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Abstract. A partition of the positive integers into setsA andB avoidsa setS ⊂ N if no two distinct elements
in the same part have a sum inS. If the partition is unique,S is uniquely avoidable.For any irrationalα > 1,
Chow and Long constructed a partition which avoids the numerators of all convergents of the continued fraction
for α, and conjectured that the setSα which this partition avoids is uniquely avoidable. We prove that the set of
numerators of convergents is uniquely avoidable if and only if the continued fraction forα has infinitely many
partial quotients equal to 1. We also construct the setSα and show that it is always uniquely avoidable.
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1. Introduction

A partition of the positive integers into setsA andB avoidsa setS ⊂ N if no two distinct
elements in the same part have a sum inS. We say thatS is avoidable; if the partition is
unique,S is uniquely avoidable.

The Fibonacci numbers are uniquely avoidable [1]. Generalized Fibonacci sequences
defined by(s1, s2) = 1, sn = sn−1 + sn−2, are also uniquely avoidable provided that
s1 < s2 or 2|s1s2; Alladi, Erdős and Hoggatt [1] proved this fors1 = 1, and Evans [3]
proved the general case. This suggests a connection with continued fractions. Chow and
Long [2] studied this connection, and proved that the set of the numerators of continued-
fraction convergents to any irrationalαwith 1 < α < 2 (easily generalized to any irrational
α) is avoidable, although not necessarily uniquely avoidable. Their partition uses the sets

Aα = {n ∈ N : the integer multiple ofα nearestn is greater thann},
Bα = {n ∈ N : the integer multiple ofα nearestn is less thann}.

Let Sα be the set avoided by the partition{Aα, Bα}. The main results of Chow and Long
are thatSα contains the numerators of all convergents toα, and every other element ofSα
is either the numerator of an intermediate fraction or twice the numerator of a convergent.
They conjectured thatSα was uniquely avoidable.

We give a characterization of a large class of sets which are uniquely avoidable if they
are avoidable at all. We use this to show that the set of numerators of convergents toα is
uniquely avoidable for anyα if and only if infinitely many partial quotients ofα are 1. We
can also use the best approximation property to determineSα precisely, and show thatSα
is uniquely avoidable for any irrationalα > 1.
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matical Sciences Research Institute (MSRI), was supported by NSF Grant DMS-9022140.
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2. Results on continued fractions

We will use some elementary results on continued fractions, as given in [4] for example.
We use the standard notation for continued fractions, in whichα = [a0, a1, . . .], p−2 = 0,
q−2 = 1, p−1 = 1, q−1 = 0, and forn ≥ −1, we havepn+1 = an+1pn + pn−1,
qn+1 = an+1qn+ qn−1. We will study continued fractions in terms of their approximation
properties.

Definition 1. For anyp, let E(p) = p − qα be the error in approximatingp by the
closest multiple ofα. ThusAα is the set of allpwithE(p) < 0 andBα the set of allpwith
E(p) > 0.

The functionE is additive moduloα. Specifically, if |E(x) + E(y)| < α/2, then
E(x+y) = E(x)+E(y); otherwise,E(x+y) = E(x)+E(y)±α. Likewise, if |E(x)−
E(y)| < α/2, thenE(x− y) = E(x)−E(y); otherwise,E(x− y) = E(x)−E(y)± α.
In particular, ifE(x) andE(y) have opposite signs,E(x+y) = E(x)+E(y); if they have
the same sign,E(x − y) = E(x) − E(y). Repeated application of additivity shows that
E(kx) is congruent tokE(x) moduloα, and ifk|E(x)| < α/2, thenE(kx) = kE(x).

We can restate several elementary results on continued fractions in terms ofE. The best
approximation property of convergents is that|E(x)| < |E(y)| for all positive integers
y < x if and only if x is the numerator of a convergent. The property that alternate
convergents approachα from opposite sides is thatE(pn) < 0 for n even andE(pn) > 0
for n odd. The property that|α − pn/qn| < 1/(qnqn+1) is that|E(pn)| < 1/qn+1. The
coefficientsan+1 of the continued fraction are defined byE((an+1 + 1)pn + pn−1) < 0 ≤
E(an+1pn + pn−1) < E(pn−1) if n is even, and the reverse ifn is odd.

We can use this property|an+1E(pn)| < |E(pn−1)| < |(an+1 + 1)E(pn)| to show
that |kE(pn)| < |E(pn−1)| < α/2 for all k with 0 ≤ k ≤ an+1; it thus follows that
E(kpn) = kE(pn) if 0 ≤ k ≤ an+1.

The properties ofE give us the following characterization of those numbers which can
be approximated well by multiples ofα; this lemma appears in similar form in [2].

Lemma 1 If p < pn+1 and |E(p)| < |E(pn−1)|, then p is eitherkpn or the numerator
kpn + pn−1 of an intermediate fraction for somek ∈ N.

Proof: For simplicity of notation, we will assumen is odd, so thatE(pn) > 0. If
E(p) > 0, then let

k = min
(⌊

E(p)
E(pn)

⌋
,

⌊
p

pn

⌋)
.

Then p′ = p − kpn still satisfies0 ≤ E(p′) < |E(pn−1)| since 0 < kE(pn) =
E(kpn) ≤ E(p). If k = bp/pnc, thenp′ < pn, but no positivep′ < pn can have
0 ≤ E(p′) < |E(pn−1)|, by the best approximation property ofpn−1. Otherwise, we have
k = bE(p)/E(pn)c and thus0 ≤ E(p′) = E(p) − kE(pn) < E(pn), but no positive
p′ < pn+1 can have0 ≤ E(p′) < E(pn). Thus, in either case, we must havep′ = 0 and
p = kpn.
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If E(p) < 0, then sinceE(pn−1) is also negative, we haveE(p − pn−1) = E(p) −
E(pn−1), which is between0 and−E(pn−1), so we can apply the above result top−pn−1.

We will often need to use the following generalization of this lemma to cases withp >
pn+1.

Lemma 2 If |E(p)| < |E(pn−1)|, thenp = ipn−1 + jpn, wherei andj are non-negative
integers andi ≤ dp/pn+1e.
Proof: We again assumen is odd, so thatE(pn+1) < 0 < E(pn). The proof is by
induction onp. The previous lemma proves the casep < pn+1. If E(p) > 0, then we write
p = p′ + pn, which givesE(p′) = E(p)−E(pn). SinceE(p′) < E(p) < |E(pn−1)| and
E(p′) > −E(pn) > −|E(pn−1)|, we can apply the lemma inductively top′. If E(p) < 0,
then we writep = p′+pn+1 = p′+pn−1+an+1pn, which givesE(p′) = E(p)−E(pn+1).
SinceE(p′) > E(p) > −|E(pn−1)| andE(p′) < E(pn+1) < |E(pn−1)|, we can apply
the lemma inductively top′, with dp′/pn+1e = dp/pn+1e − 1.

To simplify the arguments, we will assume1 < α < 2; the following lemma shows that
our results generalize to arbitraryα.

Lemma 3 If 1 < α < 2 andα′ = α/(α−1), thenα′ andαhave the same set of numerators
of convergents, the same set of numerators of intermediate fractions, and complementary
partitions withAα = Bα′ (so thatSα = Sα′ ).

Proof: We haveα = [1, a1, a2, . . .], andα′ = [a1 + 1, a2, . . .]. Thusα′ andα have the
same numerators of convergents;p0,α′ = p1,α = a1 + 1, and the lost numeratorp0,α = 1
appears asp−1,α′ . The numerators of intermediate fractions betweenp0,α = p−1,α′ = 1
andp1,α = p0,α′ = a1 + 1 are all the integers in this interval. Thus the sets ofpn and of
numerators of intermediate fractions forα andα′ are the same.

If m ∈ Aα, then(k−1/2)α < m < kα for somek; in other words,k−1/2 < m/α < k.
Since1/α + 1/α′ = 1, this gives usk − 1/2 < m−m/α′ < k. Multiplying through by
−α′ gives(−k + 1/2)α′ > mα′ −m > −kα′. Sincem is an integer, we can write this
as(m − k + 1/2)α′ > m > (m − k)α′, which shows thatm ∈ Bα′ . ThusAα = Bα′ .

3. Characterization ofS�

The characterization ofAα andBα in terms ofE gives a natural characterization of the
avoided setSα in terms ofE, which we can then use to characterizeSα in terms of the
convergents and intermediate fractions.

Theorem 1 If E(x) > 0, thenx ∈ Sα if and only if there is no evenz < 2x with
0 < E(z) < E(x); likewise, ifE(x) < 0, thenx ∈ Sα if and only if there is no even
z < 2x with 0 > E(z) > E(x).

Proof: Takex /∈ Sα; that is,x = y1 + y2 for somey1 6= y2 with y1 andy2 either both in
Aα or both inBα. Assume for simplicity of notation thatE(x) > 0.
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First, supposey1, y2 ∈ Aα, so thatE(y1) andE(y2) are both negative. SinceE(x) =
E(y1 + y2) > 0, we must haveE(y1 + y2) = E(y1) + E(y2) + α. It thus follows
thatE(y1) + α/2 andE(y2) + α/2, which are both positive, must be less thanE(x).
Let E(y1) + α/2 be the smaller of the two; they are not equal sincey1 6= y2. We have
E(y1) < E(x)/2 − α/2 < −α/4. We can thus takez = 2y1, which givesE(z) =
E(2y1) = 2E(y1) + α, and thus0 < E(z) < E(y1) + E(y2) + α = E(x), proving the
theorem in this case.

Similarly, supposey1, y2 ∈ Bα, so thatE(y1) andE(y2) are both positive. Since
E(x) = E(y1 + y2) > 0 is positive, we must haveE(y1 + y2) = E(y1) + E(y2), not
E(y1 + y2) = E(y1) +E(y2)−α. LetE(y1) be the smaller ofE(y1) andE(y2); they are
not equal sincey1 6= y2. We haveE(y1) < E(x)/2 < α/4. We can thus takez = 2y1,
which gives0 < E(z) = 2E(y1) < E(y1) + E(y2) = E(x), proving the theorem in this
case.

Each of the the two above arguments can be read bottom to top, together showing that if
there is an evenz < 2x with 0 < E(z) < E(x), we can takey1 = z/2 andy2 = x− y1,
getting a sum which shows thatx 6= Sα. This proves the theorem forE(x) > 0; the case
E(x) < 0 is analogous.

Settingy = y1 in the proof of Theorem 1 gives us the following lemma. It is usually
easier to use the theorem to show that a particularx does not occur as a sum, and the lemma
to show that it does occur. Note that, ifx occurs as a sum, theny is one of the two addends.

Lemma 4 If E(x) > 0, thenx ∈ Sα if and only if there is noy < x with y 6= x/2
and either0 < E(y) < E(x) or 0 < E(y) + α/2 < E(x); likewise, ifE(x) < 0, then
x ∈ Sα if and only if there is noy < x with y 6= x/2 and either0 > E(y) > E(x) or
0 > E(y)− α/2 > E(x).

The following two theorems, the main theorems of [2], follow immediately from Lemma 4
and Theorem 1.

Theorem 2 The numeratorpn of every convergent is inSα.

Proof: We apply Theorem 1 tox = pn, looking for z with 0 < E(z) < E(pn) or
0 > E(z) > E(pn). We cannot havez = pn+1 because this would giveE(z) andE(pn)
opposite signs. Any otherz with |E(z)| < |E(pn)| is at leastpn + pn+1 by Lemma 1,
which is larger than2pn and thus too large.

Theorem 3 If p ∈ Sα, thenp is either the numeratorpn of a convergent, twice the
numerator of a convergent, or the numeratorpn−1 + kpn of an intermediate fraction.

Proof: If p is not the numerator of a convergent, thenpn < p < pn+1 for somen and
|E(p)| > |E(pn)|. As in Lemma 1, we assume thatn is odd for simplicity of notation (so
E(pn) > 0). If 0 < E(pn) < E(p), then we can takey = pn in Lemma 4 unlessp = 2pn.
If E(p) < E(pn−1) < 0, then we can takey = pn−1 in Lemma 4 unlessp = 2pn−1.
Otherwise, we haveE(pn−1) < E(p) < E(pn), which implies|E(p)| < |E(pn−1)|.
By Lemma 1, this implies thatp is either the numerator of an intermediate fraction or
kpn for somek. In this case,p must be the numerator of an intermediate fraction; if we
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had insteadp = kpn, we would havek ≤ an+1 to havep < pn+1, and we know that
for all suchk, E(kpn) = kE(pn) ≥ E(pn) rather than theE(p) < E(pn) we need.

The cases which are not resolved by these two theorems can be checked similarly.

Theorem 4 For pn the numerator of a convergent,2pn is in Sα if and only ifpn is odd,
and either (i)pn+1 is odd andan+1 ≥ 3, or (ii) pn+1 is even andan+1 ≥ 2, or (iii) pn = 1.

Proof: We first assume|E(pn)| < α/4, soE(2pn) = 2E(pn); we will deal with the
special case|E(pn)| > α/4 at the end. In the general case, we will again assume thatn is
odd (and thusE(pn) > 0) for simplicity of notation.

We will apply Theorem 1 tox = 2pn. If pn is even, then we can takez = pn, which has
E(z) = E(pn) < E(2pn) and thus2pn /∈ Sα.

If pn is odd, Theorem 1 says thatx 6= Sα if and only if there is an evenz < 4pn
with 0 < E(z) < 2E(pn) = E(2pn). If E(z) > E(pn) with z < pn, then we apply
Lemma 2 to2pn − z, which has0 < E(2pn − z) = E(2pn) − E(z) < E(pn), and
use2pn − z instead ofz in this argument; we may thus assume eitherE(z) < E(pn) or
z > pn. If E(z) < E(pn), we can apply Lemma 2 toz to getz = ipn + jpn+1; let
z′ = z. If E(z) > E(pn) with z > pn, then we can apply Lemma 2 toz′ = z − pn,
which has0 < E(z − pn) = E(z) − E(pn) < E(pn), to showz′ = (i − 1)pn + jpn+1

for i ≥ 1. Thus, in any of these cases, we can writez = ipn + jpn+1, for somei, j ≥ 0,
andz′ = i′pn + jpn−1 for i′ = i or i′ = i − 1. Sincez andz′ are both less than4pn,
i + j ≤ 3; we have the additional conditions thatz is even and not equal to2pn, and
0 < E(z′) < E(pn) while we have only0 < E(z) < 2E(pn). The existence ofz implies
the existence ofz′, but not vice versa; thus we can showx ∈ Sα by showing eitherz or z′

cannot satisfy these conditions, but must findz to show thatx /∈ Sα.
We can exclude all cases excepti = 1 or 2,j = 1. If i = 0, then we also havei′ = 0, and

z = z′ = jpn+1; we thus need0 < E(z) < E(pn). Note that|E(pn+1)| < |E(pn)| by
the best approximation property. If|E(pn+1)| < α/6, thenj = 1 givesE(z) = E(pn+1),
j = 2 givesE(z) = E(2pn+1) = 2E(pn+1) and j = 3 givesE(z) = E(3pn+1) =
3E(pn+1), all of which are negative, but we needE(z) > 0. If α/6 < |E(pn+1)| < α/4,
thenj = 1 andj = 2 giveE(z) < 0 as before, whilej = 3 givesE(z) = E(3pn+1) =
α + 3E(pn+1) > α − 3α/4 = α/4, but we needE(z) < E(pn) < α/4. Thusi = 0 is
impossible.

If j = 0 or j = 2, then sincepn is odd,i must also be even to give evenz; thusj = 2
requiresi = 0 and thusi′ = 0, andj = 0 requiresi = 2 andz = 2pn, which is forbidden.
The casej = 3 also requiresi = 0, which leaves onlyj = 1.

If j = 1, the conditionz < 4pn is equivalent toi < 3− an+1, sincez = pn+1 + ipn =
pn−1 + an+1pn + ipn, andpn−1 < pn for pn 6= 1. We also need to check thatz is even;
it is even ifpn+1 is odd andi = 1, or pn+1 is even andi = 2. Thus, in case (i) or (ii), we
cannot get any evenz < 4pn, and thusx ∈ Sα.

If we are not in case (i) or (ii), we do get0 < E(z) < 2E(pn) and thus can run this
argument in reverse to show that2pn /∈ Sα. BothE(pn) andE(2pn) = 2E(pn) are positive,
andE(pn+1) is negative but greater than−E(pn); we thus have0 < E(pn + pn+1) <
E(2pn + pn+1) < 2E(pn) = E(x), as required. Thusz = pn + pn+1 or z = 2pn + pn+1
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can be used in Theorem 1, provided that it is even and less than4pn, which is exactly
the condition that we are not in case (i) or (ii). This proves the theorem in the case
|E(pn)| < α/4.

We now need to check the special cases with|E(pn)| > α/4. Recall that we may assume
α < 2. Since|E(pn)| < 1/qn+1, there can only be problems ifqn+1 ≤ 3, which implies
qn ≤ 2; thus the only possiblepn/qn are1/1, 2/1, and3/2. Case (iii) coverspn = 1; 2
cannot occur as a sum of any two distinct positive integers. Ifpn/qn = 2/1 is a convergent,
then3/2 < α < 2; the theorem says that the sum of 4 should occur sincepn = 2 is
even. We have1 ∈ Aα becauseα/2 < 1 < α, and3 ∈ Aα because3α/2 < 3 < 2α;
thus the sum of 4 occurs as1 + 3. If pn/qn = 3/2 is a convergent, then4/3 < α < 2
andqn+1 ≥ 3; we thus have|E(pn)| < 1/3 < α/4, so the special case does not occur.

Theorem 5 The numeratorx = pn + kpn+1 of an intermediate fraction is inSα if and
only if either (i) pn+1 is even, or (ii)k = 1 and pn is odd, or (iii) k = an+2 − 1 (i.e.,
x = pn+2 − pn+1) andpn+2 is odd.

Proof: As in the previous proof, we will assume|E(pn)| < α/3, proving the special case
|E(pn)| > α/3 at the end, and assume in the general case thatn is odd (soE(pn) > 0) for
simplicity of notation.

Recall thatpn+2 = pn+an+2pn+1, and0 < E(pn+2) < E(pn). Sincex is the numerator
of an intermediate fraction withk < an+2, we have0 < −E(pn+1) < E(x) < E(pn).
We can apply Theorem 1 to see whetherx ∈ Sα; it is not inSα if and only if there is an
evenz < 2x with 0 < E(z) < E(x) = E(pn) + kE(pn+1). Since0 < E(z) < E(pn)
andz < 2x < 2pn+2, we can apply Lemma 2 to writez = ipn + jpn+1 with i ≤ 2, and
i = 2 is possible only ifz > pn+2. We will excludei = 0 andi = 2, and then show that
we can findz with i = 1 if any only if none of the three conditions (i)-(iii) hold.

For all three values ofi, we will use similar properties ofmE(pn+1) for 0 ≤ m ≤ 2an+2.
By the properties of the continued fraction,E(pn) + (an+2 + 1)E(pn+1) < 0 < E(pn) +
an+2E(pn+1), which gives−an+2E(pn+1) < E(pn). Therefore,mE(pn+1) is between
−2E(pn) and 0. In addition,E(pn)+mE(pn+1) is between−E(pn) andE(pn) (and thus
between−α/2 andα/2), so we haveE(pn +mpn+1) = E(pn) +mE(pn+1) rather than
the two sides differing by a multiple ofα. In particular,E(pn + mpn+1) is a decreasing
function ofm for 0 ≤ m ≤ 2an+2, sinceE(pn+1) is negative.

We first exclude the casei = 0. Since we needz < 2x = 2pn+2kpn+1 < (2k+2)pn+1,
we must havej ≤ 2k + 1. Sincek < an+2, we havej < 2an+2, and thusj|E(pn+1)| <
2E(pn), which in turn is at most2α/3 sinceE(pn) < α/3. If j|E(pn+1)| < α/2, then
we haveE(z) = E(jpn+1) = jE(pn+1), which is negative, but we needE(z) > 0. If
α/2 < j|E(pn+1)| < 2α/3, thenE(z) = E(jpn+1) = α + jE(pn+1) > α/3, but we
needE(z) < E(x) < E(pn) < α/3. Thusi = 0 is impossible.

We can also excludei = 2. By Lemma 2, this case is only possible ifz > pn+2. We have
j ≥ an+2 sincez > pn+2, andj < 2k < 2an+2 sincez < 2x < 2pn + 2kpn+1 < 2pn+2.
Since we needE(z) > 0 and we haveE(pn+2) > 0, we can writeE(z) > E(z) −
E(pn+2) = E(z− pn+2) = E(pn + (j− an+2)pn+1); thus, if we haveE(z) < E(x), we
also haveE(pn+(j−an+2)pn+1) < E(x). SinceE(pn+mpn+1) is a decreasing function
ofm for 0 ≤ m ≤ 2an+2, we can only haveE(pn+(j−an+2)pn+1) < E(pn+kpn+1) =
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E(x) if j − an+2 > k. But this violates the conditionj < 2k, which we needed in order
to havez < 2x. Thusi = 2 is also impossible.

Thus the only possibility isi = 1, which givesz = pn+ jpn+1. The bound onj given by
z < 2x is nowj ≤ 2k sincepn+2kpn+1 < 2x = 2pn+2kpn+1 < pn+(2k+1)pn+1. We
again use the fact thatE(pn +mpn+1) is a decreasing function ofm for 0 ≤ m ≤ 2an+2.
This givesE(z) < E(x) for j > k (that is, forz > x), andE(z) > 0 for j ≤ an+2. Any
j which meets these three conditions gives az we can use in Theorem 1 provided thatz is
even.

If pn+1 is even, thenpn is odd (since the numerators of consecutive convergents are
relatively prime), and thus no choice ofj gives evenz; this is case (i). Ifpn+1 is odd and
k = 1, the only choice allowed isj = 2; any otherj givesz > 2x. Thisz = pn + 2pn+1 is
odd ifpn is odd and even ifpn is even; this covers case (ii). Ifpn+1 is odd andk = an+2−1,
the only choice allowed isj = an+2 = k + 1; any smallerj givesE(z) ≥ E(x) and any
largerj givesE(z) < 0. This givesz = pn+2; this covers case (iii). Ifpn+1 is odd and
we have any otherk, we can take eitherj = k + 1 or j = k + 2; one of these will givez
even. Thus we have found az that we can use in Theorem 1 if case (i), (ii), or (iii) does not
occur, and shown that there is no suchz if one of these three cases does occur.

We now deal with the special cases with|E(pn)| > α/3, and show that the theorem
is still valid as stated in these cases. Recall that we may assumeα < 2, and that the
approximation properties give|E(pn)| < 1/qn+1. Thus|E(pn)| > α/3 requiresqn+1 ≤ 2
and thusqn = 1; the possible convergents are1/1 and2/1. If pn/qn = 1/1, thenn = 1,
and|E(p1)| > α/3 only forα > 3/2. For suchα, the next convergent is2/1, with a2 = 1
andp2 = 2, so the theorem says that all the numerators of intermediate fractions, which
are all oddx < 2a3 + 1, are inSα by case (i). We have2 − 1/(a3 + 1) < α < 2 since
(2a3 + 1)/(a3 + 1) is the next convergent. Thus, ifj = 2k ≤ 2a3 is even, then

kα < 2k = j < (2k + 1)− (2k + 1)/(2a3 + 2) < (k + 1/2)α,

and thusj ∈ Bα; if j = 2k + 1 ≤ 2a3 + 1 is odd, then

(k + 1/2)α < 2k + 1 = j < (2k + 2)− (k + 1)/(a3 + 1) < (k + 1)α,

and thusj ∈ Aα. Thus no odd number less than2a3 +1 can occur as a sum of two elements
from the same set, as required by the theorem.

The otherpn/qn which could give the special case ispn/qn = 2/1, but this is only a
convergent toα if α > 3/2, which implies|E(2)| < 1/2 < α/3. Thus the special case
does not apply here.

Theorems 2, 3, 4, and 5 give the complete characterization of the avoided setSα.

4. Uniquely avoidable sets

The most natural characterization of unique avoidability is the graph-theoretic characteri-
zation of [1]. If S ⊂ N, then thegraphG(S) of S is the graph with vertex setN and an
edge betweenx andy if x 6= y andx+y ∈ S. A partition which avoidsS is a 2-coloring of
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G(S), and thusS is avoidable if and only ifG(S) is bipartite, andS is uniquely avoidable
if and only ifG(S) is bipartite and connected.

Note that, ifa ∈ S andx < a, thenx anda− x are in the same connected component of
G(S); eitherx = a− x, or x 6= a− x and their sum isa. Thus, for everyx < a, if a and
a+ b ∈ S, thenx andx+ b are in the same connected component asx− a, and thus in the
same component. This allows us to prove the following result.

Theorem 6 If S containsa, b, anda+ b with (a, b) = 1 (or, more generally, if there are
somea′ ≥ a andb′ ≥ b for which S containsa′, a′+b, b′, anda+b′), then all numbers less
thana+b are in the same connected component ofG(S). If S contains infinitely many such
subsets, thenG(S) is connected, and thereforeS is uniquely avoidable if it is avoidable at
all.

Proof: By the above argument,n andn − a are in the same connected component for
a < n ≤ a+ b (and even forn ≤ a+ b′ in the more general case), andn andn− b are in
the same connected component ifb < n ≤ a+ b (or n ≤ a′ + b).

Assumea < b. By the Chinese Remainder Theorem, any integerm can be uniquely
writtenm = xa − yb for 0 ≤ y ≤ a − 1; if 0 < m < a + b, then1 ≤ x ≤ b. We prove
connectivity for0 < m < a+ b by induction onx+ y. The base case ism = a, in which
x + y = 1. For any otherm, if m > a, thenm andm − a are in the same component; if
m < a, thenm andm + b are in the same component. Thus by induction, everym is in
the same component asa.

For example, ifa = 5, b = 8, andm = 1 = 5a − 3b, we have that 1 is in the same
connected component as1 + 8 = 9, 9 − 5 = 4, 4 + 8 = 12, 12 − 5 = 7, 7 − 5 = 2,
2 + 8 = 10, and finally10− 5 = 5.

Our main results on unique avoidability follow.

Theorem 7 The set of numerators of convergents ofα is uniquely avoidable if and only
if infinitely many partial quotientsan are 1.

Proof: If infinitely many an are 1, then we can apply Theorem 6 topn−2, pn−1, and
pn = pn−2 + pn−1 to show that the graph is connected, and we have already shown that
the set of numerators is avoidable.

If only finitely manyan are 1, then there is someN such that for anyn > N we have
pn > 2pn−1. Thus, regardless of the partition of integers less thanpn−1, we can extend the
partition up to integers less thanpn by placing integers frompn−1 to bpn/2c arbitrarily, and
placingx in the set which does not containpn − x for bpn/2c < x < pn. We will never
reach a contradiction becausex > pn−1 and we thus have only one constraint in placingx.
We can continue inductively for alln.

Theorem 8 The setSα avoided by the partitionAα, Bα is uniquely avoidable for any
irrational α > 1.

Proof: If pn+1 is even, thenpn + pn+1 is eitherpn+2 or the numerator of an intermediate
fraction, and if it is the numerator of an intermediate fraction, it is inSα by case (i) of
Theorem 5. Ifpn+1 is odd, thenpn+1 − pn is eitherpn−1 or the numeratorpn−1 +
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(an+1 − 1)pn of an intermediate fraction, and if it is the numerator of an intermediate
fraction, it is inSα by case (iii) of Theorem 5. In either case, we can apply Theorem 6 to
pn, pn+1, pn+pn+1 orpn, pn+1−pn, pn+1 for alln to show thatSα is uniquely avoidable.

The unique avoidability of generalized Fibonacci sequences starting with arbitrary rel-
atively primes1, s2 [3] follows as a special case of these results. Ifs1 < s2, we can let
s1 ands2 be the numeratorspn−1 andpn of two consecutive convergents; we can do this
by backward induction, lettingak = bpk/pk−1c, pk−2 = pk − akpk−1 until we reach
p0 = 1 [2]. Let am = 1 for all m > n, so thatsi = pi+n−2, and apply Theorem 7. If
s1 > s2, we can letpn = s2, pn+1 = s1 + s2; the set of all thesi other thans1 is thus
uniquely avoidable, ands1 is the intermediate fractionpn+1−pn, which is an avoided sum
by case (i) of Theorem 5 ifs2 = pn is even and by case (iii) of Theorem 5 ifs1 +s2 = pn+1

is odd. Thus the sequence ofsi is uniquely avoidable ifs1 < s2 or eithers1 or s2 is even,
and not avoidable at all otherwise.
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