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Asymptotic Expansions for Renewal Measures in the Plane 

Robert  Keener* 
University of Michigan, Department of Statistics, 1444 Mason Hall, 
Ann Arbor MI 48109, USA 

Summary. Let P be a distribution in the plane and define the renewal measure 
R = ~  P*" where �9 denotes convolution. The main results of this paper are 
three term asymptotic expansions for R far from the origin. As an application, 
expansions are obtained for distributions in linear boundary crossing prob- 
lems. 

1. Introduction 

The renewal measure associated with a distribution P is defined as R = ~ p .n  
n = 0  

where �9 denotes convolution. When P is a distribution on R 1 with positive 
mean # = S x dP, the renewal theorem asserts that 

lim R {Ix, x + K ) } - - K / # =  lim R{[x ,  x + K ) }  = 0  (1.1) 
g --+ oo x - - +  - oo 

for any K if P is nonlattice and for K any multiple of the span if P is arithmetic. 
Although applications of this result abound making it one of the most important  
tools in applied probability, to some extent the basic limit theory starts and 
ends here. As shown by Stone (1965ab), Carlsson (1983) and Griibel (1983, 
1987), the rate of convergence in (1.1) is exceedingly fast algebraic to any 
power provided P has sufficient moments, and exponential if P has a finite 
moment  generating function. This should be contrasted with the central limit 
theorem where correction terms which depend on moments of P must be incor- 
porated to improve the rate of convergence. 

In higher dimensions, results analogous to (1.1) have been obtained by Bickel 
and Yahev (1965) and Stam (1968, 1969, 1971). Roughly speaking, Stare shows 
that near infinity along the direction of drift, R is like the product of Lesbegue 
measure over the length of # in the direction of drift with a normal (or stable) 
distribution in the orthogonal direction. The covariance of the normal distribu- 
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2 R. Keener 

tion increases linearly in the distance from the origin. Unlike the case in one 
dimension, extra terms are now necessary to improve the rate of convergence 
in these theorems. The main results of this paper provide the first two correction 
terms for renewal theory in the the plane. 

To describe these results, let (X, Y)~P,  and define v=EX,  7=EY/v, 
Z = Y - - T X  , o - 2 = E Z  2, Mjk=EXJZk/(vJtTkj!k!), C l = - - M l a  , c2=Moa--M~I/2, 
c3=MEo-M12+M~l ,  c4=Mo4-M12/2+M2o/4+M21--2MlaMo3,  and c5 
=M~3/2+M~a/8--Ml~Mo3/2. For  x_-<O let ?(x, y)=O, and for x > O  let 

e - ~2/2  

~(x, y) = v 1 ~  0"2/1~ i '  

�9 1+  [ClHI(P)"bc2H3(JO)]q---[c3H2(P)-]-c4H4(P)-{-c5H6(P)] 
X 

where ~ = ( y - 7  x ) / ~  and H k is the k th Hermite polynomial. Let z = r (x, y) 

= ] ] / / ~ + l y - T x [ .  Theorems 1.1 and 1.2 show that as z ~ o o ,  R is well approxi- 
mated by the measure with Lesbegue or counting density ~. 

Call P a lattice distribution on Z 2 = { . . . , - 1 ,  0, 1 . . . .  }2 if P ( Z 2 ) = I  and 
P(A) < 1 for A the translate of any proper subgroup of Z 2. 

Theorem 1.1. I f  EX 2 log 3/2 (1 -k X - )  < 00, EZ 4 < 00, v > 0 and P is a lattice distri- 
bution on Z 2, then 

R ({(x, y)}) = ?(x, y) + 0 (1/z 3) 

as z--+oo uniformly for (x, y)~Z 2. 

The next result is an expansion in the "continuous case". To be specific, 
let X denote the characteric function of P. Cramer's condition is 

lim sup Z(P, q)< 1. 
p2 + q 2  ~ o 0  

The theorem assumes Cramer's condition and approximates ~fdR for non- 
negative functions that are zero in a large neighborhood of the origin. The 
distance of a function f from the origin is measured by 

vI = inf{z(x, y): f (x ,  y) > 0}, 

so f (x ,  y )=  0 if z(x, y )<  zI" Also, define the variation function 

of(x ,  y, e) = sup { f ( x l ,  YO--f(x2,  Y2): (x1, Yl), (x2, y2)eB~ + (x, y)} 

where Be= {(x, y): x2 + y2 <=e 2} is the e ball about  the 
= supm2 If[ and define 

my(x,y,e)= sup If[. 
Be+(x,y) 

origin�9 Also let ][fir 
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Theorem 1.2. I f  E X  210g3/2(1 + [XD< o(3, EZ4< o0, v>0,  Cramer's condition 
holds, 0 < t/< 1/6, and e = e z = exp { - ~}} then 

~ f d R  = ~ f (x, y) ?(x, y) d x d y + 0 ( 1 ) ~  COy (x, y, e) ?(x, y)d x dy 

+o(1) S~my(x, y, 1) z-3(x, y) dx dy 

uniformly in f as zz -~ oo. 

With f the indicator of a strip, we obtain the following corollary. 

Corollary 1.3. Under the conditions of Theorem 1.2, 

2 3  
e {(X - -  6, X Av 6) X ( - -  OQ, y)} ~- ~ (J)) - -  ~ ~ (y) ECl --~ c 2 H 2 ()3)] 

v V v x  

+ 6~Yff2)HI(j))+c4H3@)+C5 ^ 1+8  3 

as x ~ oo with g) = o ( l~) ,  uniformly for y ~ R. 

Our final result gives expansions for densities. If P ( X e Z ) =  1, let 2x be count- 
ing measure on Z; otherwise let 2x be Lesbegue measure. Define 2y similarly. 

Let R , =  ~, P*k=P*" .R .  
k=n 

Theorem 1.4. Suppose E X  2 log3/2(1 + X - ) <  oo, EZ4 < o% p .k  is absolutely con- 
tinuous with respect to 2~ x 2 r with a bounded density, and (1 + z) 3 dP*"/d(2~ x dr) 
is directly Riemann integrable where n = 2 k + 4 .  Also, assume P(Z2)< 1 and that 
X is lattice with span 1 i f P ( X s Z ) =  1 and Y is lattice with span 1 if P ( Y 6 Z ) =  1. 
Then 

dR. (x ,y)=?(x ,y)+o(l /z3)  
d (2~ x 2y) 

as ~ ~oo uniformly for (x, y) in the support of 2x x 2 r. 

Remark. In our proofs, the condition E X  2 l og3 /2 ( l+X- )<oo  is used to deal 
with difficulties associated with P ( X  < 0) > 0. When P(X__> 0) = 1, this condition 
can be relaxed to E x Z <  oo (we conjecture EX2< oo is always sufficient) and 
the integrability condition for dP*"/d(2x x 2y) can be dropped in Theorem 1.4. 
The condition E X  2 l og3 /2 ( l+X- )<oo  can also be dropped when error rates 
of o(1 x I-3/2) are sufficient - see the proof of Theorem 2.5. 

A unified treatment of the results just stated can be obtained by finding 
approximations for convolutions of test measures with symmetrized versions 
of R. These results are stated and proved in Sect. 2. Section 3 contains proofs 
of the results in this introduction and Sect. 4 has applications to boundary 
crossing problems. 
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2. Density Theorem for Smoothed Symmetrized Renewal Measures 

The results of the introduction will all be derived from expansions for densities 
of R ,  G with appropriate choices for the smoothing probability measure G. 

If X e Z  a.s. P, let a=rc;  otherwise let a = o o .  Similarly let b = n  if y ~ Z  a.s. 
P, and let b = oo otherwise. 

Aside from sorting out the discrete/continuous cases for X and Y, it is conve- 
nient to deal with the measure Q = s176  z). The characteristic function of Q 
will be denoted by 4). Define the measure 2 by 

2(A) = 2~ x 2y({x, y): (x, y -7x )~A})  

for Borel sets in the plane. Let H be a probability measure which is absolutely 
continuous with respect to 2 with density h = dH/d2 and characteristic function 
~. If ~S [~[ < oo where S = ( -  a, a) x ( -  b, b) then h can be found from the inver- 

S 

sion formula 

h(x,z)= L !~ fi(P,q)e-'Vx-iqZdpdq �9 

Moments of H will be denoted djk = ~ x ~ z k dH. Let A be a fixed positive constant 
and let ~ be the set of all probability measures / - /absolute ly  continuous with 
respect to 2 satisfying d2o+do,<__A. The expansion of Theorem 2.1 holds uni- 
formly for H e  Jr ~. This uniformity is necessary for a smoothing argument to 
obtain Theorem 1.2. 

The measure G mentioned earlier is related to H by 

G (A) = H({(x, z): (x, z + 7 x) cA}) 

for Borel sets A in the plane. Densities for G are related to densities for H 
by 

dG 
h (x, z) = d (2x x 2y) (x, z + ~ x) 

co 

and consequently densities for G ,  R are related to densities for H* Y' Q*" by 
0 

d H *  * 
o / d(G*R) 

(x, z) = (x, z + ~ x). 
d 2 d (2x x 2y) 

To avoid integrability problems near the origin, results will be derived initial- 
ly for symmetrized renewal measures V~, 0 _< n___ oo defined by 

n - - 1  

V,(A)= 2 {Q*J(A)+ Q*J(-A)}.  
j = O  

Let U , = H .  V, and u.=dU,/d2, and let U =  Uoo and u=u~.  
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Theorem 2.1. Let ~= I~+lzl, let 0 < q < l  and let n=n~=o(z  1/6) as z ~ o o .  I f  
I Cbl is bounded away from one on any open subset of S - { ( 0 ,  0)} then 

u = O + u , + o ( z - 3 ) { l  +exp(-n")~[Ifil+lfipl+lfippl+lfial+ll:iqq[+lfiqqql+ll:iaqqql]} 
S 

as ~ --* oo uniformly for H e 2/f, x > 0 and - oo < z < oo. fi is given by 

~, 1 / 2 ~ 0 ~ / v  1+ [c,u~(~)+c~H~(~)]+ 

+ c4 H4 (~)+ C5//6 (~)]t' 

v [C3 H2 (~) 
X 

where Hk is the k th Hermite polynomial, 

and 

~ = z / ~ ,  C 1 = d o l / a - M l l  , C2=Moa- -M11/2  , 

C3 = M2o - M12 + M21 - M11 do 1/6 + doz/(2 6 ) -  dl 0/(2 v), 

C 4 = M o 4  - -  M 12/2 + M2o/4 + M~, -- 2 M,1 Mo3 -- M1, d o,(4 a), 

C5 = M~3/2 + M~ 2,/8 -- M ll Mo3/2. 

A starting point for proving this theorem is the following inversion formula. 
Let 7 ~ = 9t {1/(1 - q~)}. 

Lemma 2.2. Under the conditions of Theorem 2.1, 

1 
u(x, z ) = ~ 2  ~ ~(P, q) ~(P, q)e-ipx- 'qz dp dq. 

S 

o o  

Proof. Let W~ (A) = ~ r" [Q*" (A) + Q *" ( - A)] and wr = d (H �9 W~)/d 2. By monotone 
0 

convergence, u = lim wr, and by Fourier inversion, 
r y l  

1 --r(a(p, q)} ~i(p, q) e-iVx-iqZdp dq. ~or(x,z)=~2~2 !S N {  1 1 

By Taylor expansion of cb near the origin, 

9t{_ 1 1 
6 2 q2/2 

--  d? (p, q ) )  p2 vz + a 4 q4/4, 
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as (p, q) ~ (0, 0). Since this function is locally integrable at the origin, and since 
~R{1/1- rqS)}~  7 j as rT1 uniformly away from the origin, it is sufficient to 
show that 

l iml im i i dpdq =0 .  
~,o r t i  _, _~ I i - rqS(p ,q ) [  

As (p, q) ~ (0, 0), 
q~(p, q )=  1 + ipv--q 2 a2/2+o(lpl +q2). 

Hence there is a constant  K1 such that I 1 - q51 > K1 (I P l + q2) in some neighbor-  
hood  ~ o  of the origin. Since 9 l{1-4~} > 0 ,  in ~ o  

[ 1 -- r q~l= r {(1 -- r)2/r 2 +11 -- q~ 12 -t- 2 (1 -- r) ~R (1 - qS)/r } i/2 

> r l l - q S I  

>rK~(Ip[+q2). 

The lemma follows since 

i dpldq ] p l + q ~ = 4  

Theorem 2.1 will be proved by careful analysis of the integral in L e m m a  2.2, 
and the behavior  of  ~ T  near the origin is of crucial importance.  

L e m m a  2.3. As (p, q)--* (0, 0), ~'TJ= kfi + o(1) uniformly for H e W ,  where 

~ =  �89 0-2(1 + iqdol + ipdio -qZ do2/2) 
p2 V2 + q4 0-4/4 

[pqSv0-5{Moa_Mll/4}+p3qv30-Mli](l+iqd01) "~ 
+ q8 as M04i 4 + p2 q4 v2 0.4 { _ Mo 4 + M i  2 _ M20/4} + p4 v 4 Mzoj 

+ 
(p2 V2 _at - q4 0.4/4)2 

{ --ql2 alZ M~3/8 + p2 qSv2 aS {M~l/8 + 3 Mg3/2- 3 Mli Mo3/2} 
_~_ p4 q4 134 0.4 { __ 3 M 31/2 -t- 2 M l l  M 0 3} 

(p2 v2 .j_ q4 O-4/4)3 

Also for j = 1 or  2, 

and for k = 2, 3, or 4, 

OJ c~J 
~p} ( / ~ ) =  ~p-W ~ +~ + q2)-J) 

ak ~k 
0 qk (~ ~/) = ~qg t~ + 0 ((t P I + q2)-- k/2). 
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Proof Taylor expansion of ~b about  the origin gives 

qb(p, q)= 1 + ipv--q2 tr2/2--pqva Mll --iq3 cr3 M03 --p2v2 M20 

--ipq2vt72 M12 + q4 cr 4 Mo4 + o((Ip] + q2) 2) 

as(p, q )~(0 ,  0). Since 

1 1 e e 2 

- + x ~ + ~ + o ( ~ V x ~ )  
X - - g  X 

as e/x --. O, with x = q2 0-2/2 _ ipv we obtain 

1 1 
1--(o --ipv+q2a2/2 

-pqva Mll-iq3 a3 Mo3-p2vZ M2o-ipq2va2 M12 + q4 0-4 Mo4 q 
( -  ipv + q2 0_2/2)2 

(pqv0- Mla § iq3 0-3 M03)2 
(_ipvWq2ff2/2)3 l-O(1) 

as (p, q) ~ (0, 0). Taking real parts of this equation gives 

~= �89  

§ 

G 2 

p2 v 2 + q4 0_4/4 

pq5 v a s {Mo3-- M 1 if4} +p3 qv 3 aMxl  + q80-8 Mo4/4- ( 

+pZqCv20_4{--Mo4+M12-M2o/4 } +p4v4M2o J 
(p2 V 2 § q40-4/4)2 

_ q12 0_12 Mo~ 3/8 + p2 qS v 2 0_8 {M~ 1/S + 3 Mo~ 3 /2 -  3 ~tl 
+p4q4v40_4{-3M~l/Z+ZM,:tMo3} 1M~ 

(p2 V2 q_ q4-0_4/4)3 

as (p, q) ~ (0, 0). Multiplying this by the Taylor expansion, 

/~(p, q)= 1 + iqdol + ipdlo-q2do2/2+o(lp] +q2) 

as (p, q ) ~  (0, 0) uniformly for H~g4e, proves the lemma. 
Although g~ is a good approximation for h ~  near the origin, it has a few 

bad properties. It need not be integrable on S, and ~ and its derivatives may 
not vanish at +b .  To correct these deficiencies, let g: (-b,b)~[O, 1] have 
a bounded continuous fourth derivative and satisfy g ( x ) = l  for Ix l<n/3  and 
g (x)=0  for ]x]>2rc/3. Let ~(p, q)=g(q)(~P(p,q)--M2o ). As (p, q)-*(0,0), the 
second and third assertions of Lemma 2.3 hold with ~ replacing ~. An initial 
approximation for u is 

1 i d p  ~ dp~(p,q)e_ip:,_iqz. ~(x, z) = 
- - b  - o o  
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Since ~ is not absolutely integrable over the region of integration the integral 
A 

over p should be interpreted as lim ~ dp. The order of integration can be 
A~oo -A 

interchanged as 7 j (p, q) - i q2 o_2 d 1 o/(2 p) - q v a ~ M 1 lip is absolutely integrable 
over {p: ]p[ > 1} x ( - b ,  b), and q2/p and q/p both factor. 

Lemma 2.4. Under the assumptions of Theorem 2.1, 

U=~tq-Un+O('C-3){1 + exp(--  n") ~I [IBI + I~pI + IBp~l +lBql + I~q~l + I B.~o I 
s 

as z ~ o o  uniformly for HsJ4  ~ x > 0  and -Go < z <  oo. 

Proof Let us first consider what happens if (x, z) vary with z so that z = O(]//x) 
as z ~ oo. Fix e > 0 and choose 6 > 0 so that 

02 ~) <(Ipl q_ q2)2 

on ( - 6 , 6 )  2. Let S,=(--1/x ,  1 /x)x(-1/] f~ ,  1/~/~), $2=(--6,6)2-$1,  $3=S 
- -$1--$2,  and $4= {p: IP[ >a} x ( - b ,  b). For T sufficiently large, x will be large 
and we will have 

= l P l + q  2 

on $1 and St c ( - 6 ,  6) 2. Integration by parts gives 

x[u -a] -  
i 0 

2~c2 !~ ~pp (//V*- ~)e-'p~-'q=- 

2~c2 7p (hT~- ~) e-'p~-'q=- 

i O~ ipx-iqz 
2 ~2 !! ~p e- 

l 0 2 
2 7z 2 x !!  0 p~ (~P - ~P) e- ipx- iq= 

1 0 2 i 0~  
2g2X !f  0p2 27C2 !! ~P e-ipx-iqz 

1 1/V~[O - �9 I p=l/x 
~V (/l~g -- 7t) e- 'P~ [ e-lpXdq 

2 7 z 2 x - 1  y[~PP 3p=-l/x 
=11 +12 +13 +14+15 �9 

By the choice of 6, 

i l l l < ~  1/x 
- 1/x 

and 

1 
1 1 2 1 = < ~ {  I~ 

Ipl > l/x 

2e 
dp~dq lP l+q2-n~ /x '  

+ ~ } ~dpdq _ ( l + n ) e  
Iol > 1/1/~- (]pl+qZ)2 n2]//X 

< 1 2edq e 
I l s l = ~ S  q2 + l/x-~r]/~" 

S i n c e  0 2 ~/Op 2 is integrable on $4, after an integration by parts, 14 = O(1/X). 
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13 is the troublesome contribution. Let 7 = s u p  {q S{. Since r is 
$3 

bounded by a constant plus a multiple of j2 uniformly for H~4(  ~ and j > 0 ,  
n--1 

by the identity 1/(1 - ~b) = ~b"/(1 - ~b) + ~ ~b J, 
j = 0  

1 ~2 [ (n--1  -)\ 

I3-_2r~z x !5 ~p2[~l~j~o~)J))e-ip'-io'+O{i/x)+O(n3/x) 

+ 55 {it/{ + 1 .1 + { {} 
S 

as z ~ uniformly for HEOf ~ The first term in this equation after two integra- 
tion by parts is just xu , .  Since e is arbitrary and e < l  this establishes the 
lemma for sequences where z = O (I/x) as z --* oe. 

To complete the proof, consider now sequences for which r =  O(z) as r---, oo. 
Fix ~>0  and choose ~ > 0  so that on ( - 6 ,  ~)2, 13j(~7~_ ~t)/Oqjl~/([p[_kqa)j/2, 
for j = 2 ,  3, and 4. Let S I = ( - - I / z  2, 1/zZ) x ( - 1 / l z [ ,  1/[z[), $ 2 = ( - - ( ~  , 6 )2 - -S1 ,  S 3 
= S - S ,  - $ 2  and S~= {p: ]Pl >a} x ( - b ,  b). For z sufficiently large S~ c ( - 6 ,  6) 2 
and three integration by parts gives (boundary terms vanish in the lattice case 
because OY 4) (P, zr)/ c~ qJ = cW 0 (P - 2 z~ ;J , - ~z)/ c9 q J) 

i 0 3 . ~3~j e -ipx-iqz 
z 3 [ u - u ] = ~ 2 ~ 2  !5 ~5q3 ( ~ 7 j -  ~ ) e  'P~ ,qz + 2~ 2 ~! 

-- ~ q 4  ( ~Tj -- ~ )  e - ' P ~ -  

1 04 - ipx iqz 1 0 3 ~  I e_ iVx_ iq  z 

=11 +12 +13 +I4  +I5 .  

By the choice of 6, 

Z 1/z2 ~, 2 e 
1 I i 1 < ~  5 d p 5 d q - -  , 

-1/~2 ]pl+q2 7c 

and 

1121< l - L -  = 2 ~ 2 z  { 55 + 5J" } e d p d q  ( l+~)g  
Ipl>l/z 2 Iql>l/lzl (]p [ .+. q2)2 7c2 , 

1 1/z'~ 2 e d p  1 2 e d p  2 e log(2) 4e 
115]<2r d _ ~ ,  [p~+l[z 2 ~ - ~ 2 z S ( [ p [ + l / z 2 ) a / 2 -  ~2 } Ts 
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After an integration by parts, I4=O(1/z ) as z~oo  uniformly for HaNg. To 
approximate 13, again let e=suplqSI. Using the identity 1/(1-q~)=qS"/(1 

$3 
n - 1  

j=o 

13=2zc2 z !5 ~q4/~9t~j~0~b' e-~P~-iq~+O(1/z)+O(nS/z) 

S 

as r ~oe  uniformly for HaNg. The first term in this equation after four integra- 
tion by parts is just zau,. Since e is arbitrary and e < l  this completes the 
proof of the lemma. 

Proof of Theorem 2.1. By Lemma 2.4, the theorem follows provided ~ = a  
+o(z-3). Integration over p in the equation defining ~ gives 

a(x ,z )=~  v g(q)e -iqz-~2/2 1+ EiqCI +(iO)3C2]+L [(iq)2C3 
- -oo X 

q- (i0) 4 C 4 q- (i0) 6 C5]~, 
) 

where g l=crq]~ .  Although the algebra to obtain this equation is tedious, 
the necessary integrals can all be evaluated by residue calculus, or by repeated 
differentiation of the identity 

e - t p x  7c Olxl 
J p ~ d p = ~ e  ~ 

with respect to r and x. At this stage there is no harm in setting g--1; errors 
due to this change are o(z-3). Integration over q using the formula (derived 
from equations XVI.1.6 and XVI.1.7 of Feller 1971) 

1 ~(igl)ke_ipz_~2/2dq=Hk(~) 
2re 

e-~2/2 

]/2 re x a2/v 

completes the proof of Theorem 2.1. 
The next result will be used to convert expansions of the symmetrized mea- 

oo 

sure V to expansions for W= ~ Q*". 
0 

Theorem 2.5. Let H be a finite measure with density h=dH/d2, and let g=(1 
q-'c)ah. I f  g is directly Riemann integrable, if EX 2 loga/2(lq-X-)< oo and EZ 4 
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< oo, and if I~1 is bounded away from one on any open subset of S -  {(0, 0)}, 
then 

d 
~ H * W=o(z - 3) 

as z ~ co uniformly for (x, z) in the support of 2 with x < O. 

Proof Suppose initially that H is a probability measure with support the unit 
ball Ba, and that IIloJB/epJl<~ for j = 0 , 1 , 2  and ~[OJ~/OqJl<oo for 
j =  1, 2, 3, 4. By Theorem 2.1 with n~-0,  

d 
d2 H* W(x, z) <= u(x, z) 

=~(x,z)+o(< ~) 

= O ( ~  e x p - { ~ } )  + o(z -3) (2.1) 

as z ~ oo uniformly in x and z. In particular, for some constant K1, 

d K~ 
d~ H* W(x, z) <= ]//2 +lxi 

for all x and z. Also, due to the rapid decay of the exponential function, it 
is sufficient to restrict attention to sequences where z = O (1/I x l loglx 1) as ~ ~ ~ ,  
and for these sequences v =  O(l/Ix I log lxl). Consequently it is sufficient to show 
that 

d 
d~ H.  W(x, z) = o ({I x[ log I x l} - 3/2) (2.2) 

as x --* oo uniformly in z. 
Let (Xi, Z~), i>_ 1 be i.i.d, from Q, independent of (X, Z), let S, = t~.'"(l), S~z)) 

= X~, Y',Zi , and let ~ = a { S t  . . . . .  S,}. Then 
\ 1  1 / 

d H*W(x,z)=E ~ h(S,--(x,z)). 
d2 

n = 0  

Let t=L,=inf{n>l" Sr Since h = 0  off B~, for x sufficiently negative, 
conditioning on ~ ,  

d~H*d2 W ( x , z ) = E [ ~ H .  W(St- (x ,  z)); t <  oo] 

=E[f--~H,W(S~--(x, z)); t <  Go, S,1)>x/2] 

+ E[f--~ H* W(St-(x,z)); t<c~,S}l)<x/2]. 
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To see that the first of these terms is small, let t '= inf{n>t :  S(nl)<=S}l)+x/3}-t 
on {t<0o} and 7"=0o on {t=0o}. Then "{It<0o~t, so P('{<m)=P(t<0o) z. 
Conditioning on ~ ,  for x sufficiently negative, 

E[ ~--~ H * W (St-(x, z)); t< co, S~I) > x/2]= E[ ~--T H * W (S~--(x, z)); "{< 0o, 

S~ 1) > x/2] 

< K 1P(t < 0o)2/2. (2.3) 

This expression is O(1/x 2) as x - -+-0o  by Markov's inequality; EX2< 0o and 
EX > 0 imply E [inf S~,*) l > - oo. The second term is bounded by 

?1 

E [  Ka v(1) < ] ; t < 0o x/2 
] /2+1 vm-xl-t '~ '  = 

~=o E K1 ; S~.X)>x/3, S~I)+X<x/2 
< 2 + l S ~ ) + X _ x l  

~ ~ [ KI .S{1)s(j+x/3,j+l+x/3],S{1)+X<x/2 ] =5o, o 
<,~=o ~=o E ; S~,I)~(j + x/3,j + 1 + x/3], X < - j  + x/6 

j l + l j + X - 2 x / 3 1  

I ] <=K2E ~ ] / l + l j + S - 2 x / 3 ]  
L O = < j 6  - X + x / 6  

where K 2 = sup ~ P(S(,1)~(x, x + 1]) which is finite by the renewal theorem (in 
X n = O  

one dimension). To continue, with x sufficiently negative, this last expression 
is bounded by 

1 -x+x/6 dy 
K I K z E  S 

-1 ] / l y+X-2x /31  

<=2K1K2E[ + I/IX-1--2x/31; X <Z + x/6] 

<=SK1KzE[ I]//~l; X <x/lO] 
<8K1K2E[X21og3/Z(l+X-);X<x/lO]/(xlog(1-x))  3/2 (2.4) 

and (2.2) follows by dominated convergence finishing the proof in this case. 
In the general case, first pick a function h that satisfies the conditions of 

the special case and exceeds one on B1/z. Then 

W (B1/2 + (x, z)) <= ~--~ H * W (x, z) ---- o ('c - 3) 
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as -c-+oo with x <0. Since the arguments leading to this result remain valid 
under rescaling, for any (fixed) bounded measurable set I, 

W(I + (x, z)) = o (z- 3) (2.5) 

as z~oo  uniformly for x<O. Using similar arguments and the bound (2.1), 
for any bounded measurable set I, 

Z21) 

W( I +( x , z ) ) =O( z - 3 ) +O( exp  4a21x[ ) (2.6) 

as z ~ oo uniformly for x > 0. 
To continue, let {I,},>_i be the unit squares with integer corners and let 

g ,=supg.  Since g is directly Riemann integrable, ~ g , < o o .  Define (x,, Z,)EIn 
In 

so that z(x,,  G)=infz(x, z). Then 
In 

z3 d (x,z)aTH*W(x,z)=Y, Y~ ~3(x'z)g(x-x"z-z') 
, (x,z)-I. ( l + z ( x _ x , , z _ z , ) )  3 dW(x',z ')  

<= y, r (x, z) 
. g" (1 + r ( x . ,  z .))  s W((x, z)--I.). 

This approaches zero by dominated convergence pointwise convergence of 
the summands follows from (2.5) and domination follows from the next lemma 
using (2.6) and the observation (x, z ) -  I, ~ ( x - x , ,  z - z , ) +  I where I is the square 
[ -  1, 1] 2. 

t t Lemma 2.6. For all x, x ,  z and z,  

(x, z) 
<2+z(x ' , z ' )  

1 +'c(x-- x', z--z') 

and for all x, x', z and z' with x' < x < O, 

(z-z')2v 
~ ( x , z ) e x p { - 1 2 ~ r 2 l x _ x , i }  <,z'l +]/Ix'l{1 + ~ } .  

Proof If Xl,X2, X3__>0 then (xl+x2)/(Xl+X3)<=(x2+x3)/x a and ~11+x2  
_-< ~ + ]/x22. Using these bounds, 

11/~+ Izl < ]/~l+lz' l+lz-z ' l  
1 + Ix]/~--x'] + ]z-z ']  = 1 +~]x- -x ' ]  + ]z-z ']  

<1+ I1/~+ [z'l 
- 1 +  I x ~ - x ' l  

<_lq I]~[+l/Ix-x'l+lz'l 
- 1 + ] ~ - x ' l  

<2+r(x' ,z ' ) .  
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Using the identity x2 e x p { - x ~  x 2} < 1/2]/2eXll for all x I >0,  

z (x, z) exp { 
( z -  z')Zv ' exp{  ( z -  z')2v "~ 

1 2 ~  i~_  x, i} _-__ I ~ +  Iz I + l z - z ' l  12~Zlx_x, lj 

< ~ [ + l z ' l + {  6a2lx-x'[~l/2ev ) 

and the lemma follows. 
The final 1emma of this section will be used to show in applications of 

Theorem 2.1 that terms associated with u, are negligible. The proof is similar 
to the initial arguments in the proof of Theorem 2.5. 

Lemma 2.7. Suppose n=n~=o(z) as ~ ~oo. I f  EZ4 < 00, EX 2 10g3/2(1 + IX[)< oo 
and Ic~l is bounded away from one on open subsets of S-{(0,  0)}, then for any 
bounded measurable set I, 

v. (t + (x, 3')) = o (~ - 3) 

uniformly in (x, y) as z ~ oo. 

Proof Rescaling we can take I=B~ without loss of generality and by (2.5) 
and (2.6) it is sufficient to show that 

W~(I + (x, z)) = o ((xlog x)-  3/2) 

n - 1  

uniformly in z as x ~ o o  when n=nx=o(]/xlogx), where W,= ~ Q*J. Let t 
j = 0  

= t x = i n f { n > l "  S(,t)--Znv>=x/3} and t '= inf{n>t :  S(,1)-2nv>Zx/3+S~ ~) 
- 2  t v } -  t. Conditioning on 4 ,  for x sufficiently large 

W.(I + (x, z))= E[VV._t(I + (x, z ) -  St); t < n] 

z ) -  S3; t _  n, ~, < x/23 < E[W~_,(I + (x, < ~(~) 

+ E[VV._t(I +(x, z ) -  St); t <= n, S~)>=x/2]. 

The first term is bounded for large x by a multiple of P('t<oo)=-o(x -2) (as 
in the derivation leading to equation2.3). For x sufficiently large, {t 
< n} c {S}s < 2x/5}, so the second term is bounded by 

E[W(I+(x, z ) -S , ) ;  S(,1)>x/2, S ~ I  < 2 x/5]. 
t /= l  

Bounding W(I+(x, z ) - S , )  by K(2+IS(1)--x])  -1/2 the proof is completed by 
the same arguments leading to (2.4). 
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3. Proofs 

Proof of Theorem 1.1. Let r(x, y)=R({(x,  y)}). Since P is lattice, [~[ is  bounded 
away from one on any open subset of (-zr ,  ~)2-{(0,  0)} and Theorem 2.1 with 
H a point mass at zero and n -  0 gives 

r(x, y) + r ( -  x, - y )  = ~(x, y) + o(~ - 3) 

as ~ --+ ~ uniformly for x > 0. By Theorem 2.5, r (x, y) = o (z- 3) as r --+ oo uniformly 
for x < 0 and these assertions combine to prove Theorem 1. 

Proof of Theorem 1.2. By change of variables, 

~If  dR = S~f(x, z + 7 x) d W(x, z) 

= ~ f ( x , z+Tx)dW(x , z )+  ~ f (x , z+Tx)dV(x , z )  
x<O x>O 

- ~ f ( - x , - Z - T x ) d W ( x , z ) .  
x < 0  

Partitioning R z into small rectangles and using equation (2.5), the first and 
third terms in magnitude are o(1)~m:(x, y, 1)'c-3(x, y )dxdy  uniformly in f 
a s  T f - - +  o o  . 

Let H (1) be a fixed member of x4z with support B1 with 

Define H ~) for 0 < e < l  by H(~)(A)=H~I)(A/Q. Then H t~) has support B~, 
l~)(p, q)=~)(ep, eq) and 

St [I ~)1 + I ~;)l + I h~;~ I + I ~ 1  + ... + I ~ : ~  13 <=K/:. 

Fix 0<~/<~/ '<1/6  and let e = e : = e x p ( - z } )  and n=n:~'c}'. Then by Theo- 
rem 2.1 

d 
H(~)* V(x, z) = ?(x, Z + TX)+ :o H{~)* V,(x, z)+o(z-3(x, z)) 

d2 az 

as z:  --+ c~ uniformly for r (x, z) > ~:. Define f+ (x, y) = f (x, y) I {x > 0}. Since H ~) 
has support Be 

] 5~f+ (x, z+ vx){dV-d(H(~), v)} I < ~ff o0:+ (x, z+ vx, (1 +7)Q d( H(~)* V) 

(note that {(x, z): ][(x, Z+TX]] <( l+7)e}~B~) .  F rom Lemma 2.7, since H {~) has 
support B~, for any bounded set I, 

H (~) * V,(I + (x, y)) = o(z-  3). 
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This implies for e sufficiently small that 

JIf(x, z + vx )a (n ( , ,  v,)=o(1)Sims(~, z + vx, 1) ~-3(x, z) d~ az 
and 

S~, ~s+ (x, z + Tx, (1 + 7 ) 0  d( H(~)* v , )=o(1)  SSmf(x,  z + Tx, 1) z-3(x, z ) d x  dz  

as z I--+ oo. The theorem now follows (a few minor details such as the legitimacy 
of changing f+ to f and ( l + ? ) e  to e are easily checked. The constants dol, 
d02 and dlo can be ignored since el---, 0 very quickly). 

Proof  o f  Corollary 1.3. Let us begin by looking at the integral of ? over A = (x 
- 6, x + 6) • ( -  oo, y). Using the identity 

y 

Hk + i (z) 4) (Z) d z = -- Hk (Z) q5 (z), 
-oo 

integration over y' gives 

x+a 1 x+6 ( 1# 
x--O -co  

c5 H5 (y*)J~, 
V 

--qS(y*)x; [c3 H I ( y * ) + c a H 3 ( y * ) +  

(3.1) 

where y* = ( y -  7 x ' ) / x ~ x ' ~ .  By Taylor expansion, 

1 l [ x'--X2x ] l/~, ~ /v - l /V~  1 ~O{(x'-~)~/x~}, 

as (x' -- x) /x  --* O. Multiplying this by y -  ~ x'  = y - y x - y (x' - x) gives 

~(x ' -x )  ~(x ' -x)  
Y*=Y 2x 1/7p7 ~~ 

as x --+oo with 3~= O (l/x) and x ' - x  = O(]/x). Taylor expansion of 4~ gives 

^ X~ X)  ~(y*)=~(y)-~(y) .Y(~ 

1 y2(X'--X)2 

2 Y ~ O )  xo2 /v  

~(x'-x)] 

+ O { x - 3 " l x ' - x ?  +x-a/~lpl(x ' -x)2 } (3.2) 
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,__). ~ ^ t as x oo with y = O ( x )  and x - x = O ( ] / x )  this expression, 0 { ' }  can be ~/ . In 
replaced by 0 {x- 3/2 Ix' - x[ 3 + x -  5/4 (x' - x) 2} for if 1/29 = O (x-  1/4), both sides 

are exponentially close to 0 or 1. Since ]//v/x' = 1 ~  + 0 (x - 3/2 [ x ' -  x I), 

-- 4 ( Y * ) r  [cx + c2 H2(y*)] 

= --(~(29) [c1+c2H2(29)] ~ 4(3)) [ClHl(.9)+c2H3(29)] 

+ 0 {x- 3/2 [ ( x ' -  x) 2 + I x ' -  x I + 129 ( x ' -  x)[3 } (3.3) 

____} �9 t as x ov with j)= O(~-x) and x - x  = O ( ~ ) .  As in (3.2), O{'} can be replaced 
by O {x- 3/2 (X ' - -  X) 2 -~ X -  5/4 [Xt - -  X [}. Finally, 

, Y 
- -  ~b ( y )  X7 [-C3 H 1  (Y*) AV c4 H 3  (Y*) + c5 H 5  (Y*)-] 

= -dp(.9) V- - [ c3Hx(29)+c4H3(29)§  ( 3 . 4 )  
X 

as x-~oo with 29 = O(]/x) and x ' - x  = O(~x). Integration, after approximating 
the integrands in (3.1) using (3.2)-(3.4), gives 

dx' dy'P(x',y')=Z6qt)@) - d?(CY)Ecl +czH2(29)] 
x-6  - ~  V. V ~ X  

26 r c3+ Hl(29)+c4H3(~)..kcsHs(~) 
X 

-]-O{x-3/2(64-l-63-1-62)-']-X-5/4(63-1-62)}, (3.5) 

as x ~ o o  with 6 = O(]/x). I fx  ~ o o  with 6 = o(]fx), the O{.} term is o{(t +63)/x}. 
Turning to the other terms in Theorem 1.2, ~'c-3(x, y)dy=l/x ,  so with f 

= la ,  
x + 6 + l  

ffrny(x,y, 1)~:-a(x,y)dxdy< ~ dx'/x'=O{(l+6)/x)}, (3.6) 
x - 6 - 1  

as x--,oo with 6=O(]flx). Since ~?(x,y)dy=O(1) as x ~ o o  and sup?(x,y)  
Y 

= O(1/[/x) as x ~ o o ,  

~ (of (x, y, e) ?(x, y)= 0 (e), (3.7) 

as x ~ o o  with 6=O( ] /x )  and e=o(1).  With e = e f = e x p / - r } / ~ ~  this term is 
o(1/x) as x ~ o o  with 6 = o ( I ~  ) since r i >  ~ .  The corollary now follows 
from Theorem 1.2. 
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Theorem 1.4 follows immediately from Theorems 2.1 and 2.5, with G=P*". 
Integrability of ~ and its derivatives follows because the characteristic function 
of a bounded density is square integrable. 

4. Boundary Crossing Problems 

In this section, (Xi, Yi)for i > l  will be i.i.d. P, So= )~ Xi, W,= )s Y~, and t= t  a 
i = I  i = 1  

=inf{n: S, > a}. We will only treat the "positive" case where P(X > 0)= 1. The 
main result is an expansion for the distribution of Wt. 

Theorem 4.1. I f  E IX [a < co, EZ* < co, P (X > O) = 1, and trainer's condition holds, 
then 

P(W, < c)= ~(~,) + q~ (~,)1 / -v [DI +DE/-/2 (~,)] 
I / a  

+ q~ (1~) V [D 3/-/t (/,~) q- D 4 H 3 (if) -1- D s H s (ff)] + o(1/a) 

as a-~oo, uniformly in c, where ~ = ( c - T a ) / l / a ~ ,  K=vy/a, DI=--KM2o,  D2 
= - M o 3 + M t f f 2 ,  D 3 = - M z o / 2 - ~ 2 M 3 o - t c M 2 1 + t c M t l M z o ,  D4=M12/2 
- M z o / 4 - M o 4 - - M ~ f f 2 + M 1 1 M o 3 + ~ M l l M 2 o / 2 - - ~ M o 3 M 2 o ,  and Ds-= 
-- M~1/8 + M , I Mo3/2-- M~3/2. 

Proof Since we are in the positive case, {t = n + 1 } = (S. < a, S. + X.  + 1 > a} (with 
the convention So = 0). So 

P ( W t < c ) =  ~ P(S.<=a,S.+X.+I>a, W.+ Y.+~<c) 
?I=0 

= E g dP*"(s,w) dP( ,y) 
n ~ O  s<=a 

Sq-X>a 
w + y < c  

= I R ( ( a - x ,  a] x ( -  oo, c -y )}  dP(x, y). 

Using the same arguments as those used to prove Corollary 1.3, 

x . . . . .  4,(?) r~x ~ ] 
R {(a--x, a] x (-- oe, c--y)} = v  ~ ' t y ) - f - ~ [ ~ - f f - - x c a  - x c 2  H2 (Y) 

a [ 4 v  6a z ~--2~ [clHl('p)+czH3('9)] 

(4.1) 
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as a ~ o e  with x=o(~ / a ) ,  uniformly for c e R ,  where .~=(C--y--Ta)/Va~2/v. Call 
the approx ima t ion  in this equa t ion /~ (x ,  y). By the o rd inary  renewal theorem, 
for some K, R{ (a -x ,  a] x R } _ _ < K ( l + x )  for all a e R  and  x > 0 .  Since EX3<cc 
and 

E (X; X > b) =< g (X 3; X > b)/b 2, 

we can choose  a sequence b=b, such that  b = o ( ] / a )  and  E(X; X>b)=o(1/a). 
For  this sequence, 

E [R { ( a -  X, a] x ( -  oc, c - Y)}; X > b] = o(1/a) 

as a ~ oo, uniformly for ceR .  By domina ted  convergence and  (4.1), 

E [R {(a-  X, a] x ( -  oo, c-- Y)}; X < b] = E [/~(X, Y); X <b] +o(1/a) 

= E~ (X, Y) + o (1/a) 

as a --+ oe, uniformly in c. N o w  39 = ~ -  y / ~ / v  and Taylor  expansion gives 

~09)=  ~(~)  a]/~/v 2aa2/v 
and 

y Hk + , (~ ) ~(v~) t-o(lyl/]/~) Hk(2) d2(.~) = Hk(~) ~(~) q ~/aa:/v 

as a ~ oe, uniformly in ~. So 

^ v 7EX z 
ER(X, Y):qb( '~)+~)(w)V/~[~va--c l -c2H2(!~)-Ev~-}  ~ 

+ f, eX " 7EX 
Ec, 

-- v c3 H ,  (if)-- v c4 H3 (~) - -  v c5 H 5  (~) 

~EXY 2 ~HI(~)EX 2Y 
2 ~2 2 ~2 

c1 H,(~)EXY c2H3(~)EXY) 
a a -~+o(1/a) 

as a -+ oe uniformly in ~. After some algebra this gives the result in the theorem. 
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