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Abstract

In this paper, we develop a simplified oligopoly model where hydro generators engage in dynamic
Bertrand competition. Each player uses a Markov strategy based on the state of water reservoirs at the
beginning of each period. The replenishing of water reservoirs, which affects generators’ productive
capacity, is governed by a stochastic process. Also, a price cap, i.e. a maximum bid allowed, is imposed
on the market. We develop valuable insights for regulatory policy in predominantly hydro based electricity
markets, including the effects of price caps, the efficiency of dispatch under strategic behavior and the
likelihood of collusion.

1. Introduction

Competitive strategies in deregulated electricity markets have become a very active area
of research. However, most of the published literature (see, for example, Green and
Newbery 1992; Von der Fehr and Harbord 1993; Borenstein and Bushnell 1999;
Rudkevich et al. 1998; Borenstein et al. 1999; and Green 1999) examines strategic
behavior in a static setting. Bushnell (1998) and Scott and Read (1997) are, to our

* We would like to thank the staff members of Fundesarrollo (Barranquilla, Colombia) and the Colombian
Electricity and Gas Regulatory Commission (CREG) for many helpful discussions.
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knowledge, among the few works that analyze dynamic strategic behavior in power
markets. Both papers use output as their decision variable, and their analyzes offer
limited policy guidance or insights into the specific elements that constrain equilibrium
prices.

Despite the scant attention, analyzing dynamic pricing behavior is important to
understanding markets where hydroelectric (i.e., hydro) power is a significant or dominant
source of production. This is essentially the market situation in New Zealand and Norway,
as well as several South American countries including Colombia, Argentina, and Chile.' In
markets dominated by hydro power, generators are capable of shifting productive capacity
from one period to another based on whether they retain or release the water needed to
produce electric power.

In this paper, we analyze the price-formation process and its policy implications in an
infinite-horizon duopoly model where two hydro generators engage in dynamic Bertrand
competition. Each player uses a Markov strategy based on the state of water reservoirs at
the beginning of each period. The replenishing of water reservoirs, which affect
generators’ productive capacity, is governed by a stochastic process. In addition, a price
cap (i.e., a maximum allowable bid) is imposed on the market. A number of valuable
insights for regulatory policy are developed from this model.

We begin with price caps, which seem on the surface, well understood. These caps
function as a binding price ceiling during conditions where electricity suppliers otherwise
would set prices in excess of the specified cap. One might easily believe that these are the
only times where price caps constrain prices, since the difficulty of storing electricity
inhibits the transfer of electricity supplies from one period to another, and intertemporal
substitution among retail electricity consumers appears quite limited.>

Despite these preconceptions regarding the effectiveness of price caps, we show that
price caps potentially affect the entire equilibrium pricing distribution in electricity
markets where hydro power is a major supply source. Hydro generators face an
opportunity cost of producing power. The cost of increasing current water usage,
thereby expanding current hydro generation, is that less water is available for future
electricity production. Hydro generators thus face a dynamic programming problem
where their current pricing decision is the control variable influencing future water
levels and profits. In this setting, our analysis demonstrates that the imposition or
tightening of a price cap affects the opportunity cost of producing electric power in the
present period since it constrains future electricity prices. Thus, decreases in a price cap
shift the entire pricing distribution downward, including prices in periods where the cap
is not ‘‘apparently’’ binding. Our results also show that prices in ‘‘competitive’’ states
(i.e., the states where both producers have available water reserves to produce
electricity) decline when the discount factor decreases or the probability of water
replenishment increases.

We extend our model in a few notable ways. First, we examine whether our conclusions

1 See ‘‘Profiles of Power Sector Reform in Latin America’’, TADB (1999).
2 Retail customers typically purchase power under fixed-price contracts and do not have metering
equipment that reports their electricity usage to electricity providers on a ‘‘real-time’’ or frequent basis.
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change if hydro generators face competition from thermal (i.e., coal, gas, nuclear)
electricity generators. Once again, the results show that the equilibrium price distribution
over most states of nature is influenced by the imposed price cap. An exception occurs
when the marginal cost of thermal supply is high relative to the opportunity cost of
supplying hydro power. In that situation, the price cap only influences equilibrium pricing
““directly’’. That is, it influences prices only during states where one (or both) of the hydro
producers faces a depleted water supply and the price cap directly constrains the
equilibrium price level. When both hydro producers have available water reserves and
thermal suppliers face relatively high marginal costs, price undercutting by the hydro
producers eliminates any thermal electricity production. The result of this strategic
behavior is that the reliability of the electricity system is compromised; the undercutting
behavior leads to a higher probability of system outage (due to inadequate electricity
supply as a result of depleted water reservoirs) than if some thermal production had
occurred. In this situation, raising the price cap may lead hydro producers to hold onto
more of their water reserves when their reservoirs are full. It also may result in equilibrium
prices in this state that are below, but proportional to, the price cap.

As a second extension, we explore pricing behavior when the hydro producers face
differing circumstances with respect to water replenishment. Again, prices in the
“‘competitive’” state are less than, but proportional to, the price cap. In equilibrium, the
firm with the lower opportunity cost of providing power supplies the market when both
producers have available water reserves. That firm sets its price equal to the higher
opportunity cost, where the opportunity cost derives from the value obtained when a firm
refrains from using its water in the current period. This withholding behavior increases the
likelihood of reaching a ‘‘monopoly’’ state in the future. A monopoly state arises when
one producer has a full reservoir and its rival has an empty reservoir.

Interestingly, the hydro producer with the lower probability of reservoir replenishment
often has the lower opportunity cost of selling electric power. This implies that the
producer with the lower probability of replenishment empties its reservoir first when both
firms have full reservoirs. This increases the likelihood of reaching a future state where
both producers have empty reservoirs, which imposes a reliability risk on the electric
system. Hence, the strategic behavior of hydro producers leads to an outcome opposite to
that desired by a benevolent social planner, who would release first the reservoir of the
firm with the higher probability of water inflow.

As a third extension, we examine the implications of increased reservoir size. With a
larger reservoir, our analysis shows that relatively high prices are observed during states
where each firm’s reservoir is partially filled. By holding onto water in these states and
allowing a rival to drain its reservoir, a given hydro producer may find itself in position to
exercise market power over a longer time period. By contrast, during the state where both
reservoirs are full, the likelihood is reduced of reaching a future state where a rival’s
reservoir is drained. Consequently, prices are more constrained. In all of these states,
however, prices are still proportional to the imposed price cap.

Lastly, our model examines how the likelihood of collusion is affected by the price cap.
In order to ensure rational behavior during the ‘‘punishment’’ phase, we do not assume
that play reverts to a repeated static Bertrand—Nash equilibrium. Instead, it is assumed that
play reverts to the Markov perfect Bertrand—Nash equilibrium. This assumption is made
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because the hydro generators face a dynamic optimization problem, which includes a
positive probability that each generator will find itself in a monopoly position due to
limited water availability facing its rival.

Under this punishment assumption, we find that the magnitude of the price cap does not
affect whether collusion is sustainable. Given that the collusive price in the competitive
state exceeds the price obtained under Bertrand—Nash dynamic competition, the
sustainability of collusion depends solely on the discount factor and the stochastic
nature of water replenishment. Decreases in the discount factor make collusion less likely,
and they also lower the Bertrand—Nash equilibrium price in the competitive state. A
decline in the probability of water replenishment lowers the probability of collusion;
however, it raises the Bertrand—Nash equilibrium price.

This paper is organized as follows. Section 2 introduces the model, solving for the
Markov-perfect equilibrium under Bertrand pricing behavior. Extensions of the model
consider the impact of asymmetric competition among the hydro generators, additional
competition from thermal production sources, different demand allocation rules when
competitors set identical prices, and increases in water reservoir size. Section 3 examines
the likelihood of collusion. Section 4 offers concluding remarks.

2. The Model

In this section, we introduce a simple infinite-horizon model of strategic behavior in
hydroelectric power markets. Two hydro generators, drawing upon reservoirs of equal
size, use water to produce electric power. Water reservoir levels are observed perfectly at
the beginning of each period, after which both hydro generators simultaneously set prices
for electric power. The market then clears, with consumers purchasing from the low-
priced firm. When both firms set the same price, it is assumed initially that one of the two
firms supplies the entire market demand, where the probability of serving the market
equals one-half for each firm. This assumption produces asymmetries in the available
reservoirs of the hydro firms, even under conditions where both firms experience the same
realized water inflows each period. Although this assumption aids the exposition, we show
later that our results are completely unaffected if it is assumed instead that demand is
spread evenly across both firms when both firms set the same price.

Both firms have a maximum reservoir capacity and maximum output capability equal to
one unit. Demand also equals one unit in each period, and is perfectly inelastic.®
Consequently, each player can satisfy the entire market demand when its reservoir is full.

In strategically setting prices, each player faces incomplete information regarding the
size of future water resources for itself and its rival. Water inflows, w, follow a simple
binomial process. During each period w = 1 with probability g and w = 0 with probability

3 Our assumption regarding perfectly inelastic demand is consistent with the operating reality of many
real-time wholesale electricity markets. With nearly all retail customers purchasing power under fixed
rate contracts, the responsiveness of market demand to short-term changes in wholesale energy prices is
extremely limited. For an updated review on this issue, see Train and Selting (2000).



STRATEGIC PRICING WHEN ELECTRICITY IS STORABLE 227

1 — g. In other words, either it rains one unit (with probability g), or it does not. Water
inflows occur at the end of the period. Initially, it is useful to assume that both players are
identical. Hence, the realization of w is the same for both players. Finally, marginal costs
are identical for both players and normalized to equal zero.

Ignoring the impact of the pricing decision on future profits, one has a static
optimization problem that is easy to solve. When both reservoirs are empty, no production
takes place. If one generator has a full reservoir and the other generator has an empty
reservoir, the generator with water is effectively a monopolist. It will charge the maximum
allowed price, c¢*, which is either a reservation price or a price cap set by the regulator. If
both reservoirs are full, we have the so-called ‘‘Bertrand paradox’’ where each firm
charges its marginal cost, zero.

In the dynamic setting, our attention focuses particularly on the state where both
reservoirs are full. We refer to this situation as the ‘‘competitive’’ state. When both
reservoirs are full, a generator setting its price above its rival’s price may find itself in a
monopoly position in the near future. This occurs because the lower-priced rival will
deplete its reservoir, and that reservoir may not refill prior to the next period. An
‘‘opportunity cost’’ exists in selling electric power in the current period, since future
monopoly opportunities may be forsaken. Consequently, when a price cap binds behavior
in the monopoly state, the opportunity cost of selling power in the competitive state is
affected necessarily. Under Bertrand competition, this opportunity cost directly
determines the equilibrium price in the competitive state. In this fashion, the price cap
affects the magnitude of the equilibrium *‘competitive’’ price, even though that price lies
beneath the price cap.

2.1. Solving the Dynamic Game

In our game, the two hydro players meet infinitely often. The different states of nature
visited by these firms, as tracked by their reservoir levels, are a function of the pricing
strategies followed and the random inflows of water. Pricing stategies and payoffs are
‘“‘Markovian,”’ in that they depend only on current reservoir levels, and not the history of
such levels.

When determining the optimal pricing strategy in each state, we need merely to assess
how each firm’s pricing decision affects its payoff in the current period, and the probability
of reaching a given reservoir state in the next period. The firm’s current pricing decision
affects the probability of reaching a particular state in the next period because it
determines whether a firm depletes its reservoir in the current period in order to produce
electric power. Since the game is Markovian and the horizon is infinite, the payoff to each
player from attaining a given reservoir state can be expressed succinctly by use of a *‘value
function.”” The value function represents the present-value payoff to the player for the
remainder of the game once a particular state is reached (assuming that optimal behavior
occurs). Hence, if we know the current-period payoff from following a particular pricing
strategy, and the strategy’s impact on the probability of reaching a given state in the next
period, we know the impact of the strategy on payoffs throughout the life of the game by
virtue of the value function. This is all the information that we need to choose the optimal
pricing strategy.

Let V., denote firm i’s value function for the state (x,y), where x€ {0, 1} denotes firm
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i’s reservoir level, and ye {0, 1} denotes its rival’s reservoir level. This value function
represents the present value of firm i’s payoff under optimal behavior for the remainder of
the game once the state (x,y) is reached. Given that the game is infinitely-lived and that
firms use Markov strategies, this state-dependent value is independent of time or prior
history. Since both players face identical marginal costs, common demand conditions, and
the same water-replenishment probabilities, the value functions are symmetric (i.e.,
Ve = th,ya =V,, for firms @ and b when x, = x, = x and y, =y, = y).

Consider initially the value for firm i in the state (0, 0). Neither firm has any water in its
reservoir. No profit is earned in the current period because no water is available to convert
into electricity. By the beginning of the next period, both generators will have replenished
reservoirs (of one unit capacity) with probability ¢, implying that they will receive the
value, V, ;, for the remainder of the game. The reservoirs will remain empty at the
beginning of next period with probability 1 — ¢, implying that both generators receive V)
for the remainder of the game. Letting € (0, 1) represent the discount factor, firm i’s
value for the state (0, 0) can be expressed as follows:

Voo = B[(l —q)Voo + qV1,1]- (2.1)

Next, consider the state (0, 1). Firm i’s own reservoir is empty while its rival’s reservoir
is full. The rival exploits its monopoly position, draining its reservoir to sell one unit of
electric power at the maximum allowed price c¢*. Both reservoirs fill to capacity by the
beginning of the next period with probability ¢, or remain empty with probability 1 — ¢.
Consequently, firm i’s value in this state can be expressed as follows:

Vo1 = B[(l —q)Voo + qvl,l]' (2.2)

Note that equations (2.1)~(2.2) are identical (i.e., Voo =V ;). When a firm’s own
reservoir is currently depleted, that firm’s value is independent of its rival’s reservoir level.
Either its rival’s reservoir is also empty; or, it is full, implying that the rival will drain its
entire reservoir to exploit its monopoly position. In either case, the rival’s reservoir is
empty prior to any water replenishment that takes place at the end of the period.
Consequently, both firms will have the same reservoir level in the next period. Either both
reservoirs are full with probability g or empty with probability 1 — q.

Next, consider the state (1,0). Firm i’s own reservoir is full, while its rival’s reservoir is
empty. Acting as a monopolist, firm 7 drains its reservoir to sell one unit of output at the
maximim allowed price c*. That depletes its reservoir, causing both firms to have empty
reservoirs in the next period unless replenishment occurs. Consequently, firm i’s value in
this state can be expressed as follows:

Vip=c"+ B[(l —q)Voo + qu,l]- (2.3)
Note that, by subtracting equation (2.1), or (2.2), from equation (2.3), it follows that:

V],O = C* + V070 = C* =+ VO,]' (24)
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In other words, the value to firm i in the ‘*‘monopoly’’ state is ¢* greater than the value in
the ‘‘depleted’’ states. The immediate payoff is c*, and the continuation payment depends
on the random evolution of the reservoir levels.

Lastly, consider the ‘‘competitive’’ state (1,1). In contrast to prior states, both firms
have full reservoirs and are capable of producing output in the current period. Each firm’s
response to its rival’s pricing strategy determines whether or not it will sell power in the
current period.

Consider firm i’s optimal response to its rival’s price choice p, ;. Firm i can bid € below
this price, and capture the entire market. In that case, firm i earns p, ; — € in the current
period. Its rival will have a full reservoir for the next period; and, firm i’s reservoir will
replenish at period’s end with probability ¢ or remain empty with probability 1 — g.
Consequently, firm i’s value from pursuing this strategy is as follows:

(P11 —¢)+ B[(l —q)Vo1 + qvl,l]'

For sufficiently small values of ¢, this expression can be approximated as follows:

Pig T B[(l —q)Vo, —&—un]. (2.5)

Alternatively, firm i can bid € above p; ;. Under this strategy, firm i makes no sales in the
current period, while its rival serves the entire market and depletes its reservoir. In the next
period, firm i finds itself in the monopoly position with probability ¢, or back at the
competitive state with probability 1 — ¢. Hence, firm i’s value from pursuing this strategy
is as follows:

B[(l - q)Vip +CIV1.1]~ (2.6)

Finally, firm i can match the bid p, ;. Since both firms charge the same price, firm i will
be chosen to produce electric power for the entire market with probability 1/2. If firm i is
chosen, then the value to firm i is represented by equation (2.5). If firm i’s rival is chosen
instead, then the value received by firm i is represented by equation (2.6).

The above discussion suggests an equilibrium pricing strategy. The equilibrium price
P11 should leave each player indifferent between trying to capture the market in the
current period, or waiting to produce electric power in the future. If the value from
producing and selling at the rival’s price offer in the current period equals the value from
withholding production in the current period (and possibly receiving a monopoly price in
the next period), then there is no incentive to undercut the rival’s price offer. Thus, the
equilibrium price pj; must equate the values in equations (2.5)—(2.6):

P+ B[(l —q)Vo, + CIV1,1]

B[(l —q)Vio+ qu,]]- (2.7)
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Rearranging equation (2.7), we obtain:
pia =B =q)(Vig— Vo)
Recognizing that V, ; — V| = ¢” from equation (2.4), we derive the following equation:
pii=B(1 —g)c. (2.8)

This equation leads directly to the following proposition:

Proposition 1: The (Markov-perfect) Bertrand—Nash equilibrium price in the competitive
state equals B(1 — q)c*. The equilibrium price is increasing in the price cap (c*) and the
discount factor (B), and decreasing in the probability of water inflow (q).

Intuitively, the ‘‘opportunity cost’’ of selling electric power in the current period in the
competitive state depends on the additional value that firm 7 receives in future periods if it
refrains from selling power currently. That additional value equals the probability of
reaching the monopoly state in the next period, multiplied by the present value of next
period’s monopoly profits. The probability of reaching the monopoly state in the next
period equals 1 — ¢, which represents the probability that one’s rival will not have its
reservoir replenished. The present value of monopoly profits equals the monopoly price,
¢*, which is constrained by the price cap, multiplied by the discount factor, . Thus, the
additional value in future periods from refraining to sell electric power in the current
period equals B(1 — ¢)c*. This expression determines the equilibrium price in the
competitive state. When the regulator raises (or lowers) the price cap, c*, the equilibrium
price in the competitive state increases (or decreases) proportionately.

Finally, note that as g— 1, the equilibrium price in the competitive state approaches
zero. Thus, as g— 1, the equilibrium price in the dynamic game approaches the equilibrium
price from the one-period static game where both firms have full reservoirs. This makes
sense in that reservoirs are full every period when ¢ = 1, implying that the dynamic game
can be treated as a series of one-shot static games.

2.2. A Different ‘‘Tie-Breaking’’ Procedure

Let us assume now that whenever both players bid the same price, the quantity of
electric power demanded is split equally between the two players. That situation is
relevant only to the competitive state where both firms have nonempty reservoirs. When
both firms set the same price in that state, each will sell 1/2 unit of output. This, in turn,
implies that the state (1/2,1/2) would be reached in the next period with probability
(1 —¢q). In the (1/2,1/2) state, the dominant strategy for each firm is to set the price
¢* and sell 1/2 unit of output. This results in an empty reservoir, which is then replenished
with probability ¢g. Accordingly, the value for the state (1/2,1/2) is as follows:
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= S Bl0 — Voo +aVia] 29)

Si—

Armed with this value, we now consider the equilibrium pricing strategy for the
competitive state, (1, 1). First, there should be no gains from undercutting a rival that is
selling at the equilibrium price p, ;. This requires that the equilibrium price must satisfy
the following condition: '

. 129
Pig— €+ B[(l —q)Vo, + qu,l] < %4' B{(l - CI)V%,% +‘1‘/171}
or (2.10)
P1,
e <B(1-)(Viy— Vo))

The expression to the left of the first inequality represents the value received from
undercutting the rival’s price, while the expression to the right represents the value
received from matching that price. Recognizing that (V%% —Vp1) = ¢*/2 (see equations
(2.2)—(2.9)), the above equation simplifies as follows:

Pri S B(l—g)c" + 2. (2.11)

Note that this condition must hold for any £>0. Thus p, ; < B(1 —g)c*. For p;; to

represent an equilibrium price, there also must be no gains from selling above that price.
To meet this requirement, the following condition must be satisfied:

BI(1 = a)Vig+avia] <22 +B[(1 -9V,

or (2.12)

The expression to the left of the first inequality represents the value received from
selling above the rival’s price. The firm behaving in this fashion acts as a monopolist in the
next period with probability 1 — g, or finds itself in the competitive state with probability
q. The right-hand expression represents the value received from matching the rival’s price.
Given that (V- V% ) =c*/2 (see equations (2.3)-(2.9)), the above expression
simplifies as follows:

1
2

B(1 —g)c" <py;- (2.13)

Together equations (2.11) and (2.13) cannot hold unless p; ; = B(1 — ¢)c* = pj . Thus,
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the equilibrium price in the competitive state is not sensititive to the assumption
concerning how demand is allocated when both firms set the same price.

2.3. Adding Thermal Production

In this section, we examine whether the above equilibrium still arises when thermal (i.e.,
coal, gas, nuclear-powered) electricity production offers competition to hydro production
in the market. This situation reflects supply conditions in the electricity markets in certain
South American countries (e.g., Colombia, Argentina, Venezuela, Brazil, and Chile) and
in Nordpool (Sweden and Norway).

We assume that thermal production has a deterministic capacity of one unit and incurs
the marginal cost c;. Without loss of generality, one can view thermal production as being
offered by either a price-taking fringe or a single Bertrand-playing producer. To facilitate
comparison with our prior setting, we assume that demand equals two units, so that excess
capacity remains at one unit. Hence, when both hydro firms have full reservoirs, one firm
can refrain from using its reservoir. If its rival’s reservoir does not replenish, the
“‘refraining’” hydro firm earns c¢* in the next period because only that firm and the
(capacity-constrained) thermal suppliers can meet market demand in that period. When
faced with this potential ‘‘refraining’’ strategy, the opportunity cost of selling electric
power in the current period in the ‘‘competitive’” state equals pj, = B(l —gq)c*, as
demonstrated by our prior analysis. Of course, this opportunity cost is proportional to the
regulator’s imposed price cap.

However, both hydro producers must consider another strategy in the presence of
thermal production. Both producers can sell one unit of output in the ‘‘competitive’’ state
if they choose to undercut the thermal producers’ marginal cost, c¢y. Since, absent this
possibility, the value of holding onto water equals pj; = B(1 —¢)c*, undercutting
becomes an equilibrium strategy whenever p] | <cz. In equilibrium, both hydro producers
set price equal to ¢y (or ¢y — €), and serve the entire market demand of two units.

If pi; > cr then the hydro producers gain more by holding onto water rather than
undercutting the thermal producers’ marginal cost. Consequently, an equilibrium arises
where the hydro firms set their price equal to pj |, and one unit of thermal production is
supplied to the market. Once again, the market price in the ‘‘competitive’’ state is
proportional to the price cap. Due to the ‘‘opportunity cost’’ of selling hydro power, the
thermal producers supply power to the market even though they face higher marginal costs
than the hydro producers.

Note that the regulator’s setting of the price cap determines if pj; < ¢;. Interestingly,
when the price cap is set sufficiently low that this condition holds, the reliability of the
electric system is compromised because hydro production replaces thermal production. As
a consequence of having both hydro firms produce electricity with their water reserves,
instead of having one firm holding onto its reserves, the likelihood increases of reaching a
future state where water reserves are insufficient to allow electricity production to meet
market demand. In essence, if the regulator chooses too low of a price cap, a situation can
arise where traditional ‘baseload’’ (e.g., coal, nuclear) production sources are undercut in
their pricing due to the strategic behavior of hydro competitors. This alters the traditional
role of hydro firms, which often supplied reserve energy to electricity markets in the past
regulatory environment.
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2.4. Differing Inflow Patterns

Let us now return to our original setting and relax the symmetry assumption in inflow
patterns. That is, we will now assume that the water inflow patterns differ for each player.
The probability of water inflow equals g, for player a and ¢, for player b. For player a, the
value for the states (0,0), (0, 1), and (1,0) can be expressed as follows:

Voo =Bl(1 —q,)(1 —q,)Vio+ (1 —q,) a,Vo1 + (1 —qy) - q.Vio+ q.9,Vii], (2.14)
Via = BI(1 —q)(1 —a,)Vio + (1 —qa) = q,Vo1 + (1 —qp) - q,V0 + q.95V11], (2.15)

To=c +B[(1—q,)1 —q,)Vio+ (1 —q,) 4,5,
+ (1 —=qp)*q,V10 + 9.9,V 1] (2.16)

The value for these states are analogous for player b, except that the probabilities ¢, and
qy, are interchanged.

Let us now examine behavior in the competitive state, (1, 1). Define the price level, p,
where player a is indifferent between selling or not selling its output in the current period.
This price level satisfies the following condition:

Pa+ B[(l —q,)Vo1 + qavla,l] = B[(l —q)Vip+ Clhvf,d-

In the above equation, the left side of the inequality represents the value to firm a from
selling one unit of output at the ‘‘indifference price,’”’ recognizing that firm a will be able
to replenish its reservoir with probability ¢,. If firm b sells one unit of output at this price,
implying that firm « holds on to its full reservoir, firm a will become a monopolist in the
next period with probability 1 — g,, or face the competitive state with probability g,,.
Noting from equations (2.15) and (2.16) that V{, — V§, = ¢*, the “‘indifference price’’
satisfies the following condition:

Pa =B —qp)c" + Blqa — a») (Vi1 — Vi) (2.17)

13

By analogous reasoning, player b’s
condition,

‘indifference price’’ satisfies the following

Py + B[(l - %)Vg,l + ‘Ibvi’,ﬂ = B[(l - %)Vf,o =+ flavfl]

which simplifies to

p; = B(l - qa>C* + B(qb - qa)(vg,l - V{)l) (218)

As shown in Appendix 1, equations (2.17) and (2.18) further simplify as follows:
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. B(1—gq,)c* (1 —Bq, + Bqz)

Pe= 0~ Bay + Baraa) 219
gy = BU=4,)" (1= Bg, + Baj) (2.20)

(1 - Bq, + Ba.a)

Hence,

Pq _ (1—ay)  (1—Bqg,+Bgz)  (1—Bq,+Bq.qs)
py (1=q.) (1-Bq,+Bg;) (1-Bay+Ba.qp)

Based on the above analysis, it is straightforward to determine the Bertrand—Nash
equilibrium for the competitive state. The opportunity cost of selling power in the current
period is the foregone value from selling power during a later period as a monopolist. The
“‘indifference price’’ essentially represents this opportunity cost. Consequently, the player
with the lower ‘indifference price’’ gains less from waiting to sell power in the future.
That firm is willing to undercut its rival’s price as long as that price exceeds its own
indifference price. Since no firm is willing to sell power in the current period at a price
below its indifference price, a Bertrand—Nash equilibrium exists where both firms set price
equal to the higher of the two indifference prices. The firm with the lower indifference
price sells one unit of electric power at the higher indifference price, while its rival does
not sell any power in the current period.”

This equilibrium is equivalent to the outcome of a static Bertrand duopoly game where
the two firms have differing marginal costs. In that situation, an equilibrium exists where
both firms set price equal to the marginal cost of the high-cost firm, but all output is sold by
the low-cost firm. In this dynamic Bertrand situation, the two firms have different
opportunity costs from selling power due to different ‘‘continuation values’ based on
differences in their water inflow probabilities. We summarize this discussion below:

Proposition 2: Let g, and q, represent, respectively, the probability of water inflow for
firms a and b. Define the “‘indifference price’’ of firms a and b, respectively, by equations
(2.19) and (2.20). In the competitive state, a (Markov-perfect) Bertrand—Nash equilibrium
arises where both firms set their price at the higher ‘‘indifference price.”” The firm with the
lower indifference price sells one unit of output, while the firm with the higher indifference
price does not sell any output.

We now explore equations (2.19) and (2.20) in further detail. One might naturally think
that the firm with the higher probability of water inflow has the higher opportunity cost of
selling power in the current period. That firm stands the greatest probability of becoming a
monopolist in the next period if it refrains from selling power since it faces a rival with a

4 1If g, = q, = ¢, then the value functions for each state are the same for each player (ie., V¢ =V?).
Consequently, both firms have the same indifference price, p = p; = B(1 — ¢)c* (see equations (2.17)
and (2.18)), which also is the equilibrium price in the competitive state.
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Figure 2.1. A comparison of opportunity costs.

lower probability of water inflow. However, according to equations (2.19) and (2.20), the
firm with the higher probability of water inflow does not necessarily have the higher
opportunity cost. In figures 2.1 and 2.2, a comparison of ‘‘indifference prices’’ p; and pj is
presented under different assumed discount factors. A curved line denotes those

¢

+ B=0.75 +

h J

Ja

Figure 2.2. Comparison with lower discount factor.
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combinations of water inflow probabilities (g, ;) where the indifference prices of both
firms are the same (i.e., p; = pj;). In addition, as is apparent from equations (2.17) and
(2.18), the indifference prices are the same whenever g, = ¢, (as represented by the 45-
degree line in both figures). Thus, the curved line and the 45-degree line divide the figures
into four areas. We designate with a “‘plus’’ sign those combinations of water inflow
probabilities (g,,q,) that yield a higher indifference price for firm a (ie., p} >p;). By
contrast, a ‘‘minus’’ sign denotes those combination of inflow probabilities that yield a
higher indifference price for firm b (i.e., p; <pj).

Note that as the discount factor decreases, the curved line representing p}; = p; moves
downwards, eventually leaving the non-negative quadrant. Thus, for sufficiently low
discount factors, the 45-degree line becomes the only relevant boundary. Under these
circumstances p} < (>)p; if ¢ > (<)gj,.

The intuition for the above results is as follows. With low discount factors (i.e., high
discount rates), there is less value in holding onto water for the firm with the lower
probability of replenishing its reservoir. Not only is that firm less likely to attain a
monopoly state if it refrains from using its water (because it faces a rival with a higher
probability of water inflow), future monopoly rents are discounted substantially. With a
high discount factor (i.e., low discount rate), the situation is not as simple because future
profits take on as much importance as current profits as the discount factor approaches one.
In this context, consider first the case when both firms face relatively low probabilities of
water inflow. On the one hand, there is little difference in the present value of a monopoly
position attained in the next period or in subsequent periods. However, the firm with a
lower probability of water replenishment faces the prospect of a longer interval with an
empty reservoir if it releases its stored water. Due to this effect, the firm with a lower
probability of water replenishment may have a higher ‘‘indifference’” price. As
both probabilities of inflow increase, the prospect of a longer sustained interval with an
empty reservoir is no longer as relevant. In this situation, the ‘‘monopoly’’ effect
becomes more important. Since the firm with the lower probability of inflow has the lower
probability of earning monopoly rents in the future, it again has the lower ‘‘indifference’’
price.

The prospect of the firm with the lower probability of inflow undercutting the one with
the higher probability of inflow, which appears to be the more common outcome based on
the above analysis, poses an interesting public policy dilemma. Appendix 2 shows that,
under conditions where the firm with the lower probability of water inflow spills its water
to produce electricity in the competitive state, it takes fewer periods on average to reach a
depleted-reservoir state (i.e., a (0,0) state) than if the firm with the higher probability of
water inflow had depleted its reservoir instead. In this sense, the strategic behavior of
hydro producers leads to an outcome opposite to that desired by a benevolent social
planner who is focused on ensuring system reliability. The social planner would release
first the reservoir of the firm with the highest probability of water inflow. We summarize
this discussion below:

Remark: Let g, and q, represent, respectively, the probability of water inflow for firms a
and b, and equations (2.19) and (2.20) represent their associated ‘‘indifference prices,”’
pi and p,. Whenever the firm with the higher probability of water inflow has the higher
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indifference price, strategic behavior in a (Markov-perfect) Bertrand—Nash equilibrium
leads to a greater likelihood of a generation shortfall (and system outages) than would
arise if a central planner acted to ensure reliability.

2.5. The Effects of Higher Reservoir Capacity

To gain some intuition regarding how increases in reservoir capacity affect equilibrium
prices, we return to our original assumptions, except that reservoir capacity is increased
from one unit to two units. Consequently, the states of nature are expanded to include the
following: (0,2), (2,0), (1,2), (2,1), and (2,2). In this situation, an equilibrium set of
prices is as follows (see Appendix 3 for proof):

Pia =psy = Poc”
pia =Bl —q)c" + Bgpi,
P22 =B(1 —q)p1,

Pio =DPso = ¢, where:

2 —Bg — B*q(1 - q)

Increases in reservoir size may increase the opportunity cost of supplying power
because they provide producers with opportunities for exercising substantial market power
over a longer period of time. By refraining from selling output in the (1,1) state, a
producer either becomes a monopolist in the next period, or it attains the (2, 1) state in that
period. If it reaches the (2, 1) state, the producer faces a particularly high opportunity cost
of selling power, since it could act as a monopolist for two consecutive periods if its rival
sells power and depletes its reservoir.

Note that the price in the (2,2) state is less than the price in the (1, 1) state. Clearly, in
the (2,2) state, it is impossible for a producer to attain a monopoly position in the next
period merely by refraining from the sale of power in the current period. Since the
producer that refrains from selling power may become a monopolist in the next period in
the (1, 1) state, the opportunity cost of supplying power is less in the (2,2) state than the
(1, 1) state. This leads to relatively lower price in that period. The value of holding power
in the (2,2) state is equivalent to the probability-weighted present value of attaining the
(2,1) state instead of the (1,2) state in the next period. That difference in value can be
expressed as B(1 —¢)(V,; —Vi,) = B(1 — ¢)pi,- The value of holding power in the
(1,1) state equals the present value of attaining the (2, 1) state instead of the (1,2) state
with probability ¢, plus the present value of reaching the (1,0) state instead of the (0,1)
state with probability (1 — ¢). In total, this value equals B(1 — g)c* + Bgp],.
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3. Collusion

In this section, we study the conditions under which collusive pricing arrangements can be
enforced via ‘‘trigger’’-like strategies, in which play reverts to Bertrand pricing once a
deviation from the collusive pricing arrangement is detected. However, the stochastic
nature of water replenishment implies that a firm deviating from a collusive agreement
(and its rival) can find itself potentially in a future monopoly position. Hence, it would be
improper to describe the punishment phase as a series of static Bertrand—Nash equilibrium
outcomes. Consequently, we assume that deviation from the agreement leads to the
resumption of the dynamic (Markov-perfect) Bertrand—Nash equilibrium described
previously.

We return to our original model set-up, where each firm’s reservoir capacity is one, and
both firms realize the same outcome in terms of water inflow. In our model, the collusive
agreement governs pricing behavior in the ‘‘competitive’” state, (1, 1). The equilibrium
price in the monopoly state remains at the price cap. Under collusive behavior, the players
agree to always bid at p, ; when they both have full reservoirs. Further, the collusive price
exceeds the price attained under Markov-perfect Bertrand Nash behavior (i.e., p; ; >pj ),
but it does not exceed the price cap.” Under the collusive ‘‘trigger’ strategies, any
undercutting of the collusive price would lead to a punishment phase where pricing
behavior shifts to the dynamic (Markov-perfect) Bertrand—Nash equilibrium for the
remainder of the game. Subject to these conditions, the following result holds:

Proposition 3: A collusive agreement is sustainable for any price p,;, such that
¢* > p11>piys if and only if B> ﬁ' Thus, a decline in the discount factor or the
probability of water inflow reduces the likelihood of collusion.

Proof: Let one player deviate from the collusive agreement. This occurs when the player
slightly undercuts the collusive price p; ; and sells its entire output in the (1, 1) state. This
deviation does not increase the player’s profit if the following condition is satisfied,

Py +Bl(1=q)Vo1 +qVii] < Vlﬁl (3.1)

where *“ ~ 7’ denotes prices and payoffs under collusion. By deviating, the cheating firm
receives approximately p; ; in the current period, but its expected future value depends on
Bertrand—Nash equilibrium behavior. Given that both firms have the same realization of
water inflows, the cheating firm will attain the Bertrand—Nash values, V,, ; with probability
1 — ¢q and V| with probability ¢, in the next period. That is captured by the terms on the
left-hand side of the above inequality. As represented on the right-hand side, the firm
would receive the value, \7,’1, if it conforms with the collusive agreement.

For the states (0,0), (0,1), (1,0), the value functions under collusion satisfy
relationships analogous to equations (2.1)—(2.3). Hence Vm — Vo,l = c*. However, in

5 The price cap may, in fact, serve as a focal point for collusive behavior.
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the (1, 1) state where reservoirs are full, the collusive value, VL,I , satisfies the following
condition:

P11
2

1 ~ 1 -~ -
+B 5(1 —q)Vo1+5(1—=q)Vig+4qVy,

‘71,1 = 5

P tpig

) + BI(1 — Q)Vo,l + un]. (3.2)

The right-hand side of the first equality represents the value derived from splitting the
market in the current period. We again assume (without loss of generality) that each
producer is chosen to supply the market with probability 1/2 in the event that both firms set
the same price. Thus, if no water inflow occurs, a given firm will be a monopolist in the
next period with probability 1/2, or hold an empty reservoir with probability 1/2.
Otherwise, both firms have full reservoirs in the next period. The second equality is
derived by making the substitutions V, , — V,, = ¢* and pi1 = B(1 — g)c* into the right-
hand side of the first equality. '

Substituting equation (3.2) into the inequality in (3.1), deviating from the collusive
agreement will not increase profits if the following condition holds:

N PPl ~ ~
Pra+BI(1=q@)Voi +qVi1] < — +B[(1 —q)Vo1 + 4V 4]
or
151.1 *PT_ ~ ~
f’l <BI(1=q) (Vo — Vo) +a(Viy = Vig)l. (33)

In Appendix 4, we show that the term B[(1 —¢q)(V, — Vou) —l—q(Vu — V)] can be
expressed as follows:

B — @)V — Vo) +a(Viy — Vi) = {%ﬂﬁz(l ~ g)q + Ba(l — B - qm}

P — Pl
2

where,
ID|=1-8.

Inserting the above expression for B[(1 — q)(Vo, — Vo) + ¢(V,; — Vy,;)] into inequality
(3.3), we derive the following result:
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PP < L0 - g+ patt - g1 = gl - PP
1< {%[Bz(l )+ a1 - B(1 —qm}.

Multiplying both sides of the above inequality by |D|, and recognizing that
|D| =1 — B>0, the following inequality arises:

(1—P) < [B*(1 —q)g + Bg(1 = B(1 — q))]

If the above inequality is satisfied, then it is unprofitable to defect from any collusive
price, 151’1 >p7 . If this condition is not satisfied, then collusion cannot be sustained. W

Since it is absent from the expression in Proposition 3, the price cap itself has no impact on
whether collusion is sustainable. However, the cap does constrain the range of collusive
prices, and it may serve as a focal point for reaching a collusive agreement.

According to Proposition 3, the range of discount rates that can sustain collusion
becomes smaller as the probability of water inflow declines. In that sense, collusion
becomes less likely as g declines in magnitude. When there is a lower probability of water
inflow, there is greater incentive to defect from the collusive agreement, since there is a
reduced probability of reaching the state (1, 1), within a given period of time. A defector
from the collusive agreement undercuts its rival’s price during this state in order to attain a
greater expected share of the market. Once defection arises, punishment can occur only
when both firms again have full reservoirs. Hence, a defector from the collusive agreement
forsakes less profits in the future as the probability declines of reaching the state (1, 1). As
this probability falls, punishment occurs less frequently, and defection becomes more
attractive.

Hence, a decline in the probability of water inflow reduces the likelihood of collusion,
but it increases the equilibrium price under (Markov-perfect) Bertrand competition (see
Proposition 1). Decreases in the discount factor reduce the likelihood of collusion and the
equilibrium price under Bertrand competition.

4. Conclusions

The presence of dynamic strategic behavior in electric power markets has attracted limited
attention. However, it may be a key issue in the many markets affected by hydroelectric
power production, since hydro producers can refrain from selling power in the present in
order to add productive capacity in the future. This paper attempts to identify and evaluate
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some of the key economic factors governing pricing decisions in markets with hydro
producers, as it examines equilibrium behavior under dynamic Bertrand competition and
analyzes the likelihood of collusion.

Our findings show that price caps play a significant role in disciplining prices in
electric power markets with significant hydro production, even under conditions where
the equilibrium price is below the price cap. Price caps affect current pricing decisions,
since they potentially constrain the prices attained in the future when a hydro producer
sacrifices current production in favor of increased future production. In this fashion,
price caps affect the opportunity cost of selling power in the present. As a result,
imposing (or reducing) a price cap may depress the entire price distribution in electric
power markets. However, when hydro producers compete with thermal producers,
lowering the price cap may compromise system reliability by inducing hydro producers
to undercut the prices of thermal competitors. This strategic behavior increases the
probability that inadequate generation capacity arises in the future as a result of
depleted water reservoirs.

Under ‘‘competitive’’ conditions where hydro producers have full reservoirs and ample
capability for producing power, the probability of future water inflows is a key element in
price determination. When rivals face a low probability of replenishing their reservoirs, a
firm with a full water reservoir has a high probability of reaching a position of substantial
market power in the future if it presently refrains from supplying electric power and allows
its rivals to consume their reservoirs. Hydro producers thus face a higher opportunity cost
of selling power, and seek higher current prices, if water replenishment is less probable.
However, a reduced likelihood of water inflows may impede collusive behavior because
punishment becomes more difficult.

If hydro producers face differing replenishment rates, the producer with the higher
probability of water replenishment often faces a higher opportunity cost of supplying
electric power when hydro producers have full reservoirs. This producer faces a higher
probability than its rivals of attaining a position of significant market power in the future if
it holds onto its water reserves. As a result, price undercutting frequently occurs by a
producer with a relatively low probability of water replenishment, leading that producer to
drain its water reserves. Strategic behavior under these circumstances compromises
system reliability because the likelihood of reaching a state of inadequate generation
capacity would be reduced if the producer with the higher probability of water
replenishment released its water instead.

Finally, our model, which focused on a duopoly situation involving hydro producers and
a particular type of stochastic process involving water replenishment, could be extended to
a larger number of hydro players and more general stochastic behavior. With multiple
hydro players, the opportunity cost of holding onto water when one’s reservoir is full, as
opposed to depleting one’s reservoir and supplying electric power in the current period, is
still governed by the same considerations as in our simpler model. This opportunity cost
still depends on the probability that a given firm can reach a future state where it has
significant market power due to the depletion of its rivals’ water reserves, along with the
payoff associated with that state. Since a price cap affects the payoff in the state where a
firm has significant market power due to its rivals’ depleted reservoirs, it also affects prices
in states where multiple firms have full reservoirs and must decide how to price their
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power. Thus, an extension of our model to include more players is likely to change our
results quantitatively but not qualitatively.

5. Appendix
5.1. Appendix 1: Determining ‘‘Indifference Prices”’
Firm a could refrain from selling output in the competitive state, implying that firm b

supplies the market. Under this behavior, firm a’s value in the competitive state is
expressed as follows:

Vii= B[(l —q)Vip+ Clhvfﬂ-
Given that V{, — V(| = ¢*, we obtain:
Vi =B —q)c" +BI(1 —q,)Vo1 +qpVii]- (5.1)

Moreover,

Vor = BI(1 =g )Vi1 + (1 —qp)* qu(c” + V1) +q.9,V1 1],
Via = B(L = a5)qa.c” + BI(1 — 9.9,)Vo1 + 2.9,V 1]- (5.2)

Subtracting equation (5.1) from equation (5.2), we obtain:

Vo — Vi =Bl —qy)q,c” — B(1 — gp)c” + Bap(1 — q,)[Vos — Vil
—B(1 —g,)(1 = g,)c*
Ve, =V = . 5.3
o b 1 - qu(l - qa) ( )

From equation (2.17) in the text, firm a’s ‘‘indifference price’” must satisfy the following
condition:

Pa =B —q,)c" + B(g, — a5) (Vi1 — V1)

Substituting equation (5.3) into the above equation, the ‘‘indifference’’ price is expressed
as follows:

Bl —q,)(1 —g,)c*
1—Bg,(1-q,)

Pa = B(1 —qp)c” = Blg, — ap)
With further manipulation, the above equation simplifies to the following:

. B =gy (1 = Bg, + Bg)

Pa (1 —Bay + Barq,)
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Using analogous reasoning, firm b’s ‘‘indifference price’’ is as follows:

i = PO = du)c" (1= Ba, + Pa;)
’ (1—Bq, +Bggs)

The ratio of the two prices can be expressed as:

pe _(1—q,) (1—Bq,+Bg.g,)  (1—Bq,+Baz)
py (1—q,) (1 —Bgy+Basg.) (1—Bgy+Baq;)

5.2. Appendix 2: Examining Outage Risk

Assume that g, > g,. Let N;; denote the expected number of transitions it takes to reach
state (0,0) from state (i,j). If player b undercuts player a’s ‘‘indifference price’” when
both reservoirs are full (and thus releases its water to produce electricity), we can express
N, as follows:

Nip=1+(1—=q,)Nig+q,N ;. (5.4)
Furthermore, N,  and N, | can be expressed as follows:

Nig=1+(1-¢,)q.N1o+ (1 —qa)aNos + qaqpN1 1>
Nojy =14+ (1 =¢q4)q,N1o+ (1 = q,)q5No1 + qaqpN1 1- (5.5)

Noting that Ny o = N ;, the system (5.4) and (5.5) can be simplified as follows:

1
N, ,=—+N
LT —Clb+ 1,09

Nig=oa+7v-N;y, (5.6)
where

— 1 v = 9a49p
1 —q, —qp+ 249,49

o = .
1 —q, —qp+ 24,9

Now, let N; , denote the expected number of transitions it takes to reach state (0,0) from
state (i,), assuming instead that player « undercuts player b’s ‘‘indifference price’” when
both reservoirs are full. Using an analogous argument to that above, we obtain:

. 1 .
Ny Zq'i‘Nl,Oa

a

]\7]’0:0(+'Y'1\~/1’1. (5.7)
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Hence, from (5.6) and (5.7), it follows that
1\71.1 —Nyy=7—

or equivalently,:

_ 1/ 1 1
Nip =Ny = (1—y)- - .
N ==y) (1 —q, 1-— qb>

Since 1>7v>0 and ¢q, > g, it holds that 1\7171 >N, ;. In words, if the firm with the higher
probability of water inflow releases its water when both reservoirs are full, a higher
number of periods is required on average to reach the fully depleted state (relative to the
situation where the firm with the lower probability of inflow releases its water instead).

5.3. Appendix 3: Determining Equilibrium Prices with a Larger Reservoir
Assume that the maximum reservoir size is now two units. A (Markov-perfect)
Bertrand-Nash equilibrium satisfies the following conditions for each state:

* * *
Pia =D =Ba-c

pia = B(l—q)c" + Bapi,

where

o= (1 _q)[l + B(l _CI)] E[O, 1]

2 Bg—PBq(l —q)

Proof: When reservoir levels are symmetric, the sufficient conditions to be indifferent
between releasing water and not doing so are:

Pia+BIL—=q@)Vo1 +qVia] =BI(1 = q)Vig+qVal,

P2+ BI(1 = q@)Vi2+qVan] = BI(1 = q)Va; +qVa,]-

These conditions can be rearranged as follows:

Pia =Bl —=q)(Vig— Vo) +Bg(Vay —Via),

Pz,z =B(1 - CI)(Vz,l - V],z)-
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The value functions for the states (1,0), and (0, 1) are:
Vip=c"+Bl(1—-q)Voo+qVi4l,

Vo =0+ Bl(1 —q)Voo+ gVl

Hence, V, , — V,; = c*. Similarly, for states (2,0) and (0,2) the value functions can be
expressed as follows:

Vip=c" +Bl(1=q)Vig+4V2il,
Voo =0+ B[(1 —q)Vo1 + 4V,
Hence,
Voo =Vor=c"+B(1=q)(Vig—Vo1) +Ba(Vay — Vin),
Voo —=Voa =" +B(1 —q)c" +Bg(Vay — Vin). (5.8)

Now, when states (1,2) and (2, 1) are reached, players should be indifferent between
releasing water (receiving a payment of p, , and p, ; respectively) and withholding:

BI(L = q)Vi1+qVas] =pio+BI(1—q)Voo + V2] (5.9)

and
Poi + Bl = @)Vi1 +4Vas] = BI(1 = q)Vao +qVa,l- (5.10)
We posit that p;, =p,; and have players bid p;, =pj, =p;, =p,; so that
Vo1 —Vip =p5;. In words, under this equilibrium, the value of stored water in
intermediate states only depends on the total amount of water available and not on the
distribution of it. Substituting V, ; — V,, = p5 | into (5.8) we get:
Vap=Voa+c"+B(1—q)c" +Bg-py. (5.11)
Moreover, substituting (5.11) and then (5.9) into (5.10), we get:
P21+ BI(1 = @)V +qVas] = Bl(1 —q) (Voo + ¢ + B(1 —q)c" +Bgp2y) +qVails
Pog 1o+ Bl =q@)Vor +aVia] =BI(1 —q) (Voo + ¢ +B(1 —q)c* +Bg-p31) +qVails

(1= B — B*q(1 —q)) pas +pia =Bl —q)[1 +B(1 — g)lc".

Finally since pi, = p5 ;we have:
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B(1— )1 + (1 )"
2—Bg—PB’q(1—q)

* _ * _
P21 =DPip =

We finally notice that

OC—(I_q)[1+B(1_q)]E[O,1]. [}

2 Bg—PBq(l —q)

5.4. Appendix 4: Simplifying the term, B[(1 —Nq)(VO_J —Vou) + q(Vm —Vi4)]

We now analyze further the term, B[(1 — q)(Vo; — Vo) +q(Vy; — Vi) Given that
Voi=Bl(1 —q)Voo+4qVy1] (see equation (2.2)), and that V,, =pit
BI(1 —q)Vo1 +4qV; 4] (see equation (2.7)), we can express V;; and V,; as follows
(using the fact that Vi ; =V} ):

Vou|
Vi

Since \7071 satisfies an expression analogous to equation (2.2), and since \71'1 satisfies
equation (3.2), we can express V| and V ; as follows:

Voa 1 B
Vi
Subtracting the first set of equations from the second set, we obtain the following:

0
= ﬁl.l*PT_l .
2

Multiplying both sides of the above equation by the inverse of the first matrix, and then
premultiplying both sides by [B(1 — ¢g) Bg], the following result arises:

0
e+

1-B(1—q) —Bq}
-B(1—-q) 1-Bq

0

P P |
2 T2

[1—13(1—61) —Bq]
-B(1—-¢q) 1-Bq

[1—6(1—4) — By
-B(l-¢q) 1-Bq

lv},l —Vou
‘71,1 - V1,1

BI(1 — Q)(Vo,l - Vo) + Q(Vl,l = Vil

1-B(l—q) —Bg | '[ O
= [B(1 —q) Bq] s |- (5.12)
—Bl-q) 1-Bg] |75+

By solving the right-hand of equation (5.12), the following is obtained:
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BI(L — @) (Vs — Vo) + (Vs — V)] = {%nsz(l — Q)q+ Ba(1 — (1 - qm}
. ﬁl,] —PT,l
2

where,

DI = [(1 = B(1 - q))(1 - Bg) — B*q(1 —q)] = 1 - B.
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