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1. Introduct ion 

We consider the parametric linear program 

f(A) = minimum value of O(x) = cx, (1) 

subject to A x  = b + Ab*, x >-O 

where A is a matrix of order m × p and rank m, and A is a real valued parameter. 
It may be required to solve this problem for all real values of A, or for  all values 
of A in some specified interval of the real line. 

f(A) is a piecewise linear convex function in A. The simplex algorithm for this 
parametric linear program partitions the real line into intervals, each interval 
being the optimality interval of a feasible basis for  (1), and the algorithm moves 
f rom one interval to the next  by making a single dual simplex pivot step. In each 

interval the slope o f / ( A )  is constant. In consecut ive intervals obtained during 
the algorithm, the slope o f / ( A )  remains the same if the algorithm moves from 
one of these intervals to the next without making any nondegenerate dual 
simplex pivot steps; otherwise the slopes o f / ( A )  in these intervals are different. 
See Chapters 11, 12 in [1], Chapter 8 in [2] and Chapter 7 in [3]. 

Let  4,(A, b, b*, c) denote the total number  of intervals on the real line, each of 
positive length, such that the slope o f / ( A )  is a constant in each interval, and the 
slopes of f(A) in any two intervals are different. Since each of these intervals 
have to be separately obtained (as the slopes of f(A) in them are different) when 
(1) is solved, ~b(A, b, b*, c) provides a lower bound on the computational effort 
required for  solving (1) for  all real values of A by any algorithm. Clearly, the 

* This research is partially supported by Air Force Office of Scientific Research, Air Force 
Number AFOSR-78-3646. 
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parametric right-hand side simplex algorithm for solving (1), requires at least 
~b(A, b, b*, c) - 1 pivot steps before termination. So we can use ~b(A, b, b*, c) as 
a measure of the computational complexity of problem (1). 

The interesting question is whether cb(A, b, b*, c) remains bounded above by a 
polynomial in p, the size of the parametric linear program (1), irrespective of 
what the data in A, b, b*, c may be. We investigate this question here. We 
construct  a class of parametric linear programs. The nth problem in the class has 
m = n, p = 2n, for  n => 2, and we show that the value of ~b(A, b, b*, c) for  it is 2". 
This conclusively establishes that in the worst  case, the computational effort 
required for solving the parametric linear program (1), is not bounded above by 
any polynomial in the size of the problem. 

2. The class of problems 

In the nth problem in our class, the number of constraints is n, and the number 
of variables is 2n. For  the sake of convenience,  we will denote the variables in 
the problem by the symbols wl . . . . .  w, ; zl .... , z,. I, is the identity matrix of order 
n. Let  ~7/(n) be the lower triangular matrix of order n defined by rhii = 1 for  all 
i = l  to n, th i j=0 for all j > i ,  and rhi j=2 for all j < i .  This matrix was 
constructed in [4] to study the computational complexity of complementary 
pivot algorithms. Let  

A. = (In ~ -)(/I.), b(n) = (2", 2 "-1 . . . . .  2), 

b*(n) = ( - 1 , - 1  . . . . .  - 1 ) ~ R " ,  

c(n) = (0 . . . . .  0, 4 "-1, 4 "-2 . . . . .  4, 1) ~ R z". 

Then the nth problem in our class is 

minimize O(w,z) = c(n) (.w.), 

subject to A.( .w.)=b(n)+Ab*(n) ,  (2) 

w = (w~ . . . . .  w.) _-> 0, z = (zl . . . . .  z.) _>- 0. 

We will call the pair of variables (w i, zi) as the jth complementary pair of 
variables, and each variable in this pair is the complement of the other. A 
complementary vector of variables for  this problem is an ordered vector  of 
variables (Yl . . . . .  y,) where yj E{wj, z~.} for  each j = 1 to n. Thus there are 2" 
complementary vectors of variables, and it can be verified, using the results in 
[4], that every  complementary vector of variables is a basic vector  for (2). A(n), 
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b(n),  b*(n), c(n) is the data in the nth problem in our class. As discussed above, 

the computational complexi ty of the nth problem in our class is ~b(A,, b(n),  

b*(n), c(n)). 

3. The sequence of complementary basic vectors 

In our proofs,  we will encounter  the complementary basic vectors for  the nth 
problem in our class, arranged in a specific order, as a sequence, and this order is 
the same as that obtained in the proof  of theorem 1 in [4]. Here  we describe 

how to generate this sequence. For  n = 2, the specific order is 

(wl, w0, (w~, zg, (zl, zg, (zl, w0. (3) 

Let  a(s) = 2 s - 1, for  any s => 2. To get the order  for  the nth problem in the class, 
let Vo, v~ . . . . .  Va(,-, be the ordered sequence of complementary basic vectors for  
the (n - 1)th problem when the variables in it are treated as wz . . . . .  w, ; z2 .... , z, 

(instead of wl . . . . .  Wn_~; zl . . . . .  z,-~). Then the specific order of complementary 
basic vectors for  the nth problem is 

V0 = (w~, v0), (w~, v~), ..., (wl, vow,_,), 

(z~, Va( . -O,  (Z~, V.~._I~-~) . . . . .  (Zl, VO) = Va~.~. 

4. A numerical example 

Consider problem (2) with n = 3. To solve this, the parametric simplex 
algorithm begins with (wl, w2, w3) as the unique optimum feasible basic vector  

corresponding to A = 0. It can be verified that it partitions the parameter  space 
into 2 3 = 8 optimality intervals, and requires 2 3 - 1 = 7 pivots in all. The relative 
cost coefficients of the nonbasic variables will be strictly positive in each of the 
canonical tableaus obtained, and this implies that in the interior of each opti- 
mality interval, the optimum basis obtained is unique. Each pivot step made in the 
algorithm is a nondegenerate dual simplex pivot step, and hence, after every  
pivot step, the slope of the optimum objective value strictly increases. So 
~b(A3, b(3), b*(3), c(3))= 8 =  2 3. Also it can be verified that the sequence of 
optimum basic vectors obtained, is exactly the complementary vectors of 

variables for this problem, in the specific order discussed above, which is the 
same as the order of basic vectors in table 2 of [4]. 

5. The main result 

Theorem. The following results hold when the nth parametric linear program in 

the class is solved, beginning with (wl . . . . .  w,) as the unique optimum basic 

vector corresponding to A = O, for  n > 2. 
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(i) The sequence of optimum basic vectors obtained in the parametric al- 
gorithm is exactly the complementary vectors of variables for this problem, in the 
specific order discussed above. 

(ii) The optimality intervals obtained are [ - ~ , 2 ] ,  [2,4], [4,6] . . . . .  [2 n+1-4 ,  

2 "+1 - 2], [2 "+1 - 2, ~]. As the algorithm moves from one interval to the next in this 
sequence, the slope of the optimum objective value increases strictly. 

(iii) The relative cost e~cients of all the nonbasic variables are strictly positive 
in every tableau obtained during the algorithm. 

(iv) In the interior of each optimality interval, the optimum feasible basis 
obtained is primal and dual nondegenerate and is the unique optimum feasible 
basis for the problem. 

(v) The algorithm goes through 2" - 1 pivot steps before termination. 

Proof. The s ta tement  of the theorem can be verified to be true for  n = 2. Proof  is 
by induction on n. We now set up an induction hypothesis.  

Induction hypothesis: The s ta tement  of the theorem holds for the ( n -  1)th 

parametr ic  linear program in our class. 
Under  the induction hypothesis,  we will now prove  that the s ta tement  of the 

theorem must  also hold for  the nth problem in our class, (2). When the first row, 
and the columns of w~, zl are eliminated f rom (2), it can be verified that it 

becomes  the (n - 1)th problem in our class, with the exception that the variables 

are called w 2 . . . . .  w,; z2 . . . . .  z, (instead wl . . . . .  w,_l, z~ . . . . .  z,_l). Call this the 

principal subproblem of the nth problem in our class. Le t  v0, Vl . . . . .  vac,-t) be the 

ordered sequence of complementary  basic vectors  for this problem with these 
names for  the variables. 

In (2), any pivots per formed in the columns of w2 . . . . .  w,, z2 . . . . .  z, do not 
change Row 1. Also 2" - A remains strictly positive for  all A < 2". From this it is 

clear that when the nth problem in our class is solved beginning with (w~ . . . . .  w,) 
as the initial basic vector ,  wl remains in the basic vector  until the value of A 
reaches 2". Applying the induction hypothesis  to the principal subproblem, we 
see that the entering and leaving variables in the pivot  steps that occur  in solving 

the nth problem in our class will be the same as those needed when the principal 

subproblem is solved, until A reaches the value 2 " - 2 .  By the induction hypo-  
thesis this requires 2 " - 1 -  1 pivot  steps, and at the end of these steps we reach 

the basic vector  (Wl, z2, w3 . . . . .  w,). By the induction hypothesis  applied to the 
principal subproblem, and the arguments  listed, above,  the sequence of basic 
vectors  obtained before reaching this basic vector  is 

V 0 = (Wl,  v0), Vl  --~ (Wl,  Vl) . . . . .  Va( . - l )  ~-- (Wl,  Va(n-l)). 

and s ta tement  (iii), (iv) of the theorem hold for  each of these basic vectors.  
The canonical tableau for  (2) with respect  to the basic vector  

(wl, zz, w3 . . . . .  w.) can be obtained by performing one pivot  step in (2) with the 
column of zz as the pivot  column and row 2 as the pivot  row. It  can be verified 
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that this basic vector  is optimal in the interval 2" - 2 _--< )t = 2", it is primal and 
dual nondegenerate and is the unique optimum basic vector  in the interior of this 
interval. To continue the parametric algorithm for A > 2% we have to make a 
dual simplex pivot step in Row 1 of this canonical tableau and it can be verified 
that the column vector  of Zl will be the pivot column. This leads us to the 
canonical tableau, with respect  to the basic vector  (zl, z2, w3 . . . . .  w,), which is 
given in Table 1. 

From Table 1 it can be verified that the basic vector  V2.-, = (zl, Va(,-O = 
(zl, z2, w3 . . . . .  w,) is optimal in the interval 2"_- < A _-<2" +2.  The relative cost 
coefficients associated with all the nonbasic variables are strictly positive in 
Table 1, and the basic vector  V2, ~ is primal nondegenerate when )t is the interior 
of the interval [2% 2" + 2]. The updated right-hand side constant in the first row in 
table 1 is - 2 "  + A and this remains strictly positive for all ;t > 2" + 2. So when we 
continue the solution of the nth problem in our class f rom Table 1 (for 
A > 2" + 2), we will never  have to choose Row 1 as the pivot row again. Calling 
)t - 2 "  = u, and eliminating Row 1 and the columns of wl, zl f rom Table 1, we 
verify that it leads again to the (n - 1)th problem in the class, with the exception 

that the variables are now called z2, w3 . . . . .  w, ; w2, z3 . . . . .  z., in that order,  and 
the parameter  is 1, ()t => 2"+  2 corresponds to v => 2). Call this the principal 
subproblem of Table 1. Using the induction hypothesis on this principal sub- 
problem of Table 1, and the above facts,  we conclude that when the solution of 
the nth problem in our class is continued f rom Table 1 for  ,X > 2" + 2, the basic 
variable changes that occur are exactly the same as those that will occur  when 
this principal subproblem of Table 1 is solved, and hence it will lead through the 
following basic vectors: 

V2n-l+l = (Z1, V2n-l--2) , V2n 1+2 = (ZI,  V2n-'-3) , . . . ,  V2n_ 1 = (Z1, Vo). 

By the induction hypothesis,  the statements (iii), (iv) of the theorem continue to 
hold. 

T a b l e  1 
C a n o n i c a l  t a b l e a u  f o r  (2) w i th  (zl ,  zz, w3 . . . . .  w . )  a s  t he  b a s i c  v e c t o r  

B a s i c  

v a r i a b l e s  

ZI 

Z2 

W3 

W I W2 W3 . . . W n  ZI Z2 Z3 . . .  Zn 

- 1  0 0 0 1 0 0 0 

2 - 1  0 . . . 0  0 1 0 . . .  0 
2 - 2  1 . . . 0  0 0 -1  . . .  0 

w. 2 - 2  0 . . .  1 0 0 - 2  . . . .  1 

- 0  2 x 4  ~ 2 4,,-2 0 . . . .  0 0 0 4 ~-3 " ' "  1 

- 0  

0 - 2  ~ + ,~  

0 2"-~ - (,~ - 2 ~) 

0 2 "-2 - (A - 2 n) 

o 2-(x  -2  o) 

1 
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Also, (iii) implies that after each pivot step in this algorithm, the slope of the 
optimum objective value strictly increases. 

These facts imply that under the induction hypothesis, the statements of the 
theorem hold for the nth problem in the class. 

The theorem has already been verified from n = 2. Hence it is true for all 
n=>2. 

Corollary 1. ~b(A,, b(n), b*(n), c(n)) = 2". 

Proof. By the above theorem, when the nth problem in our class is solved by the 
parametric right hand side simplex algorithm, it partitions the parameter space 
into 2 n optimality intervals. In each of these 2" optimality intervals obtained for 
the nth problem, the optimum solution is unique; and in the interior of that 
interval the optimum basis obtained is primal nondegenerate, and is the unique 
optimum basis. The slope of the optimum objective value strictly increases as 
we move from one interval to the nextone on its right. Hence 4~(A,, b(n), b*(n), 
c(n)) is the number of optimality intervals into which the parameter space is 
partitioned when the nth problem in our class is solved by the parametric right 
hand side simplex algorithm for all values of A, and hence is equal to 2". Thus the 
complete answer the nth parametric LP in our class is itself exponentially long. 

Corollary 2. In the worst case, the computational effort needed to completely 
solve the parametric LP (1), is not bounded above by any polynomial in the 
number of variables in the problem, p. 

Proof. As discussed above, ~b(A, b, b*, c) is a measure of the computational 
complexity of (1). The nth problem in our class has m = n, p = 2n, and has data 
An, b(n), b*(n), c(n). By Corollary 1, 4~(A,, b(n), b*(n), c(n))= 2", and this 
grows exponentially with p, for n => 2, and henceis  not bounded above by any 
polynomial in p. Thus the class of parametric LPs constructed above, clearly 
establishes this corollary. 

Note. Since each of the basic vectors obtained when the nth problem in our 
class is solved, is both primal and dual nondegenerate in the interior of its 
optimality interval, by taking the class of dual problems of the problems 
constructed above, we conclude that the same results hold for parametric cost 
linear programs. 

We have established the exponential growth phenomenon of the. com- 
putational requirements, in parametric linear programs which are required to be 
solved for all real values of the parameter A. Consider parametric linear 
programs which are required to be solved only for values of the parameter A in 
some specified finite interval, say the interval [0, 1]. Even on these problems, the 
worst case computational requirements grow exponentially or faster with p. A 
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class of parametric linear programs exhibiting this fact can be constructed from 
the class of parametric linear-programs discussed above, by proper scaling of the 
data. 
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