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Given f:  Rn+ ~ R n, the complementar i ty  problem is to find a solution to x > O, f(x) >_ 0, 
and ( x, f(x) ) = 0. Under  the condit ion that  f i s  cont inuously differentiable, we prove that  for a 
generic set of  such an f ,  the problem has a discrete solution set. Also, under  a set of  generic non- 
degeneracy condit ions and a condit ion that  implies existence, we prove that  the problem has an 
odd number  o f  solutions. 

Let R n denote n-dimensional Euclidean space with the inner product 

Let 

n 

( x , y )  = ~ x i Y  i . 
i=1 

R n = {x = ( x 1 ,  . . . ,Xn) :  x ~-- O }  , 

w h e r e  x >- 0 s t a n d s  f o r  x i >_ 0 f o r  al l  i = 1, ..., n.  G i v e n  a m a p  f :  R n ~ R n , 

t h e  c o m p l e m e n t a r i t y  p r o b l e m  is t o  f i n d  a s o l u t i o n  t o  t h e  s y s t e m  

* This work was partially supported by  N.S.F. Grants  GP-8007 and 010185.  
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x >_O,  f ( x )>_O,  ( x , f ( x ) ) = O .  (1) 

It is a unified form of problems arising in such fe lds  as mathematical 
programming [3, 9, 14], game theory [3, 12, 14], economic equilibrium 
theory [4, 12], mechanics [11] ,  and geometry [81. 

The special case where f is affine, i.e., f(x--) = M x  + q, where M is an 
n X n matrix and q ~ R n, is called the linear complementari ty problem 
and has been extensively studied in the literature. Among the more im- 
portant  results are those showing that in certain cases the special con- 
structive procedures developed by  Cottle and Dantzig [3] and Lemke 
[14] will actually compute  a solution of  the problem (1). Using these 
procedures, one can establish some results on the parity of  the number  
of  solutions of  (1), as done by Lemke [141. Some generic properties of  
the linear problem are known; for example, Murty [ 15] has shown that 
the linear problem has a fn i t e  (and thus  discrete) solution set for all q 
if and on ly  if all the principal minors of  M are non-zero - clearly a ge- 
neric property of  matrices. 

Most results of  the non-linear complementari ty problem are related 
to establishing the existence of  a solution, for example, Cottle [2] and 
Karamardian [13].  In Section 3 of  this paper, we will show that if f is 
continuously differentiable (C 1 ), satisfies a couple of  generic non-dege- 
neracy conditions and an additional condition guaranteeing the exis- 
tence of  a solution, then (1) has an odd number  of  solutions. In Section 
2, using transversality arguments, we will show that for almost all C 1 
maps f,  (1) has a discrete solution set. 

Our methods were motivated by the similar results of  Debreu [4] and 
Dierker [5, 6] in economics and by the philosophy of Smale [181 in 
applying global analysis. In addition, we would like to acknowledge 
helpful conversations with J. Heitsch. 

2 

In this section, we shall show that for almost all continuously diffe- 
rentiable maps f." R n -+ R n, the solution set of  the complementar i ty  
problem is discrete. To avoid any smoothness difficulties and to make 
our notat ion simpler, we shall work with C 1 maps R n ~ R n . We can do 
this because any C 1 map R n -+ R n can be extended as a C 1 map on all 
of  R n as follows: Let f 0 ( x l ,  . . . , X n ) = f  on R n. Given f i -1  def inedon 
{(X 1 . . . .  , X n  ) :  X i ~ 0 . . . . .  X n >-- 0} ,  define f t. on ((x 1 ..... xn): xi+ 1 >_ O, .., 
X n ~ O) by 
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f i (Xl ,  ..-, Xn) = (fi-1 (Xl ,  "", X n ) i f x  i >_ 0, 

[-- f i -1 (Xl ,  "", 'Xi-1,  --Xi,Xi+l , " ' ,  Xn) + 

+ 2 f i _ l ( X l , . . . , X i _ l , O ,  Xi+l, . . . ,X n) ifxi~ O. 

fi+l extends  f i  CI and so fn e x t e n d s f t o  all o f  R n . See also [ 1 ,Appendix  
A ] .  

Let  C I ( R  n , R n) be the vector  space o f  C 1 funct ions  R n -+ R n, given 

the topo logy  of  uni form convergence of  bo th  f and its derivative D f  on 
compact  sets, Dr(x) being the n X n matr ix  Ofi(x)/ax]. C 1 (R n, R n) is 
then a complete  metr ic  space, and by the Baire Category Theorem any 
residual subset of  it is dense. Recall tha t  a subset U of  a topological  
space is residual i f  U contains the intersect ion of  a countable  number  o f  
open dense sets, e.g., the irrational numbers  form a residual subset o f  
the real numbers.  Clearly, the intersect ion of  a countable  number  o f  
residual sets is residual. A proper ty  tha t  holds for a residual subset o f  a 
space is called a generic property .  

Let A be a non -empty  subset o f  (1, ..., n} and R A = ((Xl,  . . . ,Xn):  

x i = 0 for i q~ A }. Let  LA I = cardinal i ty o f  A = dimension o f  R A ; and 
similarly for IB[, ICI and IDI. Let  R A = R A n R n. We state w i thou t  
p roo f  the fol lowing simple lemma. 

L e m m a  2.1. x ~ R n is a solut ion o f  the comp lemen tar i t y  p rob lem 

de f ined  by f i f  and  only  i f  there are n o n - e m p t y  subsets  A and  B o f  
{1 . . . .  , n}  such that A n B = O and x ~ RA+ n f-I(R+B). 

We will use techniques o f  transversality theory ,  as in [1] ,  to prove 
tha t  for  a residual subset o f  C I ( R  n , Rn),  f ( R  A ) in t e r sec t s  R 8 transver- 
sally where A and B are as in L e m m a  2.1. We will then  use this fact to 
establish that  the solut ion set o f  (1) is generically discrete. 

We now in t roduce  some no ta t ion  and state some defini t ions to be 
used in this section. Let  A,  B, C, D c  ( 1 , . . . , n ) ,  A u B  = C U D  = 
{ 1, 2, ..., n } and A-n  B = C n D = 0. So R n is the direct  sum R A • R B 
and also the direct sum R c • R D ; i.e., each x ~ R n is un ique ly  expres- 

sed a s x  = x  A + x B, w h e r e x  A ~ R A a n d x  B E R  B , o r a s x  = x  c + x D, 
where x c ~ R c and x D ~ R D . For  simplicity o f  no ta t ion ,  we abbreviate 
x A + x  B to (x A , x  B) and x c + x  D to  [ X c , X  D ]. Given f ~  C I ( R  n, R n ) ,  
we write f :  R A • R B -> R c * R D as 

f(XA, XS) = [fc(XA, XB ), fD (XA, Xe )1 , 
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where f c ( X A ,  x B)  is the component  of  f ( x  A , XB~) in R c. Let f c :  RA --' 
R c denote the map x A ~ fC(XA,  0), and let D f c ( x  A ) be its derivative. 
Instead of treating Dfc(X  A ) as an n X n matrix of  partial derivatives 
with IDI rows of  zeroes and IBE columns of zeroes, it will be more con- 
venient to delete these zero rows and columns and consider D f c ( x  A ) as 
a lCI × IAI matrix. 

Def in i t ion  2.2. Let f: M ~ N be a C 1 map from manifold M to mani- 
fold N. Let U be a submanifold of M and V a submanifold of N. Then 
f ( U )  is transversal to V if and only if, f o r  x c U and y =f(x) ,  either 
y ~ V or y ~ V, and the tangent space T y N  of  y in N is the sum (not 
necessarily direct sum) of the tangent space Ty V of y along V and the 
image of  the tangent space T x U of x along U under the derivative o f f ,  

i.e., Tf(x)N = Tf(x) V + D f ( x ) ( T  x U). 

Thus, given a C 1 map f: R A • R B -+ R c • R D and U c R A , f(U) is 

transversal to R n if, whenever x A ~ U and fC(XA,  0 B ) = 0, the rank of 
Dfc  (x A ) is I C[. 

Def in i t ion  2.3. Given a C 1 map f:  M ~ N as above with y ~ N, y is a 
critical value of f if y is in the range of  f and for some x with f ( x )  = y ,  
Dr(x) has rank less than the dimension of N. All y in N that are not cri- 
tical values are called regular values of f. 

Sard's Density Theorem [1, p. 37; 19, p. 72] asserts that under suit- 
able differentiability conditions on f (i.e., f is r times continuously dif- 
ferentiable, where r > max (0, dim M -  dim N}),  the set of  all critical 
values of  f has measure zero in N. Lemma 2.4 below is similar to the 
Transversal Density Theorem [1, p. 48] ,  a strong consequence of  Sard's 
Theorem. Since we have a simpler hypothesis and a different differentia- 
bility requirement than does the usual Transversal Density Theorem, we 
shall use Sard's Theorem to prove the exact lemma we need. In addition, 
by our proof  of  Lemma 2.4, Theorem 3.5 will be valid if we 'consider 
only maps f that are affine. 

i 

L e m m a  2.4. L e t  A,  B, C, D be subsets  o f  (1,  2 . . . .  , n }  wi th  A c~ D 
= O and  R A * R B = R n = R c e R D. Then 

F -  { rE  C 1 (R n , Rn): f ( R  A ) is transversal to  R D } 
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is a residual  subse t  o f  Cl  ( R  n, Rn). I r A  V D 4= {1, 2, ..., n} ,  then  f E F 
impl ies  f ( R  A ) n R o = O. 

P r o o f  Write R n = I.J~= 1Ui, where each U i is compact  and contained in 
the inter ior  o f  Ui+ 1 . We will show that  

F i = ( f :  f ( U  i N R A ) is transversal to R D } 

is open and dense in C I ( R n , R n ) .  Since N ~ = I F i = F ,  this will prove 
L e m m a  2.4. 

(i) SupposeA u D =  {1, 2 . . . .  , n}. Then,  R A - R c and R e = R ° .  

(a) To see that  F i is open,  let f ~  F i. For  each x A ~ U i n R A with  
~c(XA ) = 0 in R c,  the ICI × ICI matr ix  DYc(X A ) has non-zero determi- 
nant .  S i n c e f ( U i n  R A ) n  R D is compact ,  these de terminants  are bounded  
away from zero. I f g  is C 1 near f ,  then  no t  on ly  will g be pointwise near 
f ,  bu t  also det  D g c ( x  A ) will be near  det  D f c ( x  A ) for all x A ~ U i n R A . 
So, if  g is C 1 near enough to f ,  then  det  D'gc(x A ) will be non-zero for 

x A ~ U i n R A n g-1 (R D ) and g will be in F r So F i is open.  
(b) To see that  F i is dense, we suppose f ~  F i and show tha t  an arbi- 

t rary small per turbat ion  of  f is in F i. For  some x A ~ R A , the rank of  
DYc(X A ) is less than ICI and f c ( X A  ) = 0 in R c ,  i.e., 0 is a critical value 
of  Yc" RA -+ R c .  By Sard's Densi ty Theorem,  there is a o in R c as close 
as one wishes to 0 with v a regular value o f f c ,  i.e., D ~ c ( y  A ) has rank 
ICI for  all YA in ~ 1  (o). Define g @ C 1 (R  n , R n ) by 

g (x )  = [ f c ( x )  - v, fD (X)] for all x E R n . 

I f x  A E R A is such tha t  gc(XA , O) = 0 in R c ,  then  f C ( X A ,  O) = v and 
Dgc(XA )2,  D f c ( x A  )" If  v is a regular value o f  f c ,  then  0 is a regular 
value o f  g c .  So g ~ F i. By taking v as close to 0 as one chooses, one can 
make g as C 1 -close to f as one wishes. 

(ii) Suppose A u D ¢ {1, 2, ..., n} .  Then IAI + IDI< n and IAI< IC[. 
So the ICI × IAI matr ix  DYc(X A ) has rank less than ICI for all x A in R A 
and so each element  o f f c ( R  A ) is critical. 

(a) To see that  F i is open,  let f e  F i. Since the rank o f  D~c(X) is less 
than  ICI, f ( g  i CI R A ) C) R D = 0. Since f ( U  i O R ° ) is compact ,  for all g 
C°-near f ,  we have g(U i ~ R A ) (3 R D = 1~ and g ~ F i. So F i is open. 

(b) To see that  F i is dense, fol low argument  (i)(b) now wi th  v no t  in 
the image of)~c . Then 0 will no t  be in the image o f g  c .  (Such a o exists 
again because Sard's Theorem asserts that  f c ( R  A ) has measure zero in 
R c for IAI < ICI.) 
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The final assertion of  the 1emma follows from arguments in (ii)(a). 

Theorem 2.5. For some residual set o f  g in C 1 (R n, R n), the solution 
set for  the corresponding complementari ty  problem is discrete. 

Proof. Let A, D be subsets of  { 1, 2, ..., n}~with A n D = 0. Let 

f A,D = { r E  C 1 (R n , R n ): f ( R  A ) is transversal to R D } . 

Let G be the intersection of the F A'D for all such pairs A,  D. Sinceeach 
F A'D is a residual set, G is a residual subset of  C 1 (R n , R n). I f f E  F A,D 
and A u D - - / :  ( 1 , 2 , . . . , n } ,  then R A n f - l ( R  D) is empty. I f A u D  
= {!, 2, ...; n} a n d x e  R A n f - I ( R D ) ,  t henA - C,~c: R A -+ R A ,]'c(X) 
= 0, and D~c(x) is non-singular. By the Inverse Funct ion Theorem [18, 
p. 35],  there is an open set W c R A around x on which Yc is a diffeo- 
morphism (one-to-one and onto fog)) ;  and so x is the only point in W 
with ]'c(x) = 0, i.e., x is the only point in R A n f - I ( R D ) .  Therefore 
R A n f - I ( R D  ) is discrete. (It clearly may be an infinite set.) By Lemma 
2.1, such R A n f - l ( R ~ )  are the solution sets for f.  (Alternatively, see 
[1, p. 451.) 

Since x +f (x )  > 0 for a solution x is equivalent to A u D = { 1,2,. . . ,  n } 
and A n D = 0 for each pair A and D for which x ~ R A n f -1  (R D ), and 
since D~ c (x) is the principal minor of  Df(x) corresponding to the indices 
for which x i > 0, Theorem 2.5 can be restated as follows: 

Corollary 2.6. Le t  f E C 1 (R n, R n). Suppose each solution x ~ R n to 
(1) has the fol lowing properties: 

(i) x + f ( x ) >  O; 
(ii) i f  B c (1, ..., n } is the set o f  indices i such that x i > O, the prin- 

cipal minor o f  the matrix Dr(x) corresponding to B is non-zero. 
Then the solution set o f  (1) is discrete and the set o f  all such maps f is a 
residual subset o f C  1 (R n, R n ). 

Remark  2.7. The same proof works if instead of C 1 ( R  n , R n ) we con- 
sider affine maps and gives us an alternative proof for the linear comple- 
mentari ty problem. However, if we were considering only continuous 
maps R n -~ R n , we would have to weaken "residual" to "dense"  in the 
statement of  Theorem 2.5. For, in the proof of  Lemma 2.4, although 
parts (i)(b), (ii)(a), (ii)(b) carry over automatically in C O (R n , R n ),~ the 
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openness proof  in (i)(a) does not. In fact, if x is a solution of  the com- 
plementarity problem defined by  f,  there is a g arbitrarily C °-close to f 
with the property that an interval of  points around x is part of  the 
solution set for g. 

3 

In this section, we shall prove that i f f  satisfies the generic non-dege- 
neracy conditions of  Corollary 2.6 near solutions of  (1) and also a con- 
dition sufficient for the existence of  a solution [13] ,  then (1) has an 
odd number of  solutions. This generalizes a result o f  Lemke [ 14] for 
the linear problem. Our principal tool, however, will be the fixed point 
index [7, 5]. To do this, we must first state (1) asa fixed point  problem. 

Define h f: R n -+ R n by 

hf (x )  = arg min {llv - x + f(x)ll 2' v > _ 0} , (2) 

i.e., the non-negative vector v which minimizes IIv-  x +f(x)[I 2. Then 
h = hf  is well-defined since by the usual calculus techniques one can 
show that h = (h 1 . . . .  , h n ), where 

f 0 
h i ( x )  = 

- L . ( x )  t 

i f f i (x)  - x  i >_ O, 
(3) 

i f  f i ( x )  - x i <_ 0 .  

L e m m a  3.1. The. fol lowing s ta tements  are equivalent: 
(i) x satisfies (1); 
(ii) x ~ P(x) = arg min {(v , f (x)):  v >_ 0}; 
(iii) hf (x )  = x .  

Proof. See [10] .  

We now state a condition which Karamardian [13] has shown to be 
sufficient for the existence of  a solution to (1). 

(K) There is a compact  set C c R n such that for each x ~ R n \ c  there is 
a y E C with (y - x ,  f ( x ) )  < O. 

L e m m a  3.2. I f  f satisfies condit ion (K), then all the f i xed  points  of hf 
lie in the compact  set C of (K) .  
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Proof  Let  x ~ Rn\C.  By condi t ion  (K), ( y , f ( x ) ) <  (x, f(x)) for some 
y E C. Therefore ,  x q~ I '(x),  where I" is as in L e m m a  3.1. So hf(x) 4= x 
by  L e m m a  3.1. 

Lemma 3.3. Suppose f satisfies condition (K) for some compac t set C 
and let h =hr. Then there is a compact convex set D and a map 
g: R n -~ D such that 

(i) C c D; 
(ii) glC = h I f ;  
(iii) f ixed point set o f  g = f ixed  point  set o f  h. 

Proof Let  D C R n be any  compac t  convex set containing C u h(C). 
Define g: R n -+ D by  

g(x) = arg min { t l y -  x + f(x)ll 2" y ~ D} , (4) 

i.e., g(x) is tha t  y in D tha t  minimizes Ily - x +f(x)l l  2 . Then  g is well- 
def ined since D is compac t  and convex. 

Let  x ~ C. Since h ( x ) ~  D, we have g(x) = h(x), and (ii) follows. 
To prove (iii), it is suff icient  to show tha t  all the fixed points  o f g  lie 

in C. Since g(R n) c D, all f ixed points  o f  g lie in D. Let  x ~ D\C. By 
the K u h n - T u c k e r  Theorem [20] ,  if  x minimizes Ily - x - f(x)ll 2 over 
D, then  (o - x, f(x)) >- 0 for  all o in D. But  by  (K) there is a y ~ C c D 
such tha t  (y - x, f(x))  < 0. Hence no x in D\C can be a f ixed point  o f  g, 
and (iii) follows. 

The pr imary  tool  in the p roo f  o f  Theorem 3.5 below is the f ixed 
point  index of  a mapping.  Le t  Hi(M) denote  the jth (singular) h o m o l o g y  
group o f  mani fo ld  M over the integers Z. Fo r  N c M, let Hi(M, N) be 
the corresponding relative h o m o l o g y  group. For  example,  i f  S m is the 
m-dimensional  sphere, Hi(Sin ) = Z for j = 0 or m and Hj(S rn ) = {0} for  
all o ther  ]. The e lement  in H m (S m ) corresponding to 1 ~ Z is called the 
fundamental  class 7(S m ). A cont inuous  map G: M 1 --> M 2 induces group 
h o m o m o r p h i s m s  Hi(G): Hj(M 1 ) --> Hi(M 2 ) for  all j. I f  G is a homeomor -  
phism, each Hi(G) is an isomorphism.  I f  G: S m ~ S m , H m (G) is a homo-  
morphism o f  the integers. So H m (G)(-y(S m )) = d 7(S m ) for some integer 
d, called the degree o f  G. Rough ly  speaking, the degree o f  G measures 
how m a n y  t imes the image o f  G wraps a round  S m . 

Let  Z be an isolated fixed point  o f  G" R n -+ R n. Choose the disk 
D --- (x ~ R n" I x -  z I <_ r } o f  radius r about  z containing no o ther  fixed 
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G(x) = r ( G ( x ) -  x ) / IG(x)  - xl + z f o r x  ~ S n-1 

takes S n - 1  to S n - 1  . Its degree is called the index o f  the f i xed  poin t  z, 
I G (z). If G has a finite number of fixed points {z 1 , ..., z k }, the f ixed  
point  index o f  G, IG, is the sum of  the indices of  the fixed points 
I G = zki=llG(Zi). More generally, if U is an open subset of  R n and 
G: U--> R n has a compact fixed point set F G, then Hn(U, U~F a )  and 
Hn(R  n, Rn\{0}) are both isomorphic to the integers Z and thus each 
has a "fundamental  class" % Since 

id-G: (U, U~FG)-+ (R n, R n \ ( o ) ) ,  

H n (id-G) is a homomorphism of  the integers and 

Hn(id-G) 7(U, U~F G ) = I  G 7(R n , R n \ ( o ) )  

for some integer I a (the fixed point index of  G). As shown in [7] a n d  
[ 17], tile fixed point indexhas  the following properties for G: U--> R n : 

(I. 1) If F a is a finite set, both definitions above yield the same inte- 
ger. In particular, if U= U~IU],  where the Uj are open, then I G = 

(I.2) If  G maps all of  U to the point p ~ R n, then I a = +1 i f p  ~ U 
and Ia  = 0 if p q~ U. 

(I.3) If  G t : U--> R n for 0 <_ t <_ 1 is a continuous family of  maps and 

if UtFGt is compact, then Ia o = 161. 
(I.4) If  F G c K c  W c U, where K is compact and W open, then 

H n (id-G) 3,(W, W\K) = I G 7(R n , R n \ {0}).  

(I.5) If G" V-* R n- where V = W n R n for some open W in R n let + ,  

i: R n -+ R n be the inclusion and r: R n -+ R~ be a retract, i.e., a map with 
r o i = identity on R n. Then I G is defined as IioGor;I a is independent of  
choice of  r and satisfies (I. 1)-(I.4).  

Lemma 3.4. Assume that f ~ C 1 (R n, R n) satisfies the generic condi- 
tions (i) and (ii) o f  Corollary 2.6. Let  h f  be as defined in (2). Every 
f ixed  point  o f  h f  has index +- 1. 
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Proof. Extend f to a C 1 function on all of  R n as in Section 2. Then 
(3) defines an extension h of  hf  to all o f  R n, whose range is still R n. 
Let y be a fixed point of  hf. By Corollary 2.6 and Lemma 3.1, 
f (y )  + y > 0. So fl(y).= 0 if and only if y] > 0 for each component  
] =  1 , . . . ,n .  By (3), h is C 1 in some neighborhood W of  y. Now 
y ~ R A n f -1  (R B ), where R n = R A @ R B . So y = (YA,  OB ), f = (fA ,fB ), 
and h" = (h'A, h'B). On W, 

hA (XA ' XB ) = XA -- f A (XA , XB ) E R A 

and h B =- O, i.e., 

id-h (XA , X B ) =- ( f  A (XA ' XB ) '  XB )"  

Therefore, 

D(id[h)(y) = (DfA (yA ) 0i). 

By Corollary 2.6, DY A (YA) is non-singular. So, D(id-h)(y) is non-singular. 
By the Inverse Funct ion Theorem again, there is an open set V c W 
containing y with (id-h)lV a smooth homeomorphism onto its image. 
Choose V to be a ball of  radius e about y,  0 < e <  1. Therefore 
Hn(id-h): Hn(V  , V~y) -+ Hn(R n, Rn\ (0} )  is an isomorphism of  the in- 
tegers and sends +1 to + 1. So I.~w = + 1. 

However, our goal is to compute Ihf(y) = IhflVn R n . Let pt. R n ._~ R n 
be the following homotopy,  for 0 <_ t _< 1 : 

p'  = (p l pt ), 
' " ' ' '  n 

x] if x ] > -  t ,  
P~ ( X l ' " "Xn)=  t ifx] <- -  t .  

p0 is a retract of  R n. Since Visa  ball of  radius e about y , h  °p~ IV =hlV. 
Since h(R n) c R n and (id-h)lV is a homeomorphism,  y is the only fixed 
point o f h  opt in V for 0 <- t <_ e. Thus 

I 
h IV c~ R n - Iohopol v (by (I.5)) 

= Iio~opOiV (since h o p  = h o p )  

= Iio.Kopeiv (by  (I.3)) 

= / h I V  = -+ ] • 
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Theorem 3.5. Let f E C 1 (R n, R n ) and let (1) denote the complemen- 
tarity problem corresponding to f Suppose f satisfies the generic condi- 
tions (i) and (ii) o f  Corollary 2.6 and also condition (K) for  the exis- 
tence o f  a solution to (1). Then (1) has an odd number o f  solutions. 

Proof Let h = hf as in Lemma 3.1. Let C be the compact set of  con- 
dition (K). Without loss of  generality, one can take C to be the closure 
of an open set in R n. L e t D 3 C a n d g : R  n - * D  be as described in 
Lemma 3.3. Fix x ~  C and define the homotopy  Ht: R n --, R n by 

Ht(x) = (1 - t)g(x) + t-x 

for t ~ [0, 1] ; H 0 =g and H 1 - x. Since D is convex, Ht(R n) c D. Let 
K = Ut{x: H t ( x ) = x } .  Then K is compact since g (Rn)C D and D is 
compact. By Lemma 3.3, the fixed point set F h of h equals Fg and is 
compact. Since h = g in a neighborhood of F h in R n,+ 1 h = lg by (I.4). 
By (I.2) and (I.3), Ig = IH 1 = +1. By Theorem 2.5 and Lemma 3.2, F h 
is discrete and compact. Thus F h is a finite set, say { y l  . . . ,  ym } .  By 
Lemma 3.4, I h (yi) = + 1 for each i. By (I. 1), I h = ZmlIh (yi). Therefore, 
since 1 is the sum of  m real numbers of  absolute va!ae 1, m is odd. 

An interesting class of  maps that satisfy condition (K) are the stJ'ongly 
co-positive maps, i.e., f:  R n ~ R n with (f ix)--f(O),  x) ~ cVx, x) for some 

> 0 and all x. In this case, the compact set C needed for condition 
(K) is {x: x <- ~-1 tlf(0) II}, as shown in [131. 

Corollary 3.6. l f  f: R n --, R n is strongly co-positive and non-degene- 
rate (in the sense o f  Theorem 2.5), then (1) has an odd number o f  solu- 
tions. 

An example of  such a map is any square matrix with all entries posi- 
tive and all principal minors non-zero. This corollary can be considered 
as a generalization of  a result of  Lemke [ 14] for co-positive matrices in 
the linear complementarity problem. 
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