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Abstract. An ana!ysis ispresented for the axial extrusion of an expanding viscoelastic solid inside a long cylindrical tube. Both 
differential thermal expansion and expansion of gas bubbles in the solid are considered as driving mechanisms: Finite element 
calculations are used to illustrate the details of the behavior of the system. The response is shown to be initially elastic followed 
by the development of a boundary layer near the free surface where the pressure gradients are sufficiently large to cause axial 
viscous flow. Simple boundary layer equations are derived to describe this flow. Results using these equations agree well with 
the results of the finite element calculations. The theory is applied to the extrusion of uranium-based metallic reactor fuel 
during overheating transients: 

1 Introduction 

Extrusion of an expanding viscoelastic solid inside a long cylindrical tube is of general engineering 
interest in forming and processing of metals, polymers and food products. Our application stems 
from renewed interest (Waiters, Seidel and Kittel 1984) in uranium-based metal alloys as a fuel for 
sodium-cooled fast reactors: Here expansion and subsequent axial extrusion of overheated fuel has 
been postulated (Cahalan, Sevy and Su 1985; Miles and Kalimullah 1985) to provide a passive 
reactivity feedback mechanism which could contribute to reactor shutdown during an unprotected 
accident event: During such an event, the temperature of the fuel would rise due to the power-to-flow 
mismatch causing the fuel to expand by thermal expansion and by expansion of the fission gases 
generated in the fuel during irradiation, The fuel is enclosed in cylindrical cladding tubes so that it is 
free to expand only in the axial direction. If this expansion were uniform throughout the core it 
would provide a very strong negative reactivity feedback of approximately 10 ¢/mm 1. 

Of course even if a solid such as metallic reactor fuel has a considerable potential for unrestrained 
swelling when heated, this swelling may not translate to significant axial extrusion when it is 
restrained within a long cylindrical tube: Hydrostatic pressure will develop in the tube to counteract 
the expansion, and large shear deformations are required to relieve the pressure and to move the 
material axially: This motion is limited by the magnitude of the pressure gradients and by the effective 
viscosity so that much of the extrusion may only occur near the free surface at the top of the fuel, 

In the present paper we consider the general problem of the thermally driven extrusion of non- 
linear viscoelastic solid inside of a long cylindrical tube. In the first section we give a brief discussion of 
the purely elastic response and compare generalized plane strain results with finite element 
calculations for the boundary layer near the free surface of the solid slug, In subsequent sections we 
consider more general non-linear viscoelastic behavior and show how the boundary layer grows 

* Work supported by the U:S: Department of Energy, Office of Technology Support Programs under Contract 
W-31-109-Eng-38 
** Presently attending the University of Michigan 
1 Reactive Q is a measure of excess neutrons. When Q is divided by the delayed neutron fraction the ratio is termed reactivity in 
'dollars'. The significance of fuel expansion in current fast reactor designs can be seen by noting that 1 mm of uniform 
expansion would balance the positive reactivity feedback of 10 ¢ resulting from the accidental withdrawl of one of the control 
rods 
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downward as the solid begins to flow, Finally, approximate expressions are derived for the viscous 
flow limits and for the boundary layer penetration, and the results are applied to analyze the extrusion 
of metallic reactor fuel under transient heating conditions: 

2 Elastic behavior 

Consider a solid slug if length L inside a long cylindrical tube of radius R as shown in Fig. 1. It is 
assumed that the slug is firmly attached to the inside of the cylinder: For our application to metallic 
reactor fuel, the fuel is metallurgically bonded to its cladding after several atom percent burn-up. 
Typical ratios of L/R for fast reactor fuel are 180 for Experimental Breeder Reactor-II (EBR-II) pins 
and 295 for proposed commercial reactor designs, 

Now imagine the slug, designated by the subscript F (fuel), and the cylinder, designated by the 
subscript C (cladding), heated at a rate 1O. For simplicity we neglect the internal and external pressure 
and assume that the heating is uniform and that the elastic properties are constant as given in Table 1, 
Because the effective coefficient of thermal expansion of the slug is greater than the cylinder, the slug 
goes into a state of compression while the cylinder goes into a state of tension. A common 

"//'/A 
"//'//A 

Fig. 1. Extrus ion geometry showing the fuel slug (crosshatched) extruding inside its cladding 
tube. Relatively mot ion  between the fuel and the cladding has developed over a boundary  layer 
o f  length Zo 

Table 1. Nomina l  material  propert ies  and dimensions used in calculations 

Propert ies 

Case L/R Elastic modulus ,  Poisson 's  ratio Linear expansion 
G p a  coefficient, 1/K 

Creep Creep coefficient, 
power  M P a - "  s - 1 

EF Ec Vv Vc aF ac n CF 

E1 3.2 14 125 0:23 0.33 2.1 x 10 -5 1.9 x 10 -5 - -  
F1 3.2 14 125 0.23 0.33 2.1 x 10 -5 1:9 x 10 -5 Eqs: (5) 
F2 6.4 14 125 0.23 0.33 2.1 x 10 -5 1:9 x 10 -5 Eqs. (5) 
L1 6.4 14 1250 0.23 0.33 2.1 x 10 -5 1,9 x 10 -5 1 
L2 6.4 14 1250 0.23 0.33 2.1 x 10 -5 1 .9x  10 .5 1 
S1 6.4 14 1250 0.23 0.33 3.9 x 10 -5 1,9 x 10 -5 1 

Eqs. (5) 
Eqs. (5) 
3.33 x 10 -6 
3.33 x 10 -7 
3:33 x 10 -7 

Dimensions  (for all cases); inner  cylinder radius R = 1.91 m m ;  cylinder thickness h = 0.30 m m  
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misconception in reactor fuel pin analysis is that a uniform shear stress also develops along the length 
L where the fuel and cladding are bonded together. This is not the case as can easily be seen by 
imagining the fuel removed from the cladding, allowing each to expand freely, and then calculating 
the uniform interface pressure and the uniaxial stress in the fuel and in the cladding so that both have 
the same axial strain and the same radial displacement at the interface and so that the total force is 
zero in the axial direction: The resulting simple stress state satisfies all of the equations and all of the 
boundary conditions except at the free surface z = 0. There the surface integral of the axial stress o-~ 
across both the slug and the cylinder is zero rather than a~(r)=0 for all r. 

The simple solution outlined above is, of  course, just the solution to the problem of the 
axisymmetric differential expansion of two infinitely long cylinders (Gatewood 1957) where the 
generalized plane strain assumption that the axial strain ~z is independent of r is appropriate: Such an 
assumption has commonly been made in analyzing the mechanical response of nuclear fuel pins, 
although there have been some notable exceptions (Matthews 1970; Valentin and Carey 1970) where 
the stresses in stacks of short (L/R,,~ 2) ceramic fuel pellets were studied. For large L/R ratios of 
interest here, however, Saint Venant's principle suggests that the generalized plane strain solution 
should be valid sufficiently far from the free surface: Near the upper boundary the difference between 
the actual stress state and the stress state for infinite cylinders decays (Toupin 1965) over a short 
boundary layer. 

As a prelude to the desired calculation of viscoelastic behavior, a series of thermal-elastic finite 
element calculations were performed for cylinders with various L/R ratios. The STRAW finite 
element code (Schreyer, Kennedy and Schoeberle 1983) was employed for these calculations using 5 
equiaxed continuum elements through the solid slug and 4 continuum elements through the 
cylindrical tube, A segment of tube about one radius in length was extended above the upper 
interface: The length L of the slug for each geometry was constructed by adding additional rows of 
elements. Obviously such a procedure could result in very long computation times if it were necessary 
to model an entire slug with L/R ratios of 180 or 295, as would be the case for fast reactor fuel pins: 
However, for the purposes of this paper a maximum L/R ratio of 6:4 was sufficient to determine the 
extent of  the boundary layer and to investigate how extrusion occurs as flow develops: 

Figures 2, 3, and 4 show typical thermal-elastic results for L/R = 3.2 when the slug and cylinder are 
heated 600 K: The properties and dimensions that were assumed are given under case E1 in Table 1: 
As shown in Fig, 2, the axial stress oz in the slug varies from zero at the upper surface to a nearly 
constant negative value at distances greater than about 2.5 R. At the same distances Fig.3 shows that 
the shear stress or, rapidly decreases to zero. Nearly identical stresses are calculated for greater L/R 
ratios confirming that the elastic boundary layer is confined to the region adjacent to the free surface. 

The displacements of the top 6 rows of elements shown in Fig: 4 illustrate the transition to 
generalized plane strain with ez becoming independent of r for elements at increasing distances from 
the free surface: The asymptotic values at large z for the stresses and displacements in the slug can 
easily be determined from the generalized plane strain solution (Gatewood 1957). Substitution of the 
properties and dimensions for case E1 of Table 1 into the appropriate equations gives az = -17:6  
MPa, gr = - 13:6 MPa and e~ = 1.18 x 10-2. The constant value of ~r~ across the radius of the slug is in 
agreement with the limit of  the finite element calculations shown in Fig. 2 at distances greater than 
2:5 R. Comparison of the finite element displacements shown in Fig: 4 with the generalized plane 
strain solution can be made by noting that for L/R = 3.2 the distance from the bottom of the slug to the 
last row of elements is 2R = 3:82 mm: For e~ = 1:18 x 10- 2 the uniform displacement along the bottom 
of the last row should equal 45:1 gm, in agreement with the shown results: 

3 Viscoelastic constitutive equations 

Of primary interest in this paper are conditions where the solid slug shown in Fig: 1 is able to flow 
plastically and extrude inside the tube when both are heated. We will continue to assume, however, 
that the tube behaves thermo-elastically. In this section we outline the assumed deformation behavior 
of the slug: For convenience the subscript F is dropped, components of all tensors are given in a 
rectangular cartesian coordinate system, summation notation is used and the equations are written in 
their form for small deformations: 



152 

18 

ft. 12 

o~10 

~8 

z 

~6 

0 0.2 0.4 0.6 0.8 1.0 
RADIUS, r /R 

I0 

g_ 

- 6 

t~ 
rr 
I -  
to  

< 4 
w 
I 
to  

Computational Mechanics 2 (1987) 

0 I 2 
3 DISTANCE FROM TOP, z /R 

Figs. 2 and 3. 2 Magnitude of axial stress in an elastic solid 
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It is assumed that the total strain rate gij can be broken into a deviatoric part Ou and a volumetric 
part ~,.: The deviatoric component is given as the sum of the elastic strain rate d~j and the plastic strain 
rate "p eij , o r  

= + (1) 
where the dot stands for differentiation with respect to time t. For isotropic elastic behavior the 
deviatoric part of the elastic strain rate is related to the deviatoric stress rate Sia by 

P.i~j=,~ij/2G (2) 

where G = E / 2 ( I  + v) is the shear modulus: 
We further assume that the plastic deformation can be determined from the yon Mises flow 

function and associated flow rule: The effective stress a is then related to the effective plastic strain 
rate & by a material function which is chosen here to be of the non-linear power-law form 

+P = C ( T ) a "  (3) 

where C and n are material properties and T is the temperature. Individual components of the plastic 
strain rate are given by the associated flow rule 

3 +P 
- -  S i j  • (4) 

For the uranium alloys and conditions of interest in this paper the power law parameters C and n are 
determined from the creep equations (Miles and Kalimullah 1985) 

&=(5000 a+6 :0  a4.5) exp ( -26 ,170/T)  (5) 

for T<  923 K and 

6p=0.08 a3 exp ( -14 ,340/T)  

for 923 K <  T <  Tin, where a is in MPa, & is in s -1, T,. is the solidus temperature (approximately 
1373 K), and 923 K represents the temperature of the transition to the solid solution y phase where 
there is a marked increase in the creep rate. 

It is usual to assume that viscoelastic materials are plastically incompressible: The volumetric 
strain rate is then determined by the elastic compressibility and the thermal expansion, or 

k,.  - 1 d v  _ ~ m  

v dt K ~-3~7~' (6) 

where 

E 
K 3(1 - 2 v )  (7) 

is the bulk modulus, Om =gii, 6,. =½ 6"U and v is the specific volume. In our application to metallic 
nuclear fuels we are also interested in swelling due to retained fission gas. We will assume here that the 
gas is contained in small equilibrium bubbles that are bound by the surface tension. As shown in the 
Appendix, this type of swelling can be combined with the thermal expansion to give an effective linear 
expansion coefficient 7. Furthermore, if the bubbles are so large that their compressibility is 
important, the bubble compressibility can be added to the elastic compressibility (I/K) to give an 
effective bulk modulus. 

For short times and high heating rates the viscoelastic model given above would be expected to 
result in elastic behavior. At the other extreme of long times and low heating rates it is reasonable to 
expect that the plastic strains will dominate the elastic strains and that the slug will begin to flow like a 
fluid with the normal stresses tending to a hydrostatic limit and with the velocity gradient in the radial 
direction dominating the strain-rate tensor. In anticipation of  this result we note from the above 
equations that if ar = ao = az = - P  and ~vz/~r >> ~v~/~z 

'r = 1 / 5 %  , (8) 
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1 Ovz 
eP=~33 e ~ z - ~  Or ' (9) 

where vr and v~ are the radial and axial components of the velocity: Dividing Eq. (8) by Eq: (9) shows 
that the effective viscosity r/is related to the material law given in Eq: (3) by 

tTrz ~ 1  - n 

q=-dvJdr =a/3~p= 3C (10) 

It should be noted that the effective viscosity of the solid material as calculated using this equation and 
Eq, (5) is some 10-15 orders of magnitude greater than the viscosity of liquid fuel (Ofte 1967) at the 
solidus: 

4 Viscoelastic behavior 

We return now to the consideration of the thermal extrusion of a viscoelastic solid within a long 
cylindrical tube. It has already been shown that for elastic behavior any relative motion between the 
centerline of the solid slug and the cylinder is limited to a small boundary layer near the free surface as 
seen in Fig: 4: Of interest here is how that boundary layer grows and how extrusion develops as the 
viscoelastic slug begins to flow: This behavior will be illustrated by repeating the previous calculations 
using the constitutive equations for plastic flow given in the last section. 

The implicit version of the STRAW code was again used for the finite element calculations: 
Implicit time integration is performed in STRAW by the Newmark fl-method with the value of fl 
= 1/4, corresponding to trapezoidal integration: For this value of fi, the method is unconditionally 
stable, and the time step is limited principally by accuracy, which is dictated by the modified Newton 
procedure used to solve the non-linear finite element equations: Iterations are performed until the 
error in energy during any time step is small compared to the total energy: Convergence of the 
procedure for the geometry and time scales of interest in this paper was verified by comparing 
STRAW code results with the analytical solution for the uniaxial creep of an unrestrained fuel slug 
with an instantaneously applied axial stress. 

The problem we wish to consider is a metallic fuel pin, shown in Fig. 1, undergoing a power 
transient such that the temperature increases from a steady-state temperature of 773 K to melting 
(1373 K) at a heating rate of 0:1 K/s. Figure 5 shows the calculated displacements of theupper 6 rows 
of elements at the end of 6000 s. The L/R ratio for these calculations was 3.2 and the properties are 
given under Case F1 in Table 1. The temperature increase was 600 K so that the results can be 
compared directly with results of the elastic calculations shown in Fig: 4. It is obvious that significant 
relative flow between the slug and the cylinder has been developed and that the relaxation of the 
stresses has caused elastic recovery in the cylinder: 

Figure 6 shows the time history of the axial displacement of the free surface at r = 0 for L/R = 3.2 
and for a second calculation with L/R = 6:4 (Case F2): The initial response is elastic and can be 
calculated approximately from the generalized plane strain solution, as shown by the lower asymptote 
in Fig. 6, Significant plastic flow does not begin until times greater than 1500 s where the cubic creep 
law in Eq: (5), for the solid solution phase, is applicable: 

A detailed study of the results from the above calculations indicates the following sequence of 
events leading to extrusion: 1) the initial response is nearly elastic and can be determined by 
generalized plane strain calculations; 2) as creep begins the stresses at any axial elevation relax to a 
hydrostatic state, again through plastic deformation; 3) the resulting axial pressure gradients are 
small except near the free surface where shear deformation begins; 4) as the shear deformation relieves 
the pressure gradient, a boundary layer (labeled zo in Fig: 1) separating flowing material from the rest 
of the slug moves downward until it reaches the bottom of the cylinder; 5) when the boundary layer 
reaches the bottom of the cylinder the entire slug flows like a fluid at a constant rate as indicated by the 
asymptote labeled 'viscous response' in Fig: 6: Obviously it takes a longer time for the flow to fully 
develop for the longer cylinder as shown in the figure: 

As a measure of the boundary layer penetration in the finite element calculations we have plotted 
for each elevation the time history of the ratio of the axial displacement at the cladding interface to the 
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Figs. 5 and 6.5 Magnitude of axial and radial displacements at nodal points for a viscoelastic fuel slug and an elastic cladding 
tube. 6 Magnitude of axial displacement at the centerline of the free surface for extrusion of short visoelastic fuel slugs with 
L/R ratios of 3.2 and 6.4 

axial displacement at the centerline: For elevations undergoing plane deformation this ratio remains 
near 1:0. The location of the boundary layer at any given time was then defined as the location above 
in which the ratio was less than some fixed value, such as 0.95. Figure 7 shows the movement of  the 
boundary layer based on this criterion for the metallic fuel example with L/R = 6.4. Examination of  
Figs. 6 and 7 shows how the boundary layer penetrates to the bot tom of the short tube during the 
transition from elastic to viscous response: The rapid acceleration of the penetration rate is due to the 
strong exponential temperature dependence of the creep law: 

Several additional finite element calculations (Case L1 and L2) were also performed to aid in the 
development of the analytical approximations given in the following section. In all of these cal- 
culations the cladding was made elastically very stiff by artificially increasing the cladding modulus as 
given in Table 1. Increasing the stiffness of the cladding this way did not significantly change the 
amount of  fuel extrusion. However, it did simplify the interpretation of  the finite element calculations 
for use in developing the boundary layer equations in the next section. For  cladding much stiffer than 
the fuel the generalized plane strain solution for the initial elastic response of the fuel far from the free 
surface reduces to 

e= = ~cAT , (11) 

ar = a0 = o-= = - 3 (~v - ~c)KFAT . (12) 

Since the sress is already hydrostatic at any axial elevation, no local stress relexation occurs. This 
eliminates step 2 of the sequence for extrusion outlined above: However, because the hydrostatic 
stress state in Eq. (12) is approximately equal to the relaxed stress state ofnon-stiffcladding, the other 
steps of  the sequence are the same giving nearly equal boundary layer penetration distances and total 
amounts of extrusion. 
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l~g.7. Boundary layer penetration distances for viscoelastic 
fuel slugs. The curve labeled "Metallic Fuel Creep" uses the 
non-linear fuel creep equation (Case F2 of Table 1). The 
curve labeled "High Linear Creep" uses a lower bound 
constant viscosity approximation to fuel creep (Case LI and 
Table 1). The curve labeled "Low Linear Creep" uses an 
upper bound constant viscosity approximation to fuel creep 
(Case L2 of Table 2) 

Figure 7 also shows the depth of boundary layer penetration for cases L1 and L2. Constant 
viscosities (with n = 1) were used to give creep rates bounding the scale of the creep rate of metallic 
fuel. The 'low linear creep' case (L2) can be seen to result in a boundary layer penetration of only 
several radii. On the other hand, the 'high linear creep' case (L1) was sufficiently rapid so that the 
boundary layer reached the last row of elements well before the end of the simulated heating transient. 

5 Approximate boundary layer solution 

At large distances z sufficiently far from the free surface the solution to the thermal extrusion of a 
viscoelastic material also obeys the generalized plane strain assumption. Even this solution normally 
requires numerical methods for the case of nuclear fuel pin behavior where radial temperature 
gradients exist and where the material behavior is highly non-linear: However, under conditions 
where the material is capable of flowing axially it must also be capable of deforming plastically at a 
sufficiently rapid rate to relax the normal stresses to a nearly uniform hydrostatic pressure across the 
radius, Since the cladding behaves thermo-elastically and since under generalized plane strain the fuel 
does not deform relative to the cladding, the resulting pressure is determined by the fuel 
compressibility and the cladding compliance. The rate of change of the fuel volume must equal the 
rate of change of volume inside a cladding segment. As discussed in the previous section, the cladding 
compliance does not significantly change the extrusion behaviour so that only the cladding volume 
change due to thermal expansion will be considered here in the development of the approximate 
boundary layer equations. Therefore, from Eq. (6), 

1 d v _ 3 e c ~ _  15 "k3C~F]P (13) 
v dt KF 

or, simply 

t (14) P(t)=-Pz q 
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for large z, where 

is the maximum pressure generated due to the total temperature rise AT over time tl = AT/T. 
The simple generalized plane strain solution given by Eq. (14) approximately satisfies all of  the 

equations for the stated problem except the boundary condition P = 0 at z = 0. Near z =0  large 
pressure gradients develop so that relative axial flow of the slug inside the cladding tube takes place. In 
this zone it is reasonable to expect the following lubrication hypotheses to be valid 

0P 0P . 0Vz 0v~ 0vr 0vr . 
Or < 0 z  ' Or >>0z ' Or ' 0z ' (16) 

and inertia and compressibility effects are negligible compared to viscous effects. 
The balance of momentum in the z-direction then reduces to 

0P 2 
- - =  Gz (17) 
~z r 

and the continuity equation is given by 

(QA) + = 0 (18) 

where A is the cross-sectional area of the expanding tube and v~ is the radially averaged velocity. 
Substituting Eqs. (8-10) into Eq. (17) and integration across the radius gives 

~ z ( z , t ) = - ~ o T ( L - z )  C 3 ("+1)/2 ,+I(OP)" 
(n+3)  2" R ~ (19) 

where we have made use of the boundary condition at r = R  that the fuel slug is bonded to the 
cladding tube. Except for the first term on the right-hand side, this equation is the Same as the 
equation relating the average velocity to the pressure gradient for Poiseuille flow of a power-law fluid 
(Metzner 1961). 

The density Q is related to the pressure through Eq. (6) which can be written as 

1 dv 1 d ~ _  P 
t- 3 ~v/" (20) 

V dt 0 dt KF 

If, as assumed, the compressibility ~c = 1/KF is negligible in determining the flow velocity, substitution 
of Eq. (20) and the equation for the thermal expansion of the cladding, 

1 dA 
A dt-2C~c/"  , (21) 

into Eq. (18) gives 

0v~ = (3 ~V -- 2 ~C) ~P (22) 
0Z 

We now define the inner region over which viscous flow is significant as extending from z = 0 to 
Z=Zo(t): At Z=Zo the inner solution is matched to the generalized plane strain outer solution by 
equating the pressure and the average velocity. Integration of Eqs. (22) and (19) then gives, for 
O>_z>zo, 

v~ = - / ' (Zo - z )  [3 av -- 2 ~C] -- aC 7~( L -- ZO) (23) 

and 

n P1 1 -  1 " (24) 
P = n + 1  Zo/ A ' 
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where 

= r3 (eF--C~C) iP2~(n + 3)q 1/" 
P1 L 3("+1)/2c / " (25) 

The boundary layer penetration distance Zo can be found by equating the pressure at z = Zo as given by 
Eqs: (14) and (24). The result is 

R ( n + l  P2 t'~ "/("+1) = - . (26) 
n P1 tl} 

For the case of constant viscosity (n= 1, 1/r/=3C) Eq: (26) reduces to 

z o / R  = [ K v / 4 q ]  1/2 • (27) 

In order to illustrate the comparison between the approximate boundary layer solution given above 
with the previous finite element calculations we have calculated the boundary layer penetration 
distance and the axial displacement at the centerline of the free surface for case LI of Table 1. The 
penetration distance for the finite element calculations was shown by the curve labeled 'low linear 
creep' in Fig. 7: Recall that this distance was defined for the finite element calculations by the axial 
position above which the ratio of the axial displacement of the fuel slug at the tube wall to the axial 
displacement at the centerline was less than 0.95. Other choices for the ratio produce the curves 
shown in Fig, 8 which tend in the limit to the expected behaviour that z0 = 0 at t = 0. However, the 
finite size of the spatial grid restricts the resolution to which Zo can be defined by this limit: Also 
shown in Fig. 8 by the dashed curve is the analytical boundary layer penetration distance as given by 
Eq. (27). The agreement with the extrapolated limit of the numerical results appears to be very good. 
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The boundary layer solution for the displacement at the centerline of the upper interface can be 
calculated by integrating the analytical expression for the velocity vz(r, z, t) over time. This velocity 
can easily be shown to be related to the average velocity t~z(Z, t) at the surface by 

v:(0,0, t) \ n + l }  [vz(O,t)+~ci"Ll-c~c~PL . (28) 

The resulting displacement for case L1 closely follows the finite element calculations with the final 
displacement at 6000 s equal to 170 gm as compared to the numerical result of 160 ~tm: Comparison 
of axial displacements for the case of non-linear fuel creep (F2 in Table 1) gave even better agreement 
with the analytical calculation for the displacement at 6000 s equal to 167 gm compared to the 
numerical result of  175 ~tm: 

The calculations of extrusion driven by gas bubble expansion (discussed in the Appendix) show 
the same general behavior as simple thermal expansion: The extrusion is again limited to a boundary 
layer near the free surface at z = 0. The analytical expressions for boundary layer penetration and axial 
displacement provide acceptable approximations to the much more complex calculations: We 
illustrate this behavior here by choosing the case labeled S1 in Table 1 where the bubble size is s u c h  
that the effective fuel expansion coefficient is twice the linear expansion coefficient of the cladding: 
Figure 9 shows an example of the comparison of the axial displacement at the free surface as 
calculated by the finite element method and by the analytical boundary layer approximation: 
Although the shape of the curves and two asymptotes for the velocity at this surface are the same, it 
appears that the analytical expression underestimates somewhat the time over which the transition 
occurs. 

6 Axial extrusion of metallic reactor fuel during overheating transients 

In the preceding sections we have shown that the simple boundary layer equations give reasonable 
agreement with two-dimensional finite element calculations for extrusion under conditions relevant 
to the transient expansion of metallic reactor fuel. Comparisons of calculations were provided for 
fairly short tubes (L /R  < 6:4) so that the numerical calculations would not be prohibitively time 
consuming: Here we wish to extend the analytical results to full length reactor fuel designs with 
L / R - - 2 9 5  and R = 3:10 mm. We will also consider higher heating rates in the range of 10-100 K/s 
which are more typical of  reactor accident conditions. 

Table 2 gives the calculated boundary layer penetration distance zo/R and the centerline 
displacement at the free surface ub for metallic fuel extrusion at various heating rates: Also provided is 
the displacement Ugps that would result if the generalized plane strain assumption were valid along the 
entire length: Fuel creep was assumed to be given by the non-linear Eq. (5) and the extrusion potential 
was increased by augmenting the fuel thermal expansion to account for transient fission gas swelling: 
It can be seen from the table that the extent of the extrusion zone is only about 15 times the radius 
(or 5% of the fuel length) by the time of fuel melting when the fuel is heated at 10 K/s. The axial 
displacement at the top of the fuel ub is about 8:5% larger than would be calculated using the 
generalized plane strain assumption: However, this additional expansion comes from a small zone 
near the top of the pin so that it would not add significantly to the total fuel reactivity feedback: 

Table 2. Maximum boundary layer penetration and displace- 
ments for full length tubes" with thermal expansion augmented 
by gas expansion b 

IP, K/s zo/R ub, mm Ugps, mm 

0:1 47 13.3 10.6 
1.0 27 12.1 10.6 

10.0 15 11.5 10.6 
100.0 8 11:1 10.6 

" L/R=295, R=3.10 mm; b ~r(effective) =3.9 x 10 -s K -1 
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In the above calculations the only source of fuel compressibility was due to the elastic 
compressibility of the fuel matrix. If fission gas bubbles are free to expand they also must be free to 
compress. The results in Table A-I of the Appendix suggest that for 0:1 tx radius bubbles the fuel 
compressibility can be as high as 7:5 x 10 .3 MPa-I :  For the 10 K/s heating example in Table 2 the 
higher compressibility would further reduce the boundary layer penetration to zo/R=0:65. Thus 
within the range of reasonable assumptions for the fuel expansion and the fuel compressibility, solid 
fuel extrusion is limited to a small zone near the top of the fuel less than about 10 radii in length: 

One of the major factors that limits solid extrusion is the high effective viscosity. We have already 
noted in this regard that the effective viscosity of solid uranium-based alloys is some 10-15 orders of 
magnitude greater than the viscosity of liquid uranium: It is obvious from the analysis given 
previously that if bulk melting occurs during a reactor transient there will be little viscous resistance to 
subsequent extrusion of liquid fuel: Significant extrusion of fuel could also occur prior to bulk melting 
if there is local melting at the fuel-cladding interface. Although interdiffusion metallurgically bonds 
uranium fuel alloys to iron-based cladding alloys after serveral percent burnup, some of the phases 
present at the interface have solidus temperatures as low as 1000-1100 K: The large decrease in 
viscosity upon melting at the interface would likely release the remaining solid fuel so that it can 
extrude axially. The resulting motion of the solid slug can be determined by separate generalized plane 
strain analyses of the fuel and cladding deformation: 

7 Conclusions 

Axial extrusion of an expanding non-linear viscoelastic solid inside a long cylindrical tube has been 
analyzed. Both differential thermal expansion and expansion of gas bubbles in the solid have been 
considered as driving forces. In both cases finite element calculations have shown that the following 
sequence of events leads to extrusion of the solid relative to the tube: 1) the initial response is nearly 
elastic and can be determined by generalized plane strain calculations; 2) as creep begins the stresses at 
any axial elevation relax to a hydrostatic state, again through plastic deformation; 3) the resulting 
axial pressure gradients are small except near the free surface where shear deformation begins; 4) as 
the shear deformation relieves the pressure gradient, a boundary layer separating flowing material 
from the rest of the slug moves downward until it reaches the bottom of the cylinder; 5) when the 
boundary layer reaches the bottom of the cylinder the entire slug flows like a non-Newtonian fluid at a 
constant rate determined by the expansion rates of the slug and its cylinder: 

A simple boundary layer analysis has been developed to provide analytical expressions to describe 
the above extrusion process: At distances far from the free surface the generalized plane strain 
analysis shows that the nearly hydrostatic state of stress is governed by the material compressibilities. 
Near the free surface at the top of the cylinder the flow can be determined by applying lubrication 
theory hypotheses. The boundary between the zones can then be calculated by matching the pressure 
and average velocity from these inner and outer solutions: For linear viscoelastic materials the growth 
of the boundary layer is proportional to ]//Kt/q where t is the time, Kis the effective bulk modulus and 
~/is the effective viscosity: Comparisons of calculations based on the approximations with finite 
element results show good agreement for extrusion of both linear and non-linear viscoelastic 
materials: 

The above analysis has been applied to investigate axial extrusion of metallic fast reactor fuel 
during overheating events: Such extrusion has been postulated to provide a passive negative reactivity 
source which could contribute to reactor shutdown during an overheating event: However, our 
calculations indicate that there will be little relative axial motion between solid fuel and the cladding 
as long as the fuel and cladding are locked together at the fuel-cladding interface. Because of the small 
pressure gradients, large compressibilities, and large viscosities involved, any extrusion would be 
limited to a zone near the top of the fuel of about 10 radii in length for a 10 K/s heating ramp: Of 
course even if there is no extrusion, simultaneous expansion of the fuel and cladding contributes to the 
negative reactivity feedback. Furthermore, relative extrusion can occur if there is bulk melting of the 
fuel or if there is local melting of uranium-iron eutectic phases that have formed at the fuel-cladding 
interface during irradiation: 
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Appendix 

In this section we consider augmentation of thermal expansion of the viscoelastic slug by the 
expansion of very small (r < 0.1 gm) gas bubbles trapped in the solid. For our application to metallic 
reactor fuel we note that experience with EBR-II driver fuel has shown that metallic fuel pins may 
retain an average amount of fission gas equal to seven times the original fuel volume if this gas were 
expanded to one atmosphere at room temperature (STP) (Waiters, Seidel and Kittel 1984). During 
heating transients mechanisms exist [such as grain boundary diffusion (Gruber and Kramer 1986)] by 
which these bubbles can rapidly expand in response to increases in the gas pressure. 

We assume here that the gas bubbles in the slug are always in pressure equilibrium: The pressure Pg 
of the gas inside the bubbles is therefore 

P + 27/rb = Pg , (A. 1) 

where r b is the bubble radius, P is the hydrostatic pressure in the surrounding material and 7 is the 
surface tension. The gas pressure is related to the bubble volume Vb by the ideal gas law 

PgVb=p.4 3 ~ r  b = m k T  , (A.2) 

where m is the number of gas atoms per bubble and k is Boltzman's constant. We have also assumed 
for the purposes of this paper that all of the bubbles are of the same size, there is no coalescence and the 
bubbles are sufficiently small so that 

IPl "~ 2 7/rb • (A.3) 

Differentiating Eqs. (A:I) and (A:2) and substituting Eq. (A.3) then gives the following linearized 
approximation to the transient fuel swelling emb due to fission gas bubble expansion 

A V b  [ 3 ~  3 r b  1 
emb=Vp ~ -Vp 4 7 AP , (A:4) 

where Vp is the volume fraction of bubbles (porosity). 
As shown in Table A: 1, all of the factors in the above equations can be determined for metallic fuel 

from the total gas content of the fuel and the bubble radius: Also shown in this table are the thermal 
expansion and elastic compressibility of the fuel matrix as defined by Eq. (6) and Table A, 1: 

The most straightforward way to estimate the total transient swelling emriS to simply add em from 
Eq: (6) and emb from Eq. (A.4). Combining the coefficients of the terms involving T(AT/At )  gives an 
effective linear expansion coefficient 

~tF(effective) = eF + Vp/2 T . (A:5) 

Similarly, the effective bulk modulus is given by the sum of the terms multiplying 6 m ( - A P / A t ) ,  or 

l/KF(effective) = 1/KF + 3 Vprb/4 7 . (A.6) 

Calculation of the effective fuel expansion coefficient and the effective compressibility using Eqs: 
(A.5) and (A:6) and the bubble parameters given in Table A:I indicates that bubble expansion will 
dominate elastic expansion for bubbles with radii greater than about 0.01 pm 

Table A.1. Bubble swelling factors in metallic reactor  fuel for different bubble  sizes 

rb, Ixm 27/rb, M P a  lip Vp/2T, K -1 ~F, K -1 3 V~rb/4y, MPa -1 1/KF, M P a  -1 

0.1 20 0.1 6.5 x 10 -5 2.1 x 10 -5 7:5 x 10 -3 1.15 x 10 -4  
0.01 200 0.01 6.5 X •0 . 6  2.1 x 10 -5 7.5 x 10 -5 1:15 x 10 -4 
0.001 2000 0.001 6.5 x 10 v 2.1 x 10 .5 7.5 x 10 -7 1:15 x 10 -4  

Assuming:  1) 7 m m  3 gas x STP per  m m  3 fuel; 2) T = 7 7 3  K, 3) 7 = 1  J /m 
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