Continued Fractions and Unique Additive Partitions

DAVID J. GRABINER* grabiner@math.lsa.umich.edu Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1109

Received April 29, 1997; Accepted April 23, 1997

Abstract. A partition of the positive integers into sets A and B avoids a set $S \subset \mathbb{N}$ if no two distinct elements in the same part have a sum in S. If the partition is unique, S is *uniquely avoidable*. For any irrational $\alpha > 1$, Chow and Long constructed a partition which avoids the numerators of all convergents of the continued fraction for α , and conjectured that the set S_{α} which this partition avoids is uniquely avoidable. We prove that the set of numerators of convergents is uniquely avoidable if and only if the continued fraction for α has infinitely many partial quotients equal to 1. We also construct the set S_{α} and show that it is always uniquely avoidable.

Keywords: additive partition, best approximation, continued fraction, uniquely avoidable set

1991 Mathematics Classification: Primary – 11P81; Secondary – 05C40, 11J70

1. Introduction

A partition of the positive integers into sets A and B avoids a set $S \subset \mathbb{N}$ if no two distinct elements in the same part have a sum in S. We say that S is avoidable; if the partition is unique, S is uniquely avoidable.

The Fibonacci numbers are uniquely avoidable [1]. Generalized Fibonacci sequences defined by $(s_1, s_2) = 1$, $s_n = s_{n-1} + s_{n-2}$, are also uniquely avoidable provided that $s_1 < s_2$ or $2|s_1s_2$; Alladi, Erdős and Hoggatt [1] proved this for $s_1 = 1$, and Evans [3] proved the general case. This suggests a connection with continued fractions. Chow and Long [2] studied this connection, and proved that the set of the numerators of continued-fraction convergents to any irrational α with $1 < \alpha < 2$ (easily generalized to any irrational α) is avoidable, although not necessarily uniquely avoidable. Their partition uses the sets

- $A_{\alpha} = \{n \in \mathbb{N} : \text{the integer multiple of } \alpha \text{ nearest } n \text{ is greater than } n\},\$
- $B_{\alpha} = \{n \in \mathbb{N} : \text{the integer multiple of } \alpha \text{ nearest } n \text{ is less than } n\}.$

Let S_{α} be the set avoided by the partition $\{A_{\alpha}, B_{\alpha}\}$. The main results of Chow and Long are that S_{α} contains the numerators of all convergents to α , and every other element of S_{α} is either the numerator of an intermediate fraction or twice the numerator of a convergent. They conjectured that S_{α} was uniquely avoidable.

We give a characterization of a large class of sets which are uniquely avoidable if they are avoidable at all. We use this to show that the set of numerators of convergents to α is uniquely avoidable for any α if and only if infinitely many partial quotients of α are 1. We can also use the best approximation property to determine S_{α} precisely, and show that S_{α} is uniquely avoidable for any irrational $\alpha > 1$.

^{*} Supported by an NSF Postdoctoral Fellowship. Some of this work which was done while visiting the Mathematical Sciences Research Institute (MSRI), was supported by NSF Grant DMS-9022140.

2. Results on continued fractions

We will use some elementary results on continued fractions, as given in [4] for example. We use the standard notation for continued fractions, in which $\alpha = [a_0, a_1, ...], p_{-2} = 0$, $q_{-2} = 1, p_{-1} = 1, q_{-1} = 0$, and for $n \ge -1$, we have $p_{n+1} = a_{n+1}p_n + p_{n-1}$, $q_{n+1} = a_{n+1}q_n + q_{n-1}$. We will study continued fractions in terms of their approximation properties.

Definition 1. For any p, let $E(p) = p - q\alpha$ be the error in approximating p by the closest multiple of α . Thus A_{α} is the set of all p with E(p) < 0 and B_{α} the set of all p with E(p) > 0.

The function E is additive modulo α . Specifically, if $|E(x) + E(y)| < \alpha/2$, then E(x+y) = E(x) + E(y); otherwise, $E(x+y) = E(x) + E(y) \pm \alpha$. Likewise, if $|E(x) - E(y)| < \alpha/2$, then E(x-y) = E(x) - E(y); otherwise, $E(x-y) = E(x) - E(y) \pm \alpha$. In particular, if E(x) and E(y) have opposite signs, E(x+y) = E(x) + E(y); if they have the same sign, E(x-y) = E(x) - E(y). Repeated application of additivity shows that E(kx) is congruent to kE(x) modulo α , and if $k|E(x)| < \alpha/2$, then E(kx) = kE(x).

We can restate several elementary results on continued fractions in terms of E. The best approximation property of convergents is that |E(x)| < |E(y)| for all positive integers y < x if and only if x is the numerator of a convergent. The property that alternate convergents approach α from opposite sides is that $E(p_n) < 0$ for n even and $E(p_n) > 0$ for n odd. The property that $|\alpha - p_n/q_n| < 1/(q_nq_{n+1})$ is that $|E(p_n)| < 1/q_{n+1}$. The coefficients a_{n+1} of the continued fraction are defined by $E((a_{n+1}+1)p_n+p_{n-1}) < 0 \le E(a_{n+1}p_n+p_{n-1}) < E(p_{n-1})$ if n is even, and the reverse if n is odd.

We can use this property $|a_{n+1}E(p_n)| < |E(p_{n-1})| < |(a_{n+1}+1)E(p_n)|$ to show that $|kE(p_n)| < |E(p_{n-1})| < \alpha/2$ for all k with $0 \le k \le a_{n+1}$; it thus follows that $E(kp_n) = kE(p_n)$ if $0 \le k \le a_{n+1}$.

The properties of E give us the following characterization of those numbers which can be approximated well by multiples of α ; this lemma appears in similar form in [2].

LEMMA 1 If $p < p_{n+1}$ and $|E(p)| < |E(p_{n-1})|$, then p is either kp_n or the numerator $kp_n + p_{n-1}$ of an intermediate fraction for some $k \in \mathbb{N}$.

Proof: For simplicity of notation, we will assume n is odd, so that $E(p_n) > 0$. If E(p) > 0, then let

$$k = \min\left(\left\lfloor \frac{E(p)}{E(p_n)} \right\rfloor, \left\lfloor \frac{p}{p_n} \right\rfloor\right).$$

Then $p' = p - kp_n$ still satisfies $0 \le E(p') < |E(p_{n-1})|$ since $0 < kE(p_n) = E(kp_n) \le E(p)$. If $k = \lfloor p/p_n \rfloor$, then $p' < p_n$, but no positive $p' < p_n$ can have $0 \le E(p') < |E(p_{n-1})|$, by the best approximation property of p_{n-1} . Otherwise, we have $k = \lfloor E(p)/E(p_n) \rfloor$ and thus $0 \le E(p') = E(p) - kE(p_n) < E(p_n)$, but no positive $p' < p_{n+1}$ can have $0 \le E(p') < E(p_n)$. Thus, in either case, we must have p' = 0 and $p = kp_n$.

If E(p) < 0, then since $E(p_{n-1})$ is also negative, we have $E(p - p_{n-1}) = E(p) - E(p_{n-1})$, which is between 0 and $-E(p_{n-1})$, so we can apply the above result to $p - p_{n-1}$.

We will often need to use the following generalization of this lemma to cases with $p > p_{n+1}$.

LEMMA 2 If $|E(p)| < |E(p_{n-1})|$, then $p = ip_{n-1} + jp_n$, where *i* and *j* are non-negative integers and $i \leq \lfloor p/p_{n+1} \rfloor$.

Proof: We again assume *n* is odd, so that $E(p_{n+1}) < 0 < E(p_n)$. The proof is by induction on *p*. The previous lemma proves the case $p < p_{n+1}$. If E(p) > 0, then we write $p = p' + p_n$, which gives $E(p') = E(p) - E(p_n)$. Since $E(p') < E(p) < |E(p_{n-1})|$ and $E(p') > -E(p_n) > -|E(p_{n-1})|$, we can apply the lemma inductively to p'. If E(p) < 0, then we write $p = p' + p_{n+1} = p' + p_{n-1} + a_{n+1}p_n$, which gives $E(p') = E(p) - E(p_{n+1})$. Since $E(p') > E(p) > -|E(p_{n-1})|$ and $E(p') < E(p_{n+1}) < |E(p_{n-1})|$, we can apply the lemma inductively to p', with $\lceil p'/p_{n+1} \rceil = \lceil p/p_{n+1} \rceil - 1$.

To simplify the arguments, we will assume $1 < \alpha < 2$; the following lemma shows that our results generalize to arbitrary α .

LEMMA 3 If $1 < \alpha < 2$ and $\alpha' = \alpha/(\alpha-1)$, then α' and α have the same set of numerators of convergents, the same set of numerators of intermediate fractions, and complementary partitions with $A_{\alpha} = B_{\alpha'}$ (so that $S_{\alpha} = S_{\alpha'}$).

Proof: We have $\alpha = [1, a_1, a_2, ...]$, and $\alpha' = [a_1 + 1, a_2, ...]$. Thus α' and α have the same numerators of convergents; $p_{0,\alpha'} = p_{1,\alpha} = a_1 + 1$, and the lost numerator $p_{0,\alpha} = 1$ appears as $p_{-1,\alpha'}$. The numerators of intermediate fractions between $p_{0,\alpha} = p_{-1,\alpha'} = 1$ and $p_{1,\alpha} = p_{0,\alpha'} = a_1 + 1$ are all the integers in this interval. Thus the sets of p_n and of numerators of intermediate fractions for α and α' are the same.

If $m \in A_{\alpha}$, then $(k-1/2)\alpha < m < k\alpha$ for some k; in other words, $k-1/2 < m/\alpha < k$. Since $1/\alpha + 1/\alpha' = 1$, this gives us $k - 1/2 < m - m/\alpha' < k$. Multiplying through by $-\alpha'$ gives $(-k + 1/2)\alpha' > m\alpha' - m > -k\alpha'$. Since m is an integer, we can write this as $(m - k + 1/2)\alpha' > m > (m - k)\alpha'$, which shows that $m \in B_{\alpha'}$. Thus $A_{\alpha} = B_{\alpha'}$.

3. Characterization of S_{α}

The characterization of A_{α} and B_{α} in terms of E gives a natural characterization of the avoided set S_{α} in terms of E, which we can then use to characterize S_{α} in terms of the convergents and intermediate fractions.

THEOREM 1 If E(x) > 0, then $x \in S_{\alpha}$ if and only if there is no even z < 2x with 0 < E(z) < E(x); likewise, if E(x) < 0, then $x \in S_{\alpha}$ if and only if there is no even z < 2x with 0 > E(z) > E(x).

Proof: Take $x \notin S_{\alpha}$; that is, $x = y_1 + y_2$ for some $y_1 \neq y_2$ with y_1 and y_2 either both in A_{α} or both in B_{α} . Assume for simplicity of notation that E(x) > 0.

First, suppose $y_1, y_2 \in A_\alpha$, so that $E(y_1)$ and $E(y_2)$ are both negative. Since $E(x) = E(y_1 + y_2) > 0$, we must have $E(y_1 + y_2) = E(y_1) + E(y_2) + \alpha$. It thus follows that $E(y_1) + \alpha/2$ and $E(y_2) + \alpha/2$, which are both positive, must be less than E(x). Let $E(y_1) + \alpha/2$ be the smaller of the two; they are not equal since $y_1 \neq y_2$. We have $E(y_1) < E(x)/2 - \alpha/2 < -\alpha/4$. We can thus take $z = 2y_1$, which gives $E(z) = E(2y_1) = 2E(y_1) + \alpha$, and thus $0 < E(z) < E(y_1) + E(y_2) + \alpha = E(x)$, proving the theorem in this case.

Similarly, suppose $y_1, y_2 \in B_\alpha$, so that $E(y_1)$ and $E(y_2)$ are both positive. Since $E(x) = E(y_1 + y_2) > 0$ is positive, we must have $E(y_1 + y_2) = E(y_1) + E(y_2)$, not $E(y_1 + y_2) = E(y_1) + E(y_2) - \alpha$. Let $E(y_1)$ be the smaller of $E(y_1)$ and $E(y_2)$; they are not equal since $y_1 \neq y_2$. We have $E(y_1) < E(x)/2 < \alpha/4$. We can thus take $z = 2y_1$, which gives $0 < E(z) = 2E(y_1) < E(y_1) + E(y_2) = E(x)$, proving the theorem in this case.

Each of the two above arguments can be read bottom to top, together showing that if there is an even z < 2x with 0 < E(z) < E(x), we can take $y_1 = z/2$ and $y_2 = x - y_1$, getting a sum which shows that $x \neq S_{\alpha}$. This proves the theorem for E(x) > 0; the case E(x) < 0 is analogous.

Setting $y = y_1$ in the proof of Theorem 1 gives us the following lemma. It is usually easier to use the theorem to show that a particular x does not occur as a sum, and the lemma to show that it does occur. Note that, if x occurs as a sum, then y is one of the two addends.

LEMMA 4 If E(x) > 0, then $x \in S_{\alpha}$ if and only if there is no y < x with $y \neq x/2$ and either 0 < E(y) < E(x) or $0 < E(y) + \alpha/2 < E(x)$; likewise, if E(x) < 0, then $x \in S_{\alpha}$ if and only if there is no y < x with $y \neq x/2$ and either 0 > E(y) > E(x) or $0 > E(y) - \alpha/2 > E(x)$.

The following two theorems, the main theorems of [2], follow immediately from Lemma 4 and Theorem 1.

THEOREM 2 The numerator p_n of every convergent is in S_{α} .

Proof: We apply Theorem 1 to $x = p_n$, looking for z with $0 < E(z) < E(p_n)$ or $0 > E(z) > E(p_n)$. We cannot have $z = p_{n+1}$ because this would give E(z) and $E(p_n)$ opposite signs. Any other z with $|E(z)| < |E(p_n)|$ is at least $p_n + p_{n+1}$ by Lemma 1, which is larger than $2p_n$ and thus too large.

THEOREM 3 If $p \in S_{\alpha}$, then p is either the numerator p_n of a convergent, twice the numerator of a convergent, or the numerator $p_{n-1} + kp_n$ of an intermediate fraction.

Proof: If p is not the numerator of a convergent, then $p_n for some n and <math>|E(p)| > |E(p_n)|$. As in Lemma 1, we assume that n is odd for simplicity of notation (so $E(p_n) > 0$). If $0 < E(p_n) < E(p)$, then we can take $y = p_n$ in Lemma 4 unless $p = 2p_n$. If $E(p) < E(p_{n-1}) < 0$, then we can take $y = p_{n-1}$ in Lemma 4 unless $p = 2p_{n-1}$. Otherwise, we have $E(p_{n-1}) < E(p) < E(p_n)$, which implies $|E(p)| < |E(p_{n-1})|$. By Lemma 1, this implies that p is either the numerator of an intermediate fraction; if we

76

had instead $p = kp_n$, we would have $k \le a_{n+1}$ to have $p < p_{n+1}$, and we know that for all such k, $E(kp_n) = kE(p_n) \ge E(p_n)$ rather than the $E(p) < E(p_n)$ we need.

The cases which are not resolved by these two theorems can be checked similarly.

THEOREM 4 For p_n the numerator of a convergent, $2p_n$ is in S_α if and only if p_n is odd, and either (i) p_{n+1} is odd and $a_{n+1} \ge 3$, or (ii) p_{n+1} is even and $a_{n+1} \ge 2$, or (iii) $p_n = 1$.

Proof: We first assume $|E(p_n)| < \alpha/4$, so $E(2p_n) = 2E(p_n)$; we will deal with the special case $|E(p_n)| > \alpha/4$ at the end. In the general case, we will again assume that n is odd (and thus $E(p_n) > 0$) for simplicity of notation.

We will apply Theorem 1 to $x = 2p_n$. If p_n is even, then we can take $z = p_n$, which has $E(z) = E(p_n) < E(2p_n)$ and thus $2p_n \notin S_{\alpha}$.

If p_n is odd, Theorem 1 says that $x \neq S_\alpha$ if and only if there is an even $z < 4p_n$ with $0 < E(z) < 2E(p_n) = E(2p_n)$. If $E(z) > E(p_n)$ with $z < p_n$, then we apply Lemma 2 to $2p_n - z$, which has $0 < E(2p_n - z) = E(2p_n) - E(z) < E(p_n)$, and use $2p_n - z$ instead of z in this argument; we may thus assume either $E(z) < E(p_n)$ or $z > p_n$. If $E(z) < E(p_n)$, we can apply Lemma 2 to z to get $z = ip_n + jp_{n+1}$; let z' = z. If $E(z) > E(p_n)$ with $z > p_n$, then we can apply Lemma 2 to $z' = z - p_n$, which has $0 < E(z - p_n) = E(z) - E(p_n) < E(p_n)$, to show $z' = (i - 1)p_n + jp_{n+1}$ for $i \ge 1$. Thus, in any of these cases, we can write $z = ip_n + jp_{n+1}$, for some $i, j \ge 0$, and $z' = i'p_n + jp_{n-1}$ for i' = i or i' = i - 1. Since z and z' are both less than $4p_n$, $i + j \le 3$; we have the additional conditions that z is even and not equal to $2p_n$, and $0 < E(z') < E(p_n)$ while we have only $0 < E(z) < 2E(p_n)$. The existence of z implies the existence of z', but not vice versa; thus we can show $x \in S_\alpha$ by showing either z or z' cannot satisfy these conditions, but must find z to show that $x \notin S_\alpha$.

We can exclude all cases except i = 1 or 2, j = 1. If i = 0, then we also have i' = 0, and $z = z' = jp_{n+1}$; we thus need $0 < E(z) < E(p_n)$. Note that $|E(p_{n+1})| < |E(p_n)|$ by the best approximation property. If $|E(p_{n+1})| < \alpha/6$, then j = 1 gives $E(z) = E(p_{n+1})$, j = 2 gives $E(z) = E(2p_{n+1}) = 2E(p_{n+1})$ and j = 3 gives $E(z) = E(3p_{n+1}) = 3E(p_{n+1})$, all of which are negative, but we need E(z) > 0. If $\alpha/6 < |E(p_{n+1})| < \alpha/4$, then j = 1 and j = 2 give E(z) < 0 as before, while j = 3 gives $E(z) = E(3p_{n+1}) = \alpha + 3E(p_{n+1}) > \alpha - 3\alpha/4 = \alpha/4$, but we need $E(z) < E(p_n) < \alpha/4$. Thus i = 0 is impossible.

If j = 0 or j = 2, then since p_n is odd, *i* must also be even to give even *z*; thus j = 2 requires i = 0 and thus i' = 0, and j = 0 requires i = 2 and $z = 2p_n$, which is forbidden. The case j = 3 also requires i = 0, which leaves only j = 1.

If j = 1, the condition $z < 4p_n$ is equivalent to $i < 3 - a_{n+1}$, since $z = p_{n+1} + ip_n = p_{n-1} + a_{n+1}p_n + ip_n$, and $p_{n-1} < p_n$ for $p_n \neq 1$. We also need to check that z is even; it is even if p_{n+1} is odd and i = 1, or p_{n+1} is even and i = 2. Thus, in case (i) or (ii), we cannot get any even $z < 4p_n$, and thus $x \in S_{\alpha}$.

If we are not in case (i) or (ii), we do get $0 < E(z) < 2E(p_n)$ and thus can run this argument in reverse to show that $2p_n \notin S_\alpha$. Both $E(p_n)$ and $E(2p_n) = 2E(p_n)$ are positive, and $E(p_{n+1})$ is negative but greater than $-E(p_n)$; we thus have $0 < E(p_n + p_{n+1}) < E(2p_n + p_{n+1}) < 2E(p_n) = E(x)$, as required. Thus $z = p_n + p_{n+1}$ or $z = 2p_n + p_{n+1}$

can be used in Theorem 1, provided that it is even and less than $4p_n$, which is exactly the condition that we are not in case (i) or (ii). This proves the theorem in the case $|E(p_n)| < \alpha/4$.

We now need to check the special cases with $|E(p_n)| > \alpha/4$. Recall that we may assume $\alpha < 2$. Since $|E(p_n)| < 1/q_{n+1}$, there can only be problems if $q_{n+1} \leq 3$, which implies $q_n \leq 2$; thus the only possible p_n/q_n are 1/1, 2/1, and 3/2. Case (iii) covers $p_n = 1$; 2 cannot occur as a sum of any two distinct positive integers. If $p_n/q_n = 2/1$ is a convergent, then $3/2 < \alpha < 2$; the theorem says that the sum of 4 should occur since $p_n = 2$ is even. We have $1 \in A_\alpha$ because $\alpha/2 < 1 < \alpha$, and $3 \in A_\alpha$ because $3\alpha/2 < 3 < 2\alpha$; thus the sum of 4 occurs as 1 + 3. If $p_n/q_n = 3/2$ is a convergent, then $4/3 < \alpha < 2$ and $q_{n+1} \geq 3$; we thus have $|E(p_n)| < 1/3 < \alpha/4$, so the special case does not occur.

THEOREM 5 The numerator $x = p_n + kp_{n+1}$ of an intermediate fraction is in S_{α} if and only if either (i) p_{n+1} is even, or (ii) k = 1 and p_n is odd, or (iii) $k = a_{n+2} - 1$ (i.e., $x = p_{n+2} - p_{n+1}$) and p_{n+2} is odd.

Proof: As in the previous proof, we will assume $|E(p_n)| < \alpha/3$, proving the special case $|E(p_n)| > \alpha/3$ at the end, and assume in the general case that *n* is odd (so $E(p_n) > 0$) for simplicity of notation.

Recall that $p_{n+2} = p_n + a_{n+2}p_{n+1}$, and $0 < E(p_{n+2}) < E(p_n)$. Since x is the numerator of an intermediate fraction with $k < a_{n+2}$, we have $0 < -E(p_{n+1}) < E(x) < E(p_n)$. We can apply Theorem 1 to see whether $x \in S_{\alpha}$; it is not in S_{α} if and only if there is an even z < 2x with $0 < E(z) < E(x) = E(p_n) + kE(p_{n+1})$. Since $0 < E(z) < E(p_n)$ and $z < 2x < 2p_{n+2}$, we can apply Lemma 2 to write $z = ip_n + jp_{n+1}$ with $i \le 2$, and i = 2 is possible only if $z > p_{n+2}$. We will exclude i = 0 and i = 2, and then show that we can find z with i = 1 if any only if none of the three conditions (i)-(iii) hold.

For all three values of i, we will use similar properties of $mE(p_{n+1})$ for $0 \le m \le 2a_{n+2}$. By the properties of the continued fraction, $E(p_n) + (a_{n+2}+1)E(p_{n+1}) < 0 < E(p_n) + a_{n+2}E(p_{n+1})$, which gives $-a_{n+2}E(p_{n+1}) < E(p_n)$. Therefore, $mE(p_{n+1})$ is between $-2E(p_n)$ and 0. In addition, $E(p_n) + mE(p_{n+1})$ is between $-E(p_n)$ and $E(p_n)$ (and thus between $-\alpha/2$ and $\alpha/2$), so we have $E(p_n + mp_{n+1}) = E(p_n) + mE(p_{n+1})$ rather than the two sides differing by a multiple of α . In particular, $E(p_n + mp_{n+1})$ is a decreasing function of m for $0 \le m \le 2a_{n+2}$, since $E(p_{n+1})$ is negative.

We first exclude the case i = 0. Since we need $z < 2x = 2p_n + 2kp_{n+1} < (2k+2)p_{n+1}$, we must have $j \leq 2k + 1$. Since $k < a_{n+2}$, we have $j < 2a_{n+2}$, and thus $j|E(p_{n+1})| < 2E(p_n)$, which in turn is at most $2\alpha/3$ since $E(p_n) < \alpha/3$. If $j|E(p_{n+1})| < \alpha/2$, then we have $E(z) = E(jp_{n+1}) = jE(p_{n+1})$, which is negative, but we need E(z) > 0. If $\alpha/2 < j|E(p_{n+1})| < 2\alpha/3$, then $E(z) = E(jp_{n+1}) = \alpha + jE(p_{n+1}) > \alpha/3$, but we need $E(z) < E(x) < E(p_n) < \alpha/3$. Thus i = 0 is impossible.

We can also exclude i = 2. By Lemma 2, this case is only possible if $z > p_{n+2}$. We have $j \ge a_{n+2}$ since $z > p_{n+2}$, and $j < 2k < 2a_{n+2}$ since $z < 2x < 2p_n + 2kp_{n+1} < 2p_{n+2}$. Since we need E(z) > 0 and we have $E(p_{n+2}) > 0$, we can write $E(z) > E(z) - E(p_{n+2}) = E(z - p_{n+2}) = E(p_n + (j - a_{n+2})p_{n+1})$; thus, if we have E(z) < E(x), we also have $E(p_n + (j - a_{n+2})p_{n+1}) < E(x)$. Since $E(p_n + mp_{n+1})$ is a decreasing function of m for $0 \le m \le 2a_{n+2}$, we can only have $E(p_n + (j - a_{n+2})p_{n+1}) < E(p_n + kp_{n+1}) = E(p_$ E(x) if $j - a_{n+2} > k$. But this violates the condition j < 2k, which we needed in order to have z < 2x. Thus i = 2 is also impossible.

Thus the only possibility is i = 1, which gives $z = p_n + jp_{n+1}$. The bound on j given by z < 2x is now $j \le 2k$ since $p_n + 2kp_{n+1} < 2x = 2p_n + 2kp_{n+1} < p_n + (2k+1)p_{n+1}$. We again use the fact that $E(p_n + mp_{n+1})$ is a decreasing function of m for $0 \le m \le 2a_{n+2}$. This gives E(z) < E(x) for j > k (that is, for z > x), and E(z) > 0 for $j \le a_{n+2}$. Any j which meets these three conditions gives a z we can use in Theorem 1 provided that z is even.

If p_{n+1} is even, then p_n is odd (since the numerators of consecutive convergents are relatively prime), and thus no choice of j gives even z; this is case (i). If p_{n+1} is odd and k = 1, the only choice allowed is j = 2; any other j gives z > 2x. This $z = p_n + 2p_{n+1}$ is odd if p_n is odd and even if p_n is even; this covers case (ii). If p_{n+1} is odd and $k = a_{n+2} - 1$, the only choice allowed is $j = a_{n+2} = k + 1$; any smaller j gives $E(z) \ge E(x)$ and any larger j gives E(z) < 0. This gives $z = p_{n+2}$; this covers case (iii). If p_{n+1} is odd and we have any other k, we can take either j = k + 1 or j = k + 2; one of these will give z even. Thus we have found a z that we can use in Theorem 1 if case (i), (ii), or (iii) does not occur, and shown that there is no such z if one of these three cases does occur.

We now deal with the special cases with $|E(p_n)| > \alpha/3$, and show that the theorem is still valid as stated in these cases. Recall that we may assume $\alpha < 2$, and that the approximation properties give $|E(p_n)| < 1/q_{n+1}$. Thus $|E(p_n)| > \alpha/3$ requires $q_{n+1} \le 2$ and thus $q_n = 1$; the possible convergents are 1/1 and 2/1. If $p_n/q_n = 1/1$, then n = 1, and $|E(p_1)| > \alpha/3$ only for $\alpha > 3/2$. For such α , the next convergent is 2/1, with $a_2 = 1$ and $p_2 = 2$, so the theorem says that all the numerators of intermediate fractions, which are all odd $x < 2a_3 + 1$, are in S_{α} by case (i). We have $2 - 1/(a_3 + 1) < \alpha < 2$ since $(2a_3 + 1)/(a_3 + 1)$ is the next convergent. Thus, if $j = 2k \le 2a_3$ is even, then

$$k\alpha < 2k = j < (2k+1) - (2k+1)/(2a_3+2) < (k+1/2)\alpha,$$

and thus $j \in B_{\alpha}$; if $j = 2k + 1 \le 2a_3 + 1$ is odd, then

$$(k+1/2)\alpha < 2k+1 = j < (2k+2) - (k+1)/(a_3+1) < (k+1)\alpha,$$

and thus $j \in A_{\alpha}$. Thus no odd number less than $2a_3 + 1$ can occur as a sum of two elements from the same set, as required by the theorem.

The other p_n/q_n which could give the special case is $p_n/q_n = 2/1$, but this is only a convergent to α if $\alpha > 3/2$, which implies $|E(2)| < 1/2 < \alpha/3$. Thus the special case does not apply here.

Theorems 2, 3, 4, and 5 give the complete characterization of the avoided set S_{α} .

4. Uniquely avoidable sets

The most natural characterization of unique avoidability is the graph-theoretic characterization of [1]. If $S \subset \mathbb{N}$, then the graph G(S) of S is the graph with vertex set \mathbb{N} and an edge between x and y if $x \neq y$ and $x + y \in S$. A partition which avoids S is a 2-coloring of G(S), and thus S is avoidable if and only if G(S) is bipartite, and S is uniquely avoidable if and only if G(S) is bipartite and connected.

Note that, if $a \in S$ and x < a, then x and a - x are in the same connected component of G(S); either x = a - x, or $x \neq a - x$ and their sum is a. Thus, for every x < a, if a and $a + b \in S$, then x and x + b are in the same connected component as x - a, and thus in the same component. This allows us to prove the following result.

THEOREM 6 If S contains a, b, and a + b with (a, b) = 1 (or, more generally, if there are some $a' \ge a$ and $b' \ge b$ for which S contains a', a' + b, b', and a + b'), then all numbers less than a + b are in the same connected component of G(S). If S contains infinitely many such subsets, then G(S) is connected, and therefore S is uniquely avoidable if it is avoidable at all.

Proof: By the above argument, n and n - a are in the same connected component for $a < n \le a + b$ (and even for $n \le a + b'$ in the more general case), and n and n - b are in the same connected component if $b < n \le a + b$ (or $n \le a' + b$).

Assume a < b. By the Chinese Remainder Theorem, any integer m can be uniquely written m = xa - yb for $0 \le y \le a - 1$; if 0 < m < a + b, then $1 \le x \le b$. We prove connectivity for 0 < m < a + b by induction on x + y. The base case is m = a, in which x + y = 1. For any other m, if m > a, then m and m - a are in the same component; if m < a, then m and m + b are in the same component. Thus by induction, every m is in the same component as a.

For example, if a = 5, b = 8, and m = 1 = 5a - 3b, we have that 1 is in the same connected component as 1 + 8 = 9, 9 - 5 = 4, 4 + 8 = 12, 12 - 5 = 7, 7 - 5 = 2, 2 + 8 = 10, and finally 10 - 5 = 5.

Our main results on unique avoidability follow.

THEOREM 7 The set of numerators of convergents of α is uniquely avoidable if and only if infinitely many partial quotients a_n are 1.

Proof: If infinitely many a_n are 1, then we can apply Theorem 6 to p_{n-2} , p_{n-1} , and $p_n = p_{n-2} + p_{n-1}$ to show that the graph is connected, and we have already shown that the set of numerators is avoidable.

If only finitely many a_n are 1, then there is some N such that for any n > N we have $p_n > 2p_{n-1}$. Thus, regardless of the partition of integers less than p_{n-1} , we can extend the partition up to integers less than p_n by placing integers from p_{n-1} to $\lfloor p_n/2 \rfloor$ arbitrarily, and placing x in the set which does not contain $p_n - x$ for $\lfloor p_n/2 \rfloor < x < p_n$. We will never reach a contradiction because $x > p_{n-1}$ and we thus have only one constraint in placing x. We can continue inductively for all n.

THEOREM 8 The set S_{α} avoided by the partition A_{α} , B_{α} is uniquely avoidable for any irrational $\alpha > 1$.

Proof: If p_{n+1} is even, then $p_n + p_{n+1}$ is either p_{n+2} or the numerator of an intermediate fraction, and if it is the numerator of an intermediate fraction, it is in S_{α} by case (i) of Theorem 5. If p_{n+1} is odd, then $p_{n+1} - p_n$ is either p_{n-1} or the numerator $p_{n-1} + p_n$

80

 $(a_{n+1} - 1)p_n$ of an intermediate fraction, and if it is the numerator of an intermediate fraction, it is in S_{α} by case (iii) of Theorem 5. In either case, we can apply Theorem 6 to $p_n, p_{n+1}, p_n + p_{n+1}$ or $p_n, p_{n+1} - p_n, p_{n+1}$ for all n to show that S_{α} is uniquely avoidable.

The unique avoidability of generalized Fibonacci sequences starting with arbitrary relatively prime s_1, s_2 [3] follows as a special case of these results. If $s_1 < s_2$, we can let s_1 and s_2 be the numerators p_{n-1} and p_n of two consecutive convergents; we can do this by backward induction, letting $a_k = \lfloor p_k/p_{k-1} \rfloor$, $p_{k-2} = p_k - a_k p_{k-1}$ until we reach $p_0 = 1$ [2]. Let $a_m = 1$ for all m > n, so that $s_i = p_{i+n-2}$, and apply Theorem 7. If $s_1 > s_2$, we can let $p_n = s_2$, $p_{n+1} = s_1 + s_2$; the set of all the s_i other than s_1 is thus uniquely avoidable, and s_1 is the intermediate fraction $p_{n+1} - p_n$, which is an avoided sum by case (i) of Theorem 5 if $s_2 = p_n$ is even and by case (iii) of Theorem 5 if $s_1 + s_2 = p_{n+1}$ is odd. Thus the sequence of s_i is uniquely avoidable if $s_1 < s_2$ or either s_1 or s_2 is even, and not avoidable at all otherwise.

References

- K. Alladi, P. Erdős, and V. E. Hoggatt, Jr., "On additive partitions of integers," *Discrete Math.* 23(1978), 201-221.
- T. Y. Chow and C. D. Long, "Additive partitions and continued fractions," *Ramanujan Journal* 3 (1999), 55–72.
- 3. R. J. Evans, "On additive partitions of sets of positive integers," Discrete Math. 36(1991), 239-245.
- 4. A. I. Khinchin, Continued Fractions, 3rd ed., Chicago: University of Chicago Press, 1964.