Continued Fractions and Unique Additive Partitions

DAVID J. GRABINER*
grabiner@math.lsa.umich.edu
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1109

Received April 29, 1997; Accepted April 23, 1997

Abstract

A partition of the positive integers into sets A and B avoids a set $S \subset \mathbb{N}$ if no two distinct elements in the same part have a sum in S. If the partition is unique, S is uniquely avoidable. For any irrational $\alpha>1$, Chow and Long constructed a partition which avoids the numerators of all convergents of the continued fraction for α, and conjectured that the set S_{α} which this partition avoids is uniquely avoidable. We prove that the set of numerators of convergents is uniquely avoidable if and only if the continued fraction for α has infinitely many partial quotients equal to 1 . We also construct the set S_{α} and show that it is always uniquely avoidable.

Keywords: additive partition, best approximation, continued fraction, uniquely avoidable set
1991 Mathematics Classification: Primary - 11P81; Secondary - 05C40, 11J70

1. Introduction

A partition of the positive integers into sets A and B avoids a set $S \subset \mathbb{N}$ if no two distinct elements in the same part have a sum in S. We say that S is avoidable; if the partition is unique, S is uniquely avoidable.
The Fibonacci numbers are uniquely avoidable [1]. Generalized Fibonacci sequences defined by $\left(s_{1}, s_{2}\right)=1, s_{n}=s_{n-1}+s_{n-2}$, are also uniquely avoidable provided that $s_{1}<s_{2}$ or $2 \mid s_{1} s_{2}$; Alladi, Erdős and Hoggatt [1] proved this for $s_{1}=1$, and Evans [3] proved the general case. This suggests a connection with continued fractions. Chow and Long [2] studied this connection, and proved that the set of the numerators of continuedfraction convergents to any irrational α with $1<\alpha<2$ (easily generalized to any irrational α) is avoidable, although not necessarily uniquely avoidable. Their partition uses the sets

$$
\begin{aligned}
& A_{\alpha}=\{n \in \mathbb{N}: \text { the integer multiple of } \alpha \text { nearest } n \text { is greater than } n\}, \\
& B_{\alpha}=\{n \in \mathbb{N}: \text { the integer multiple of } \alpha \text { nearest } n \text { is less than } n\} .
\end{aligned}
$$

Let S_{α} be the set avoided by the partition $\left\{A_{\alpha}, B_{\alpha}\right\}$. The main results of Chow and Long are that S_{α} contains the numerators of all convergents to α, and every other element of S_{α} is either the numerator of an intermediate fraction or twice the numerator of a convergent. They conjectured that S_{α} was uniquely avoidable.

We give a characterization of a large class of sets which are uniquely avoidable if they are avoidable at all. We use this to show that the set of numerators of convergents to α is uniquely avoidable for any α if and only if infinitely many partial quotients of α are 1 . We can also use the best approximation property to determine S_{α} precisely, and show that S_{α} is uniquely avoidable for any irrational $\alpha>1$.

[^0]
2. Results on continued fractions

We will use some elementary results on continued fractions, as given in [4] for example. We use the standard notation for continued fractions, in which $\alpha=\left[a_{0}, a_{1}, \ldots\right], p_{-2}=0$, $q_{-2}=1, p_{-1}=1, q_{-1}=0$, and for $n \geq-1$, we have $p_{n+1}=a_{n+1} p_{n}+p_{n-1}$, $q_{n+1}=a_{n+1} q_{n}+q_{n-1}$. We will study continued fractions in terms of their approximation properties.

Definition 1. For any p, let $E(p)=p-q \alpha$ be the error in approximating p by the closest multiple of α. Thus A_{α} is the set of all p with $E(p)<0$ and B_{α} the set of all p with $E(p)>0$.

The function E is additive modulo α. Specifically, if $|E(x)+E(y)|<\alpha / 2$, then $E(x+y)=E(x)+E(y)$; otherwise, $E(x+y)=E(x)+E(y) \pm \alpha$. Likewise, if $\mid E(x)-$ $E(y) \mid<\alpha / 2$, then $E(x-y)=E(x)-E(y)$; otherwise, $E(x-y)=E(x)-E(y) \pm \alpha$. In particular, if $E(x)$ and $E(y)$ have opposite signs, $E(x+y)=E(x)+E(y)$; if they have the same sign, $E(x-y)=E(x)-E(y)$. Repeated application of additivity shows that $E(k x)$ is congruent to $k E(x)$ modulo α, and if $k|E(x)|<\alpha / 2$, then $E(k x)=k E(x)$.
We can restate several elementary results on continued fractions in terms of E. The best approximation property of convergents is that $|E(x)|<|E(y)|$ for all positive integers $y<x$ if and only if x is the numerator of a convergent. The property that alternate convergents approach α from opposite sides is that $E\left(p_{n}\right)<0$ for n even and $E\left(p_{n}\right)>0$ for n odd. The property that $\left|\alpha-p_{n} / q_{n}\right|<1 /\left(q_{n} q_{n+1}\right)$ is that $\left|E\left(p_{n}\right)\right|<1 / q_{n+1}$. The coefficients a_{n+1} of the continued fraction are defined by $E\left(\left(a_{n+1}+1\right) p_{n}+p_{n-1}\right)<0 \leq$ $E\left(a_{n+1} p_{n}+p_{n-1}\right)<E\left(p_{n-1}\right)$ if n is even, and the reverse if n is odd.
We can use this property $\left|a_{n+1} E\left(p_{n}\right)\right|<\left|E\left(p_{n-1}\right)\right|<\left|\left(a_{n+1}+1\right) E\left(p_{n}\right)\right|$ to show that $\left|k E\left(p_{n}\right)\right|<\left|E\left(p_{n-1}\right)\right|<\alpha / 2$ for all k with $0 \leq k \leq a_{n+1}$; it thus follows that $E\left(k p_{n}\right)=k E\left(p_{n}\right)$ if $0 \leq k \leq a_{n+1}$.
The properties of E give us the following characterization of those numbers which can be approximated well by multiples of α; this lemma appears in similar form in [2].

Lemma 1 If $p<p_{n+1}$ and $|E(p)|<\left|E\left(p_{n-1}\right)\right|$, then p is either $k p_{n}$ or the numerator $k p_{n}+p_{n-1}$ of an intermediate fraction for some $k \in \mathbb{N}$.

Proof: For simplicity of notation, we will assume n is odd, so that $E\left(p_{n}\right)>0$. If $E(p)>0$, then let

$$
k=\min \left(\left\lfloor\frac{E(p)}{E\left(p_{n}\right)}\right\rfloor,\left\lfloor\frac{p}{p_{n}}\right\rfloor\right)
$$

Then $p^{\prime}=p-k p_{n}$ still satisfies $0 \leq E\left(p^{\prime}\right)<\left|E\left(p_{n-1}\right)\right|$ since $0<k E\left(p_{n}\right)=$ $E\left(k p_{n}\right) \leq E(p)$. If $k=\left\lfloor p / p_{n}\right\rfloor$, then $p^{\prime}<p_{n}$, but no positive $p^{\prime}<p_{n}$ can have $0 \leq E\left(p^{\prime}\right)<\left|E\left(p_{n-1}\right)\right|$, by the best approximation property of p_{n-1}. Otherwise, we have $k=\left\lfloor E(p) / E\left(p_{n}\right)\right\rfloor$ and thus $0 \leq E\left(p^{\prime}\right)=E(p)-k E\left(p_{n}\right)<E\left(p_{n}\right)$, but no positive $p^{\prime}<p_{n+1}$ can have $0 \leq E\left(p^{\prime}\right)<E\left(p_{n}\right)$. Thus, in either case, we must have $p^{\prime}=0$ and $p=k p_{n}$.

If $E(p)<0$, then since $E\left(p_{n-1}\right)$ is also negative, we have $E\left(p-p_{n-1}\right)=E(p)-$ $E\left(p_{n-1}\right)$, which is between 0 and $-E\left(p_{n-1}\right)$, so we can apply the above result to $p-p_{n-1}$.

We will often need to use the following generalization of this lemma to cases with $p>$ p_{n+1}.

Lemma 2 If $|E(p)|<\left|E\left(p_{n-1}\right)\right|$, then $p=i p_{n-1}+j p_{n}$, where i and j are non-negative integers and $i \leq\left\lceil p / p_{n+1}\right\rceil$.

Proof: We again assume n is odd, so that $E\left(p_{n+1}\right)<0<E\left(p_{n}\right)$. The proof is by induction on p. The previous lemma proves the case $p<p_{n+1}$. If $E(p)>0$, then we write $p=p^{\prime}+p_{n}$, which gives $E\left(p^{\prime}\right)=E(p)-E\left(p_{n}\right)$. Since $E\left(p^{\prime}\right)<E(p)<\left|E\left(p_{n-1}\right)\right|$ and $E\left(p^{\prime}\right)>-E\left(p_{n}\right)>-\left|E\left(p_{n-1}\right)\right|$, we can apply the lemma inductively to p^{\prime}. If $E(p)<0$, then we write $p=p^{\prime}+p_{n+1}=p^{\prime}+p_{n-1}+a_{n+1} p_{n}$, which gives $E\left(p^{\prime}\right)=E(p)-E\left(p_{n+1}\right)$. Since $E\left(p^{\prime}\right)>E(p)>-\left|E\left(p_{n-1}\right)\right|$ and $E\left(p^{\prime}\right)<E\left(p_{n+1}\right)<\left|E\left(p_{n-1}\right)\right|$, we can apply the lemma inductively to p^{\prime}, with $\left\lceil p^{\prime} / p_{n+1}\right\rceil=\left\lceil p / p_{n+1}\right\rceil-1$.

To simplify the arguments, we will assume $1<\alpha<2$; the following lemma shows that our results generalize to arbitrary α.

Lemma 3 If $1<\alpha<2$ and $\alpha^{\prime}=\alpha /(\alpha-1)$, then α^{\prime} and α have the same set of numerators of convergents, the same set of numerators of intermediate fractions, and complementary partitions with $A_{\alpha}=B_{\alpha^{\prime}}$ (so that $S_{\alpha}=S_{\alpha^{\prime}}$).
Proof: We have $\alpha=\left[1, a_{1}, a_{2}, \ldots\right]$, and $\alpha^{\prime}=\left[a_{1}+1, a_{2}, \ldots\right]$. Thus α^{\prime} and α have the same numerators of convergents; $p_{0, \alpha^{\prime}}=p_{1, \alpha}=a_{1}+1$, and the lost numerator $p_{0, \alpha}=1$ appears as $p_{-1, \alpha^{\prime}}$. The numerators of intermediate fractions between $p_{0, \alpha}=p_{-1, \alpha^{\prime}}=1$ and $p_{1, \alpha}=p_{0, \alpha^{\prime}}=a_{1}+1$ are all the integers in this interval. Thus the sets of p_{n} and of numerators of intermediate fractions for α and α^{\prime} are the same.
If $m \in A_{\alpha}$, then $(k-1 / 2) \alpha<m<k \alpha$ for some k; in other words, $k-1 / 2<m / \alpha<k$. Since $1 / \alpha+1 / \alpha^{\prime}=1$, this gives us $k-1 / 2<m-m / \alpha^{\prime}<k$. Multiplying through by $-\alpha^{\prime}$ gives $(-k+1 / 2) \alpha^{\prime}>m \alpha^{\prime}-m>-k \alpha^{\prime}$. Since m is an integer, we can write this as $(m-k+1 / 2) \alpha^{\prime}>m>(m-k) \alpha^{\prime}$, which shows that $m \in B_{\alpha^{\prime}}$. Thus $A_{\alpha}=B_{\alpha^{\prime}}$.

3. Characterization of S_{α}

The characterization of A_{α} and B_{α} in terms of E gives a natural characterization of the avoided set S_{α} in terms of E, which we can then use to characterize S_{α} in terms of the convergents and intermediate fractions.

Theorem 1 If $E(x)>0$, then $x \in S_{\alpha}$ if and only if there is no even $z<2 x$ with $0<E(z)<E(x)$; likewise, if $E(x)<0$, then $x \in S_{\alpha}$ if and only if there is no even $z<2 x$ with $0>E(z)>E(x)$.

Proof: Take $x \notin S_{\alpha}$; that is, $x=y_{1}+y_{2}$ for some $y_{1} \neq y_{2}$ with y_{1} and y_{2} either both in A_{α} or both in B_{α}. Assume for simplicity of notation that $E(x)>0$.

First, suppose $y_{1}, y_{2} \in A_{\alpha}$, so that $E\left(y_{1}\right)$ and $E\left(y_{2}\right)$ are both negative. Since $E(x)=$ $E\left(y_{1}+y_{2}\right)>0$, we must have $E\left(y_{1}+y_{2}\right)=E\left(y_{1}\right)+E\left(y_{2}\right)+\alpha$. It thus follows that $E\left(y_{1}\right)+\alpha / 2$ and $E\left(y_{2}\right)+\alpha / 2$, which are both positive, must be less than $E(x)$. Let $E\left(y_{1}\right)+\alpha / 2$ be the smaller of the two; they are not equal since $y_{1} \neq y_{2}$. We have $E\left(y_{1}\right)<E(x) / 2-\alpha / 2<-\alpha / 4$. We can thus take $z=2 y_{1}$, which gives $E(z)=$ $E\left(2 y_{1}\right)=2 E\left(y_{1}\right)+\alpha$, and thus $0<E(z)<E\left(y_{1}\right)+E\left(y_{2}\right)+\alpha=E(x)$, proving the theorem in this case.

Similarly, suppose $y_{1}, y_{2} \in B_{\alpha}$, so that $E\left(y_{1}\right)$ and $E\left(y_{2}\right)$ are both positive. Since $E(x)=E\left(y_{1}+y_{2}\right)>0$ is positive, we must have $E\left(y_{1}+y_{2}\right)=E\left(y_{1}\right)+E\left(y_{2}\right)$, not $E\left(y_{1}+y_{2}\right)=E\left(y_{1}\right)+E\left(y_{2}\right)-\alpha$. Let $E\left(y_{1}\right)$ be the smaller of $E\left(y_{1}\right)$ and $E\left(y_{2}\right)$; they are not equal since $y_{1} \neq y_{2}$. We have $E\left(y_{1}\right)<E(x) / 2<\alpha / 4$. We can thus take $z=2 y_{1}$, which gives $0<E(z)=2 E\left(y_{1}\right)<E\left(y_{1}\right)+E\left(y_{2}\right)=E(x)$, proving the theorem in this case.
Each of the the two above arguments can be read bottom to top, together showing that if there is an even $z<2 x$ with $0<E(z)<E(x)$, we can take $y_{1}=z / 2$ and $y_{2}=x-y_{1}$, getting a sum which shows that $x \neq S_{\alpha}$. This proves the theorem for $E(x)>0$; the case $E(x)<0$ is analogous.

Setting $y=y_{1}$ in the proof of Theorem 1 gives us the following lemma. It is usually easier to use the theorem to show that a particular x does not occur as a sum, and the lemma to show that it does occur. Note that, if x occurs as a sum, then y is one of the two addends.

Lemma 4 If $E(x)>0$, then $x \in S_{\alpha}$ if and only if there is no $y<x$ with $y \neq x / 2$ and either $0<E(y)<E(x)$ or $0<E(y)+\alpha / 2<E(x)$; likewise, if $E(x)<0$, then $x \in S_{\alpha}$ if and only if there is no $y<x$ with $y \neq x / 2$ and either $0>E(y)>E(x)$ or $0>E(y)-\alpha / 2>E(x)$.

The following two theorems, the main theorems of [2], follow immediately from Lemma 4 and Theorem 1.

THEOREM 2 The numerator p_{n} of every convergent is in S_{α}.
Proof: We apply Theorem 1 to $x=p_{n}$, looking for z with $0<E(z)<E\left(p_{n}\right)$ or $0>E(z)>E\left(p_{n}\right)$. We cannot have $z=p_{n+1}$ because this would give $E(z)$ and $E\left(p_{n}\right)$ opposite signs. Any other z with $|E(z)|<\left|E\left(p_{n}\right)\right|$ is at least $p_{n}+p_{n+1}$ by Lemma 1 , which is larger than $2 p_{n}$ and thus too large.

ThEOREM 3 If $p \in S_{\alpha}$, then p is either the numerator p_{n} of a convergent, twice the numerator of a convergent, or the numerator $p_{n-1}+k p_{n}$ of an intermediate fraction.

Proof: If p is not the numerator of a convergent, then $p_{n}<p<p_{n+1}$ for some n and $|E(p)|>\left|E\left(p_{n}\right)\right|$. As in Lemma 1, we assume that n is odd for simplicity of notation (so $\left.E\left(p_{n}\right)>0\right)$. If $0<E\left(p_{n}\right)<E(p)$, then we can take $y=p_{n}$ in Lemma 4 unless $p=2 p_{n}$. If $E(p)<E\left(p_{n-1}\right)<0$, then we can take $y=p_{n-1}$ in Lemma 4 unless $p=2 p_{n-1}$. Otherwise, we have $E\left(p_{n-1}\right)<E(p)<E\left(p_{n}\right)$, which implies $|E(p)|<\left|E\left(p_{n-1}\right)\right|$. By Lemma 1, this implies that p is either the numerator of an intermediate fraction or $k p_{n}$ for some k. In this case, p must be the numerator of an intermediate fraction; if we
had instead $p=k p_{n}$, we would have $k \leq a_{n+1}$ to have $p<p_{n+1}$, and we know that for all such $k, E\left(k p_{n}\right)=k E\left(p_{n}\right) \geq E\left(p_{n}\right)$ rather than the $E(p)<E\left(p_{n}\right)$ we need.

The cases which are not resolved by these two theorems can be checked similarly.
ThEOREM 4 For p_{n} the numerator of a convergent, $2 p_{n}$ is in S_{α} if and only if p_{n} is odd, and either (i) p_{n+1} is odd and $a_{n+1} \geq 3$, or (ii) p_{n+1} is even and $a_{n+1} \geq 2$, or (iii) $p_{n}=1$.

Proof: We first assume $\left|E\left(p_{n}\right)\right|<\alpha / 4$, so $E\left(2 p_{n}\right)=2 E\left(p_{n}\right)$; we will deal with the special case $\left|E\left(p_{n}\right)\right|>\alpha / 4$ at the end. In the general case, we will again assume that n is odd (and thus $E\left(p_{n}\right)>0$) for simplicity of notation.

We will apply Theorem 1 to $x=2 p_{n}$. If p_{n} is even, then we can take $z=p_{n}$, which has $E(z)=E\left(p_{n}\right)<E\left(2 p_{n}\right)$ and thus $2 p_{n} \notin S_{\alpha}$.
If p_{n} is odd, Theorem 1 says that $x \neq S_{\alpha}$ if and only if there is an even $z<4 p_{n}$ with $0<E(z)<2 E\left(p_{n}\right)=E\left(2 p_{n}\right)$. If $E(z)>E\left(p_{n}\right)$ with $z<p_{n}$, then we apply Lemma 2 to $2 p_{n}-z$, which has $0<E\left(2 p_{n}-z\right)=E\left(2 p_{n}\right)-E(z)<E\left(p_{n}\right)$, and use $2 p_{n}-z$ instead of z in this argument; we may thus assume either $E(z)<E\left(p_{n}\right)$ or $z>p_{n}$. If $E(z)<E\left(p_{n}\right)$, we can apply Lemma 2 to z to get $z=i p_{n}+j p_{n+1}$; let $z^{\prime}=z$. If $E(z)>E\left(p_{n}\right)$ with $z>p_{n}$, then we can apply Lemma 2 to $z^{\prime}=z-p_{n}$, which has $0<E\left(z-p_{n}\right)=E(z)-E\left(p_{n}\right)<E\left(p_{n}\right)$, to show $z^{\prime}=(i-1) p_{n}+j p_{n+1}$ for $i \geq 1$. Thus, in any of these cases, we can write $z=i p_{n}+j p_{n+1}$, for some $i, j \geq 0$, and $z^{\prime}=i^{\prime} p_{n}+j p_{n-1}$ for $i^{\prime}=i$ or $i^{\prime}=i-1$. Since z and z^{\prime} are both less than $4 p_{n}$, $i+j \leq 3$; we have the additional conditions that z is even and not equal to $2 p_{n}$, and $0<E\left(z^{\prime}\right)<E\left(p_{n}\right)$ while we have only $0<E(z)<2 E\left(p_{n}\right)$. The existence of z implies the existence of z^{\prime}, but not vice versa; thus we can show $x \in S_{\alpha}$ by showing either z or z^{\prime} cannot satisfy these conditions, but must find z to show that $x \notin S_{\alpha}$.

We can exclude all cases except $i=1$ or $2, j=1$. If $i=0$, then we also have $i^{\prime}=0$, and $z=z^{\prime}=j p_{n+1}$; we thus need $0<E(z)<E\left(p_{n}\right)$. Note that $\left|E\left(p_{n+1}\right)\right|<\left|E\left(p_{n}\right)\right|$ by the best approximation property. If $\left|E\left(p_{n+1}\right)\right|<\alpha / 6$, then $j=1$ gives $E(z)=E\left(p_{n+1}\right)$, $j=2$ gives $E(z)=E\left(2 p_{n+1}\right)=2 E\left(p_{n+1}\right)$ and $j=3$ gives $E(z)=E\left(3 p_{n+1}\right)=$ $3 E\left(p_{n+1}\right)$, all of which are negative, but we need $E(z)>0$. If $\alpha / 6<\left|E\left(p_{n+1}\right)\right|<\alpha / 4$, then $j=1$ and $j=2$ give $E(z)<0$ as before, while $j=3$ gives $E(z)=E\left(3 p_{n+1}\right)=$ $\alpha+3 E\left(p_{n+1}\right)>\alpha-3 \alpha / 4=\alpha / 4$, but we need $E(z)<E\left(p_{n}\right)<\alpha / 4$. Thus $i=0$ is impossible.
If $j=0$ or $j=2$, then since p_{n} is odd, i must also be even to give even z; thus $j=2$ requires $i=0$ and thus $i^{\prime}=0$, and $j=0$ requires $i=2$ and $z=2 p_{n}$, which is forbidden. The case $j=3$ also requires $i=0$, which leaves only $j=1$.
If $j=1$, the condition $z<4 p_{n}$ is equivalent to $i<3-a_{n+1}$, since $z=p_{n+1}+i p_{n}=$ $p_{n-1}+a_{n+1} p_{n}+i p_{n}$, and $p_{n-1}<p_{n}$ for $p_{n} \neq 1$. We also need to check that z is even; it is even if p_{n+1} is odd and $i=1$, or p_{n+1} is even and $i=2$. Thus, in case (i) or (ii), we cannot get any even $z<4 p_{n}$, and thus $x \in S_{\alpha}$.
If we are not in case (i) or (ii), we do get $0<E(z)<2 E\left(p_{n}\right)$ and thus can run this argument in reverse to show that $2 p_{n} \notin S_{\alpha}$. Both $E\left(p_{n}\right)$ and $E\left(2 p_{n}\right)=2 E\left(p_{n}\right)$ are positive, and $E\left(p_{n+1}\right)$ is negative but greater than $-E\left(p_{n}\right)$; we thus have $0<E\left(p_{n}+p_{n+1}\right)<$ $E\left(2 p_{n}+p_{n+1}\right)<2 E\left(p_{n}\right)=E(x)$, as required. Thus $z=p_{n}+p_{n+1}$ or $z=2 p_{n}+p_{n+1}$
can be used in Theorem 1, provided that it is even and less than $4 p_{n}$, which is exactly the condition that we are not in case (i) or (ii). This proves the theorem in the case $\left|E\left(p_{n}\right)\right|<\alpha / 4$.
We now need to check the special cases with $\left|E\left(p_{n}\right)\right|>\alpha / 4$. Recall that we may assume $\alpha<2$. Since $\left|E\left(p_{n}\right)\right|<1 / q_{n+1}$, there can only be problems if $q_{n+1} \leq 3$, which implies $q_{n} \leq 2$; thus the only possible p_{n} / q_{n} are $1 / 1,2 / 1$, and $3 / 2$. Case (iii) covers $p_{n}=1 ; 2$ cannot occur as a sum of any two distinct positive integers. If $p_{n} / q_{n}=2 / 1$ is a convergent, then $3 / 2<\alpha<2$; the theorem says that the sum of 4 should occur since $p_{n}=2$ is even. We have $1 \in A_{\alpha}$ because $\alpha / 2<1<\alpha$, and $3 \in A_{\alpha}$ because $3 \alpha / 2<3<2 \alpha$; thus the sum of 4 occurs as $1+3$. If $p_{n} / q_{n}=3 / 2$ is a convergent, then $4 / 3<\alpha<2$ and $q_{n+1} \geq 3$; we thus have $\left|E\left(p_{n}\right)\right|<1 / 3<\alpha / 4$, so the special case does not occur.

THEOREM 5 The numerator $x=p_{n}+k p_{n+1}$ of an intermediate fraction is in S_{α} if and only if either (i) p_{n+1} is even, or (ii) $k=1$ and p_{n} is odd, or (iii) $k=a_{n+2}-1$ (i.e., $x=p_{n+2}-p_{n+1}$) and p_{n+2} is odd.
Proof: As in the previous proof, we will assume $\left|E\left(p_{n}\right)\right|<\alpha / 3$, proving the special case $\left|E\left(p_{n}\right)\right|>\alpha / 3$ at the end, and assume in the general case that n is odd (so $E\left(p_{n}\right)>0$) for simplicity of notation.
Recall that $p_{n+2}=p_{n}+a_{n+2} p_{n+1}$, and $0<E\left(p_{n+2}\right)<E\left(p_{n}\right)$. Since x is the numerator of an intermediate fraction with $k<a_{n+2}$, we have $0<-E\left(p_{n+1}\right)<E(x)<E\left(p_{n}\right)$. We can apply Theorem 1 to see whether $x \in S_{\alpha}$; it is not in S_{α} if and only if there is an even $z<2 x$ with $0<E(z)<E(x)=E\left(p_{n}\right)+k E\left(p_{n+1}\right)$. Since $0<E(z)<E\left(p_{n}\right)$ and $z<2 x<2 p_{n+2}$, we can apply Lemma 2 to write $z=i p_{n}+j p_{n+1}$ with $i \leq 2$, and $i=2$ is possible only if $z>p_{n+2}$. We will exclude $i=0$ and $i=2$, and then show that we can find z with $i=1$ if any only if none of the three conditions (i)-(iii) hold.
For all three values of i, we will use similar properties of $m E\left(p_{n+1}\right)$ for $0 \leq m \leq 2 a_{n+2}$. By the properties of the continued fraction, $E\left(p_{n}\right)+\left(a_{n+2}+1\right) E\left(p_{n+1}\right)<0<E\left(p_{n}\right)+$ $a_{n+2} E\left(p_{n+1}\right)$, which gives $-a_{n+2} E\left(p_{n+1}\right)<E\left(p_{n}\right)$. Therefore, $m E\left(p_{n+1}\right)$ is between $-2 E\left(p_{n}\right)$ and 0 . In addition, $E\left(p_{n}\right)+m E\left(p_{n+1}\right)$ is between $-E\left(p_{n}\right)$ and $E\left(p_{n}\right)$ (and thus between $-\alpha / 2$ and $\alpha / 2$), so we have $E\left(p_{n}+m p_{n+1}\right)=E\left(p_{n}\right)+m E\left(p_{n+1}\right)$ rather than the two sides differing by a multiple of α. In particular, $E\left(p_{n}+m p_{n+1}\right)$ is a decreasing function of m for $0 \leq m \leq 2 a_{n+2}$, since $E\left(p_{n+1}\right)$ is negative.
We first exclude the case $i=0$. Since we need $z<2 x=2 p_{n}+2 k p_{n+1}<(2 k+2) p_{n+1}$, we must have $j \leq 2 k+1$. Since $k<a_{n+2}$, we have $j<2 a_{n+2}$, and thus $j\left|E\left(p_{n+1}\right)\right|<$ $2 E\left(p_{n}\right)$, which in turn is at most $2 \alpha / 3$ since $E\left(p_{n}\right)<\alpha / 3$. If $j\left|E\left(p_{n+1}\right)\right|<\alpha / 2$, then we have $E(z)=E\left(j p_{n+1}\right)=j E\left(p_{n+1}\right)$, which is negative, but we need $E(z)>0$. If $\alpha / 2<j\left|E\left(p_{n+1}\right)\right|<2 \alpha / 3$, then $E(z)=E\left(j p_{n+1}\right)=\alpha+j E\left(p_{n+1}\right)>\alpha / 3$, but we need $E(z)<E(x)<E\left(p_{n}\right)<\alpha / 3$. Thus $i=0$ is impossible.
We can also exclude $i=2$. By Lemma 2, this case is only possible if $z>p_{n+2}$. We have $j \geq a_{n+2}$ since $z>p_{n+2}$, and $j<2 k<2 a_{n+2}$ since $z<2 x<2 p_{n}+2 k p_{n+1}<2 p_{n+2}$. Since we need $E(z)>0$ and we have $E\left(p_{n+2}\right)>0$, we can write $E(z)>E(z)$ -$E\left(p_{n+2}\right)=E\left(z-p_{n+2}\right)=E\left(p_{n}+\left(j-a_{n+2}\right) p_{n+1}\right)$; thus, if we have $E(z)<E(x)$, we also have $E\left(p_{n}+\left(j-a_{n+2}\right) p_{n+1}\right)<E(x)$. Since $E\left(p_{n}+m p_{n+1}\right)$ is a decreasing function of m for $0 \leq m \leq 2 a_{n+2}$, we can only have $E\left(p_{n}+\left(j-a_{n+2}\right) p_{n+1}\right)<E\left(p_{n}+k p_{n+1}\right)=$
$E(x)$ if $j-a_{n+2}>k$. But this violates the condition $j<2 k$, which we needed in order to have $z<2 x$. Thus $i=2$ is also impossible.
Thus the only possibility is $i=1$, which gives $z=p_{n}+j p_{n+1}$. The bound on j given by $z<2 x$ is now $j \leq 2 k$ since $p_{n}+2 k p_{n+1}<2 x=2 p_{n}+2 k p_{n+1}<p_{n}+(2 k+1) p_{n+1}$. We again use the fact that $E\left(p_{n}+m p_{n+1}\right)$ is a decreasing function of m for $0 \leq m \leq 2 a_{n+2}$. This gives $E(z)<E(x)$ for $j>k$ (that is, for $z>x$), and $E(z)>0$ for $j \leq a_{n+2}$. Any j which meets these three conditions gives a z we can use in Theorem 1 provided that z is even.
If p_{n+1} is even, then p_{n} is odd (since the numerators of consecutive convergents are relatively prime), and thus no choice of j gives even z; this is case (i). If p_{n+1} is odd and $k=1$, the only choice allowed is $j=2$; any other j gives $z>2 x$. This $z=p_{n}+2 p_{n+1}$ is odd if p_{n} is odd and even if p_{n} is even; this covers case (ii). If p_{n+1} is odd and $k=a_{n+2}-1$, the only choice allowed is $j=a_{n+2}=k+1$; any smaller j gives $E(z) \geq E(x)$ and any larger j gives $E(z)<0$. This gives $z=p_{n+2}$; this covers case (iii). If p_{n+1} is odd and we have any other k, we can take either $j=k+1$ or $j=k+2$; one of these will give z even. Thus we have found a z that we can use in Theorem 1 if case (i), (ii), or (iii) does not occur, and shown that there is no such z if one of these three cases does occur.
We now deal with the special cases with $\left|E\left(p_{n}\right)\right|>\alpha / 3$, and show that the theorem is still valid as stated in these cases. Recall that we may assume $\alpha<2$, and that the approximation properties give $\left|E\left(p_{n}\right)\right|<1 / q_{n+1}$. Thus $\left|E\left(p_{n}\right)\right|>\alpha / 3$ requires $q_{n+1} \leq 2$ and thus $q_{n}=1$; the possible convergents are $1 / 1$ and $2 / 1$. If $p_{n} / q_{n}=1 / 1$, then $n=1$, and $\left|E\left(p_{1}\right)\right|>\alpha / 3$ only for $\alpha>3 / 2$. For such α, the next convergent is $2 / 1$, with $a_{2}=1$ and $p_{2}=2$, so the theorem says that all the numerators of intermediate fractions, which are all odd $x<2 a_{3}+1$, are in S_{α} by case (i). We have $2-1 /\left(a_{3}+1\right)<\alpha<2$ since $\left(2 a_{3}+1\right) /\left(a_{3}+1\right)$ is the next convergent. Thus, if $j=2 k \leq 2 a_{3}$ is even, then

$$
k \alpha<2 k=j<(2 k+1)-(2 k+1) /\left(2 a_{3}+2\right)<(k+1 / 2) \alpha
$$

and thus $j \in B_{\alpha}$; if $j=2 k+1 \leq 2 a_{3}+1$ is odd, then

$$
(k+1 / 2) \alpha<2 k+1=j<(2 k+2)-(k+1) /\left(a_{3}+1\right)<(k+1) \alpha
$$

and thus $j \in A_{\alpha}$. Thus no odd number less than $2 a_{3}+1$ can occur as a sum of two elements from the same set, as required by the theorem.
The other p_{n} / q_{n} which could give the special case is $p_{n} / q_{n}=2 / 1$, but this is only a convergent to α if $\alpha>3 / 2$, which implies $|E(2)|<1 / 2<\alpha / 3$. Thus the special case does not apply here.

Theorems 2, 3, 4, and 5 give the complete characterization of the avoided set S_{α}.

4. Uniquely avoidable sets

The most natural characterization of unique avoidability is the graph-theoretic characterization of [1]. If $S \subset \mathbb{N}$, then the $\operatorname{graph} G(S)$ of S is the graph with vertex set \mathbb{N} and an edge between x and y if $x \neq y$ and $x+y \in S$. A partition which avoids S is a 2-coloring of
$G(S)$, and thus S is avoidable if and only if $G(S)$ is bipartite, and S is uniquely avoidable if and only if $G(S)$ is bipartite and connected.
Note that, if $a \in S$ and $x<a$, then x and $a-x$ are in the same connected component of $G(S)$; either $x=a-x$, or $x \neq a-x$ and their sum is a. Thus, for every $x<a$, if a and $a+b \in S$, then x and $x+b$ are in the same connected component as $x-a$, and thus in the same component. This allows us to prove the following result.

THEOREM 6 If S contains a, b, and $a+b$ with $(a, b)=1$ (or, more generally, if there are some $a^{\prime} \geq a$ and $b^{\prime} \geq b$ for which S contains $a^{\prime}, a^{\prime}+b, b^{\prime}$, and $a+b^{\prime}$), then all numbers less than $a+b$ are in the same connected component of $G(S)$. If S contains infinitely many such subsets, then $G(S)$ is connected, and therefore S is uniquely avoidable if it is avoidable at all.

Proof: By the above argument, n and $n-a$ are in the same connected component for $a<n \leq a+b$ (and even for $n \leq a+b^{\prime}$ in the more general case), and n and $n-b$ are in the same connected component if $b<n \leq a+b$ (or $n \leq a^{\prime}+b$).
Assume $a<b$. By the Chinese Remainder Theorem, any integer m can be uniquely written $m=x a-y b$ for $0 \leq y \leq a-1$; if $0<m<a+b$, then $1 \leq x \leq b$. We prove connectivity for $0<m<a+b$ by induction on $x+y$. The base case is $m=a$, in which $x+y=1$. For any other m, if $m>a$, then m and $m-a$ are in the same component; if $m<a$, then m and $m+b$ are in the same component. Thus by induction, every m is in the same component as a.

For example, if $a=5, b=8$, and $m=1=5 a-3 b$, we have that 1 is in the same connected component as $1+8=9,9-5=4,4+8=12,12-5=7,7-5=2$, $2+8=10$, and finally $10-5=5$.

Our main results on unique avoidability follow.
THEOREM 7 The set of numerators of convergents of α is uniquely avoidable if and only if infinitely many partial quotients a_{n} are 1 .

Proof: If infinitely many a_{n} are 1 , then we can apply Theorem 6 to p_{n-2}, p_{n-1}, and $p_{n}=p_{n-2}+p_{n-1}$ to show that the graph is connected, and we have already shown that the set of numerators is avoidable.

If only finitely many a_{n} are 1 , then there is some N such that for any $n>N$ we have $p_{n}>2 p_{n-1}$. Thus, regardless of the partition of integers less than p_{n-1}, we can extend the partition up to integers less than p_{n} by placing integers from p_{n-1} to $\left\lfloor p_{n} / 2\right\rfloor$ arbitrarily, and placing x in the set which does not contain $p_{n}-x$ for $\left\lfloor p_{n} / 2\right\rfloor<x<p_{n}$. We will never reach a contradiction because $x>p_{n-1}$ and we thus have only one constraint in placing x. We can continue inductively for all n.

THEOREM 8 The set S_{α} avoided by the partition A_{α}, B_{α} is uniquely avoidable for any irrational $\alpha>1$.

Proof: If p_{n+1} is even, then $p_{n}+p_{n+1}$ is either p_{n+2} or the numerator of an intermediate fraction, and if it is the numerator of an intermediate fraction, it is in S_{α} by case (i) of Theorem 5. If p_{n+1} is odd, then $p_{n+1}-p_{n}$ is either p_{n-1} or the numerator $p_{n-1}+$
$\left(a_{n+1}-1\right) p_{n}$ of an intermediate fraction, and if it is the numerator of an intermediate fraction, it is in S_{α} by case (iii) of Theorem 5. In either case, we can apply Theorem 6 to $p_{n}, p_{n+1}, p_{n}+p_{n+1}$ or $p_{n}, p_{n+1}-p_{n}, p_{n+1}$ for all n to show that S_{α} is uniquely avoidable.

The unique avoidability of generalized Fibonacci sequences starting with arbitrary relatively prime s_{1}, s_{2} [3] follows as a special case of these results. If $s_{1}<s_{2}$, we can let s_{1} and s_{2} be the numerators p_{n-1} and p_{n} of two consecutive convergents; we can do this by backward induction, letting $a_{k}=\left\lfloor p_{k} / p_{k-1}\right\rfloor, p_{k-2}=p_{k}-a_{k} p_{k-1}$ until we reach $p_{0}=1$ [2]. Let $a_{m}=1$ for all $m>n$, so that $s_{i}=p_{i+n-2}$, and apply Theorem 7. If $s_{1}>s_{2}$, we can let $p_{n}=s_{2}, p_{n+1}=s_{1}+s_{2}$; the set of all the s_{i} other than s_{1} is thus uniquely avoidable, and s_{1} is the intermediate fraction $p_{n+1}-p_{n}$, which is an avoided sum by case (i) of Theorem 5 if $s_{2}=p_{n}$ is even and by case (iii) of Theorem 5 if $s_{1}+s_{2}=p_{n+1}$ is odd. Thus the sequence of s_{i} is uniquely avoidable if $s_{1}<s_{2}$ or either s_{1} or s_{2} is even, and not avoidable at all otherwise.

References

1. K. Alladi, P. Erdős, and V. E. Hoggatt, Jr., "On additive partitions of integers," Discrete Math. 23(1978), 201-221.
2. T. Y. Chow and C. D. Long, "Additive partitions and continued fractions," Ramanujan Journal $\mathbf{3}$ (1999), 55-72.
3. R. J. Evans, "On additive partitions of sets of positive integers," Discrete Math. 36(1991), 239-245.
4. A. I. Khinchin, Continued Fractions, 3rd ed., Chicago: University of Chicago Press, 1964.

[^0]: * Supported by an NSF Postdoctoral Fellowship. Some of this work which was done while visiting the Mathematical Sciences Research Institute (MSRI), was supported by NSF Grant DMS-9022140.

