) — 7 (tx+2)}/7 (tx) + Hm sup 7 (¢er1) /5 (Er)
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for t; tending sufficiently rapidly to zero, say fx = exp (— k1%9), § > 0. However,
we need an upper bound for the probability of events of the form

{z() > (1 + 2¢)dny() forall te(l, m)}
where 0 < I <~ m and ! is much smaller than m. To this end consider the events
Dy = {z(tx) > (L + 2&)dn(tr)} , tx = exp(— k179, 6>0,k=1,2,....

Lemma 2. For ¢ > 0 there exist positive constants 0, ¢1s, c16, and mo such that

2m
P{ﬂDk} < exp(—c1sm®), m =mg.
k=m
Proof. Let Eg = {t(t) — t(fx+r) > (1 + e)dn(ty)}, P{Ex}=1— pg,

Fy = {T(tk.(_l) > edr](tk)}, P{F}c} = q%. Since n Dy C nEk V) UFk and the
events Ey are independent it follows that

) PN D} =[] A —p0) + 20

<exp(— >pr) + >gx-

Now we have
pr = F((tx — tr+1) V8 (1 + &)dn (i)
= F((1 — t; tx41)"VE(l + &)d{log |logtx|}1-1/5)
= F((1 + &)d {log (2 m)o+1}1-1/6)

for &k < 2m, since ty > tp+1 and 1 — 1/ < 0. Hence, using (4),
2m
> px = meg (log m)ttexp { — (1 4 &)=#/1=A (8 + 1) log (2m)} = co (logm)™ m™
m

for m sufficiently large; positivity of the constant ¢y is assured by taking § suffi-
ciently small. The logarithmic factor may be absorbed by making a small down-
ward adjustment of ¢1o. This leads to an estimate of the form

2m
(8) exp (— z pk) < exp (— cgm®™), mlarge .
"

Similarly, using (5), we have
g =1— F(t; 1 edn (i)
=1 — F(ed (ig/trr1)V 8 {log | log t !}1—1/6)
< c13(te+1/ty) (log |log x| )1~
< ¢13 (log kS+1)1~8 exp (— (6 + 1) k%)
< ¢14 (log 2m)l-6 exp(— (6 + 1)m?)

form < k < 2m. Then
2m

(9 qu < c14(m - 1) (log 2m) exp (— (0 -+ 1)m?), m large .
"

The factors outside the exponential may be absorbed into the exponent, with
small adjustments. Then the sum of the two bounds (8) and (9) is majorized by
another of the desired form, for all sufficiently large m. Reference to (7) completes
the proof of Lemma 2.
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Corollary. If M = 2m and m = mqthen

M
P {ka} < exp (—c17 M) .

Proof. ﬂ Dy C m Dy

[M]2]
It follows from the oorollary that P {lim inf Dy} = 0, and therefore that for
each &> 0, P{hm 1nf 7{)/nt) = (1 + 2 &)d} = 0. This completes the proof of
Theorem 2.

Similar calculations show that the theorem also holds for large ¢:

Theorem 3. Under the conditions of Theorem 2,
Pliminfz(t)/n(t) =d} =1.
{—>o0

However, the slow decay of 1 — F(x) as « —> oo (cf. (5)) makes it apparent that
there can be no nondegenerate “lim sup’ law for 7 (f), ¢ tending to zero or infinity.
Tt is possible to define upper and lower classes of functions and to characterize
them using results of KurnorIN [12]; see FrIsTEDT [7] for a summary.

Since T and A4 are inverse to each other, while % and ¢ are asymptotically so
(. e @n) ~t~ n(p)) it is possible to restate Theorems 2 and 3 in terms of
the local time 4 and the function ¢.

Theorem 4. P {lim sup 4 ()/p () = d-6} = 1.
t—>0, 00
This generalizes Theorem 1 of Kestew [11] for the Wiener process. Note that the
remark after Theorem 3 implies that there cannot be any result of the form
liminf A ®)JR () =c¢, 0<e<oo.

{~>00

We have not; attempted to extend Kesten’s Theorem 2, to give a strong law for

hmmf{sup L{t, z)}h(t) .

{—>o00

For convenience of reference we now give a special case of the corollary framed
in terms of 4 and ¢.

Lemma 3. Letf fy = exp(—k*0), uy = 2dn(ty) and d' = (2d)B. Define the
events

D} = {4 (mx) < p(u) 2} -

Then for appropriate positive constants 8, c1e, c17 and mg we have
M 4
P {m ch} = exp (— c17. M)
m

providing that m = mg and M = 2m.

Proof. For sufficiently large & we have d'@(uz)/2 g 71 (ug/2d) = t. Then
Dy, is contained in the event {4 (uz) < tx} = {ur < ()} = {2d9n () < T(x)}
Then the result follows from the corollary, on taking ¢ = 1/2.
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5. Lower Bound for the Hausdorff Measure

We wish now to show that the Hausdorff measure induced by ¢,

p—m <)hmmﬂz¢ T):Ec\J T a0 < 8},

8>0 1
is positive, possibly infinite, on certain sets E of the form Z N [a, b], or equivalently,
as noted at the end of section 3, on sets £ = @ N [a, b]. Direct application of the
definition would require the determination of positive ¢, d such that any covering
of E by sets J; of diameters d(J;) << ¢ has the property that Z(p (Ji)) = &
This is difficult, as it is not sufficient, for instance, to consider coverings of £ by
finitely many intervals all of the same length. One may get a more economical
covering by using intervals of widely differing lengths.

We therefore resort to a method first used in [§] for showing that the Hausdorff
measure of some random sets is positive. This involves “spreading” a set function
defined on all Borel sets ‘“‘uniformly” on E and then analyzing it by the following
lemma, which is a modified (and simpler) version of Lemma 3 of [17].

Lemma 4. Suppose that F is a completely additive measure defined on the real
Borel sets and that E is a Borel set such that for each x € B

. Fle,e+h] _
ln;lj:)lp Y —— kE<oo
Then

ko—m(E)=F(B).
Proof. Since F must be a regular measure in the sense that
F(E)=sup{F (K): K cE, K compact}
we may assume that ¥ is compact. Let § > 0 and put
Hy={xzeckE: sup Flz,z 4 hljph) =k + 6}.

0<h<1fq

Then Hy is closed and B = U Hgy. If o — m(H) = oo there is nothing to prove.
=1

If ¢ — m(E) < oo then ¢ — m(H,) < oo and we can find a covering of H, by
intervals J;, ; whose lengths are less than 1/g and such that

S p(Asq) < g — m(Hy) + 5.
=1

We may assume that the intervals J;, , are closed and that their left endpoints
lie in Hg. Then
F(Ji, o) = (b + 0) p(d(Ji,q))
so that
F(H) 2 F(Ji,q) < (k+ 0)(p —m(Hy) + ).

Since H, is increasing in q and E = (_J H, this gives
F(B) < (k+ 0) (¢ — m(H) + 9),

and the lemma is established by letting 6 decrease to zero.
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We now use Lemma 4 to prove that

@ —m(@N[0,7(1)])

is almost surely positive. The appropriate set function F(Z) = F,(H) to spread
over the set Q(w) N[0, 7(1, w)] is the one induced by the local time A (f, w).
That is, we define a measure F,(E) of Borel sets B by setting F,[t, ¢ 4- &] equal
to the difference A (£ 4- %, w) — A (¢, ) and extending the definition from intervals
to Borel sets in the usual way. Since 4 increases only at the points of ¢, and 4,
are inverse to each other, it follows that F, is carried on @(w) and that

F(D[O: T(t: 60)] = Fm(Q(a’) N [O7T(t7 (D)]) ={;

therefore if £ is a Borel set then F(Q N 7(E)) is simply its Lebesgue measure.
Now let I" denote the set of pairs (¢, ») € [0, 1] X 2 at which

. Folt (@, ), 7t o)
lim su
hos 0

By the strong Markov property and Theorem 4 applied at 0 we see that each
t-section of I"has probability 1. Then by Fubini’s theorem almost every w-section
4 = A(w) has Lebesgue measure 1. Then Lemma 4 implies that almost surely

g —m(@N[0,7()]) = ¢ — m(Q O 7(4)) Z dPF(Q N7(d)) = dF > 0.

6. Upper Bound for the Hausdorff Measure

In order to show that ¢ — m (@ N [0, 1]) << oo we have to provide an econom-
ical g-covering of the set; it is easy to see that it is not adequate to consider
coverings by intervals all of the same length. In fact, one can modify the arguments
of Ito-McKEAx [10] p. 50 for the Wiener process to deduce that using coverings
by equal intervals will only give finite measure with respect to the measure
function k5. In order to make use of coverings of a more general nature we modify
the arguments first used in [21]. To this end we need a lemma which will enable
us to deduce that we have not been too wasteful in our final covering. This means
that we do not want to use intervals that overlap too much. Consider the collection
Ap of intervals [(f — 1)/2%, (j 4- 1)/2%),=1,2,.... Any interval of length
{ << 2k can be covered by one of the intervals of Ajz. Then any interval I is

contained in an interval of U Ay, of length at most four times that of I, providing

that the length of I is a number in the interval [2-#-1, 2~ ’“’)

We make precise the fact that the intervals of 4 are “almost nested”.

m
Lemma 5. If E =|_) I;, where each I; is an interval of Ay for some h between
i=1

ko and n, then 1t is possible to find a subset {j,} such that E =|_) I;, and no point
of B is in more than two of the intervals I;.

This can be proved by the same argument used to give Lemma 1 of [21].

We proceed now to the construction of the covering.

Given § > 0 choose kg so that 27% < min (§/2, w,, ), where uz and myg are as
in Corollary 2. Choose m such that u, < 2=%. Given n, let M, be the largest
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integer k such that wy = 2-7-1; n should be taken large enough so that n > kg
and M, = 2m. It is not difficult to check that for suitable positive constants
18, C19 We have M, = ci1gn® when n is sufficiently great.

For such a fixed n consider the intervals I; , = [(j — 1)2-%, 12-%). We say
that I, , is bad for the sample point o if (i) @ (w) meets I; , and (ii) there is no

7
interval [a, b) of _J A such that [a, b) contains I;,» N @(w) and
ko

Ab,0w)— A
¢ (b—a)
d’ as in Lemma 3. All other intervals I; , are said to be good. If I; , is good then

9 > g8,

n
either @ N Iy, is void or it can be covered by an interval [a, b) of {_J A with
ko
{4 @) — A(@)}/p(b — a) = d’'[8. We complete the covering of @ by taking I; ,
itself to cover the set @ N I; , when the interval is bad. Then all intervals of the
covering have length less than é.

We now show that the contribution to the covering from bad intervals is
small. If @ N I;, 5 is not void, let s; be the least point of @ not less than (j — 1)/2%.
Let Bg,; be the event that {A(s; 4 ux) — A(s)} @ (ur) < d'[2, for k=m,
m-+1,..., My. By Lemma 3 and the strong Markov property we know that
M

ﬁ Br,; has a probability at most exp(— cie M) < exp(— c2on*). The
k=m

length uy of the interval [s;, s; -+ ug) is @ number in the interval [2-n-1, 2~ h0),
Hence [sj,s; + ug) can be covered by an interval [a,b) of U Ay such that
b—a < 4uk

Suppose that w is in the complement of the set ﬂ By, ;. Then there is at least
one k with

4 («S’j + uk) 4 (8]) > d//z
@ (ux)
Covering that interval [s;, s; -+ ug) as just indicated we have
pl—a) = pluwy =08
since @(4k) < 4¢ (k) when k is small, Thus the interval I;,, is good. Therefore

P{I;, 5 is bad} < P{Q meets Iy, »} exp(— c20n) < c2278~Lexp(— c20n™)

on using Lemma 1.
Now let 7, denote the number of bad intervals Ij, with 1 <j <272 Tt
follows that

7
E{Tn} < coz[exp(— coon™)] D jA1 < co3 27 oxp (— ca0n™).
1
The covering of bad intervals must make a contribution
2, = Tp276[log(nlog2)]1-8,

whose expectation is majorized by an expression of the form
xn = 624 (log n)1-Bexp(— ca0n®).
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For any & > 0 we have then P{X, > &} < yu/e. Set ¢ = 1/n and allow n to vary;
applying the Borel-Cantelli lemma we deduce that with probability 1 there exists
an integer ng such that, for n > ng

(10) 2, < 1/n,

so the contribution of the bad intervals is negligible.
For each good interval which contains a point of @ we choose an interval

[a, b) in Ln)/lh such that {4 (b) — A (a)}/p(d — @) = d’/8. This gives a finite
ko

collection of intervals to which Lemma 5 can be applied. We obtain a set of the
form U [ay, b;) which still covers the good intervals I; ,, but covers none of them
more than twice. For this covering

2 (A b)) — Aa)) <2(4 () — 4(0))

where ¢ is sup b; < 1 + 2%,
Hence

(11) Z” (p(b@ — ai) Zeosd 1+ 2‘_}“’) , Coy = 16/d' s

where Z” denotes the resultant covering of the good intervals. Thus, combining
(10) and (11) we obtain a finite covering of @ M [0, 1] for each # > ng such that

S @A) < eas A (L +27) + 5.

Letting 6 — 0, kg tends to infinity; using the continuity of 4 we obtain
¢ —m(@ N0, 1]) < o35 4 (1)
with probability 1. Since 4 (1) is finite almost surely, the proof is complete.

7. Proof of Theorem 1

The results of the preceding two sections show that with probability one the
g-measure of ¢ N [0, 7(1)] is positive, while that of @ N [0, 1] is finite. The same
arguments evidently apply with [0, z(1)] replaced by [0, 7(1/N)], or with [0, 1]
replaced by [0, N], where N is any positive integer. Then it follows that almost
surely the random function

16 =@ —m(@NI[0, (1))

is finite and positive for all £ > 0. It is clear that the process f (¢) has the following
properties: it has stationary independent increments; it has continuous paths
almost surely; it is monotonic. The first two imply ([13], Theorem V2.3) that for
suitable u, o we may write f(f) = ut 4+ ow(t), where w (£) is a Wiener process with
mean zero and variance . Monotonicity then shows that ¢ = 0. Positivity of f
implies that u = ¢; > 0. Thus with probability 1, ¢ — m (@ N [0, (f)]) = c1t
for all ¢ = 0. Replacing £ by A4 (£) we obtain the desired conclusion. All of this has,
of course, been carried through under the assumption = 1. But, as mentioned
at the end of section 3, the general case is obtained on replacing ¢; by be;.

It follows, by a further application of the strong Markov property, that if

Zg={t: X(t) =a}
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is the occupation time set of the point {z} for the process X () then for each
fixed z we have

(12) g —mZyN[0,8]) =bc  L(x,t) forall t=0

almost surely. Tt becomes of some interest to ask whether (12) is almost surely true
simultaneously for all  and all ¢ = 0. We have not been able to settle this question.

It would also be of interest to extend our results to more general processes with
independent increments — see [2].
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