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Given f: Rﬁ’_-—» R”, the complementarity problem is to find a solution to x > 0, fix) > 0,
and {(x, f(x) > = 0. Under the condition that fis continuously differentiable, we prove that fora
generic set of such an f, the problem has a discrete solution set. Also, under a set of generic non-
degeneracy conditions and a condition that implies existence, we prove that the problem has an
odd number of solutions.

1
Let R” denote n-dimensional Euclidean space with the inner product
n
(X, 9= 23 x;); -
i=1
Let

RY={x=(xy, ..., x,): x 20},

where x = 0 stands for x; 2> 0 for alli=1, ..., n. Given a map f: R? - R",
the complementarity problem is to find a solution to the system
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x20, fix)20, (x, fixp=0. (1)

It is a unified form of problems arising in such fields as mathematical
programming [3,9, 14], game theory [3, 12, 14], economic equilibrium
theory [4, 12], mechanics [11], and geometry [8].

The special case where f is affine, i.e., f(x) = Mx + g, where M is an
n X n matrix and ¢ € R”, is called the linear complementarity problem
and has been extensively studied in the literature. Among the more im-
portant results are those showing that in certain cases the special con-
structive procedures developed by Cottle and Dantzig [3] and Lemke
[14] will actually compute a solution of the problem (1). Using these
procedures, one can establish some results on the parity of the number
of solutions of (1), as done by Lemke [14]. Some generic properties of
the linear problem are known; for example, Murty [15]} has shown that
the linear problem has a finite (and thus discrete) solution set for all q
if and only if all the principal minors of M are non-zero — clearly a ge-
neric property of matrices.

Most results of the non-linear complementarity problem are related
to establishing the existence of a solution, for example, Cottle [2] and
Karamardian [13]. In Section 3 of this paper, we will show that if f is
continuously differentiable (Cl), satisfies a couple of generic non-dege-
neracy conditions and an additional condition guaranteeing the exis-
tence of a solution, then (1) has an odd number of solutions. In Section
2, using transversality arguments, we will show that for almost all C!
maps f, (1) has a discrete solution set.

Our methods were motivated by the similar results of Debreu [4] and
Dierker [5, 6] in economics and by the philosophy of Smale [18] in
applying global analysis. In addition, we would like to acknowledge
helpful conversations with J. Heitsch.

In this section, we shall show that for almost all continuously diffe-
rentiable maps £ R} - R”, the solution set of the complementarity
problem is discrete. To avoid any smoothness difficulties and to make
our notation simpler, we shall work with C! maps R” -~ R”. We can do
this because any C! map R"” - R” can be extended as a C! map on all
of R" as follows: Let fy(x,, ..., x,) =/ on R}. Given f; ; defined on
{(xq, 0 x,):x; 20, ..., x, 20}, define f; on {(x, ..., x,): x;; 20, ..,
x, =20} by
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i1 Gegs v xy,) ifx; 20,
i1 (s e X, =X Xy s e X)) T
+2f; 1 Cops s X150, X541, o X)) i X; S0

iy, x,) =

fi+1 extends fiC1 and so f,, extends f to all of R". See also [1, Appendix
Al.

Let C1(R", R") be the vector space of C' functions R” - R”, given
the topology of uniform convergence of both f and its derivative Df on
compact sets, Df(x) being the n X n matrix afl-(x)/ax]-. CL(R",R") is
then a complete metric space, and by the Baire Category Theorem any
residual subset of it is dense. Recall that a subset U of a topological
space is residual if U contains the intersection of a countable number of
open dense sets, e.g., the irrational numbers form a residual subset of
the real numbers. Clearly, the intersection of a countable number of
residual sets is residual. A property that holds for a residual subset of a
space is called a generic property.

Let A be a non-empty subset of {1, ...,n} and RA = {0y x,):
x;=0 for i¢ A}. Let |A|= cardinality of A = dimension of R%; and
similarly for IBl, ICl and IDI. Let R4 =R4 n R”?. We state without
proof the following simple lemma.

Lemma 2.1. x € R} is a solution of the complementarity problem
defined by f if and only if there are non-empty subsets A and B of
{1, ...,n} such that AN B =Qand x € R? n f~1(RE).

We will use techniques of transversality theory, as in [1], to prove
that for a residual subset of C1(R", R"), f(R4) intersects R® transver-
sally where A and B are as in Lemma 2.1. We will then use this fact to
establish that the solution set of (1) is generically discrete.

We now introduce some notation and state some definitions to be
used in this section. Let A, B, C, DC {1,..,n}, AUB=CuUD=
{1,2,..,n}and AN B=CnD=0. So R" is the direct sum R* & R?
and also the direct sum R€ ® R? ; i.e., each x € R” is uniquely expres-
sed as x =x, +xp, where x, €R? and xz € R®, oras x =x, +xp,
where x € R¢ and Xp € R? . For simplicity of notation, we abbreviate
x4 +xp to (),51’4 ,xp) and xc +xp to [xc, xp 1. Given f€ CL(R", R"),
we write f: R1 @ R® - R€ o RP as

f(xA,xB)= [fc(xA ,xB),fD(xA ,xB)] s
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where f-(x,, xp) is the component of f(x,, xB) in R Let fC R4 -
R® denote the map xq b folxy, 0), and let Df (x4 ) be its derivative.
Instead of treating Df-(x,) as an n X n matrix of partial derivatives
with D! rows of zeroes and B} columns of zeroes, it will be more con-
venient to delete these zero rows and columns and consider ch(x 4) as
a lClI X |A]l matrix.

Definition 2.2. Let f: M -~ N be a C! map from manifold M to mani-
fold N. Let U be a submanifold of M and V a submanifold of N. Then
fU) is transversal to V if and only if, for x € U and y = f(x), either
v ¢ VoryeV, and the tangent space TyN of y in N is the sum (not
necessarily direct sum) of the tangent space Ty V of y along V and the
image of the tangent space T, U of x along U under the derivative of f,
ie., Tf(x)N = Tt V + Df(x )T, U).

Thus, given a C! map f: R4 e R® - RC o R? and Uc R, AU) is
transversal to R? if, whenever x 4 € Uand fo(x,, 05) =0, the rank of
DfC(xA }is ICI.

Definition 2.3. Given a C! map f: M > N as above with y €N, y isa

“critical value of fif y is in the range of f and for some x with f(x) =y,

Df(x) has rank less than the dimension of N. All y in N that are not cri-
tical values are called regular values of f.

Sard’s Density Theorem [1, p. 37; 19, p. 72] asserts that under suit-
able differentiability conditions on f (i.e., f is r times continuously dif-
ferentiable, where r > max {0, dim M — dim N }), the set of all critical
values of f has measure zero in N. Lemma 2.4 below is similar to the
Transversal Density Theorem [1, p. 48], a strong consequence: of Sard’s
Theorem. Since we have a simpler hypothesis and a different differentia-
bility requirement than does the usual Transversal Density Theorem, we
shall use Sard’s Theorem to prove the exact lemma we need. In addition,
by our proof of Lemma 2.4, Theorem 3.5 will be valid if we consider
only maps f that are affine.

Lemma 2.4. Let A, B, C, D be subsets of {1,2,...,n}.with An D
=@and R* o RZ =R"=R¢ & RP. Then

F= {fe CL(R",R"): fAR™) is transversal to RP }
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is a residual subset of CL(R",R"). [fAUD# {1,2,....n}, then feF
implies f(RA) N RP = ¢.

Proof. Write R" = U7, U;, where each U, is compact and contained in
the interior of Uy, ;. We will show that

F,={f: fU;n R*) is transversal to R? }

is open and dense in C!(R”,R"). Since NZ,F;=F, this will prove
Lemma 2.4.

(i) Suppose AUD={1,2, ...,n}. Then, R4 =R¢ and R =R?.

(a) To see that F; is open, let f€ F;. For each x, € U; N R4 with
fc(xA )=0 in R, the ICI X ICl matrix ch(xA) has non-zero determi-
nant. Since f(U;N RA YN RP is compact, these determinants are bounded
away from zero. If g is C! near £, then not only will g be pointwise near
/, but also det Dg (x4 ) will be near det ch(xA )forallx, € U;n R4 .
So, if g is C! near enough to £, then det DEC(xA) will be non-zero for
x4 € U;n R N g 1 (RP) and g will be in F;. So F, is open.

(b) To see that F; is dense, we suppose f ¢ F; and show that an arbi-
trary small perturbation of fis in F;. For some x, € R4, the rank of
ch(xA ) is less than ICl and fc(xA )y=0in R, i.e., 0 is a critical value
of fC: R4 — RC. By Sard’s Density Theorem, there is a vin R as close
as one wishes to 0 with v a regular value of fc, ie., ch( ¥ 4 ) has rank
ICl for all y 4 in /5! (v). Define g € C!(R", R") by

g(x) = [fo(x) — v, fp(x)] forallx € R" .

If x, € R4 is such that 8c(xy4,0)=0in R, then fe(xy, 0)=v and
Dgc(x 4)= Dfc(x,4). If v is a regular value of f, then O is a regular
value of g-. So g € F;. By taking v as close to 0 as one chooses, one can
make g as C'-close to f as one wishes.

(ii) Suppose AU D # {1, 2, ...,n}. Then |4l + IDI< nand [AI< IC
So the ICIX 14| matrix Df(x 4 ) has rank less than ICl for all x, in R4
and so each element of f (RA) is critical.

(a) To see that F; is open, let f& F;. Since the rank of ch(x) is less
than ICl, f(U; N R4) N RP = . Since AU;n R?) is compact, for all g
CO-near f, we have g(U;n RA)NRP =0 and g€ F,. So ‘F; is open.

(b) To see that F; is dense, follow argument (i)(bl now with v not in
the image of fc- Then O will not be in the image of gc- (Such a v exists
again because Sard’s Theorem asserts that f-(R?) has measure zero in
RC for 141< ICL)
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The final assertion of the lemma follows from arguments in (ii)(a).

Theorem 2.5. For some residual set of g in CL(R", R"), the solution
set for the corresponding complementarity problem is discrete.

Proof. Let A, D be subsets of {1, 2, ..., n} with 4 N D=0. Let
FAD = {fe CH(R", R™): fIRA) is transversal to RP } .

Let G be the intersection of the 42 for all such pairs A, D. Since each
FAD s a residual set, G is a residual subset of C1(R", R"). If fe FA.D
and AUD=# {1,2,...,n}, then R4 nf1(RP) is empty. If AUD
={1,2,...,ntandx€ R? n fI(RP), then 4= C,7o: R > R4 f-(x)
=0, and ch (x) is non-singular. By the Inverse Function Theorem [18,
p. 351, there is an open set W ¢ R? around x on which f is a diffeo-
morphism (one-to-one and onto f(W)); and so x is the only point in W
with fc(x) =0, i.e., x is the only point in R* n f~1(RP). Therefore
R4 n 1 (R?P) is discrete. (It clearly may be an infinite set.) By Lemma
2.1, such R4 n F~1(RP) are the solution sets for f (Alternatively, see

[1,p.45])

Since x +f(x) > 0 for a solution x is equivalent to AU D = {1,2, ..., n}
and A N D = for each pair 4 and D for which x € R4 n f~1(R?), and
since ch (x) is the principal minor of Df(x) corresponding to the indices
for which x; > 0, Theorem 2.5 can be restated as follows:

Corollary 2.6. Let f€ CL(R?, R"). Suppose each solution x € R" to
(1) has the following properties: |
i) x+f(x)> 0
(i) if BC {1, ...,n} is the set of indices i such that x; > 0, the prin-
cipal minor of the matrix Df(x) corresponding to B is non-zero.
Then the solution set of (1) is discrete and the set of all such maps [ is a
residual subset of C'(R", R™).

Remark 2.7. The same proof works if instead of C!(R”, R") we con-
sider affine maps and gives us an alternative proof for the linear comple-
mentarity problem. However, if we were considering only continuous
maps R} - R", we would have to weaken “residual” to “dense’ in the
statement of Theorem 2.5. For, in the proof of Lemma 2.4, although
parts (i)(b), (ii)(a), (ii)(b) carry over automatically in C%(R”, R"), the
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openness proof in (i)(a) does not. In fact, if x is a solution of the com-
plementarity problem defined by f, there is a g arbitrarily C%-close to f
with the property that an interval of points around x is part of the
solution set for g.

In this section, we shall prove that if f satisfies the generic non-dege-
neracy conditions of Corollary 2.6 near solutions of (1) and also a con-
dition sufficient for the existence of a solution [13], then (1) has an
odd number of solutions. This generalizes a result of Lemke {14] for
the linear problem. Our principal tool, however, will be the fixed point
index [7,5]. To do this, we must first state (1) asa fixed point problem.

Define ii;: R - R} by

he(x) = arg min {lo — x + )% v> 0}, (2)

i.e., the non-negative vector v which minimizes lv — x + f{x)l2. Then
h =hy is well-defined since by the usual calculus techniques one can
show that # = (h, ..., h,), where

0 if f,() — x; > 0,

hi(x) = x;—fix) iffi(x) —x;<0.

(3)

Lemma 3.1. The following statements are equivalent:
() x satisfies (1);

(ii) x € ['(x) = arg min {{v, f{x): v = 0};

(iii) 2 p(x) = x.

Proof. See [10].

We now state a condition which Karamardian [13] has shown to be
sufficient for the existence of a solution to (1).

(K) There is a compact set C C R such that for each x € R}\C there is
aye Cwith(y —x, f(x» < 0.

Lemma 3.2. If f satisfies condition (K), then all the fixed points of hy
lie in the compact set C of (K).
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Proof. Let x € RT\C. By condition (K), (y, f(x)) < {x, f(x)) for some
y € C. Therefore, x ¢ I'(x), where T" is as in Lemma 3.1. So hf(x) # X
by Lemma 3.1.

Lemma 3.3. Suppose f satisfies condition (X) for some compact set C
and let h="h. Then there is a compact convex set D and a map
g: R% = D such that

(i) Cc D;

(i) glC=hnlIC;

(iii) fixed point set of g = fixed point set of h.

Proof. Let D C R’} be any compact convex set containing C U A(C).
Define g: R} - D by

g(x)=argmin {ly — x + fGx)I%: y € D}, - (4)

i.e., g(x) is that y in D that minimizes Iy — x + f(x)I2. Then g is well-
defined since D is compact and convex. "

Let x € C. Since h(x)€ D, we have g(x)=h(x), and (ii) follows.

To prove (iii), it is sufficient to show that all the fixed points of g lie
in C. Since g(R}) C D, all fixed points of g lie in D. Let x € D\C. By
the Kuhn—Tucker Theorem [20], if x minimizes Iy — x ~ f(x)I? over
D, then (v —x, f(x»= 0 for all vin D. But by (K) thereisay€ Cc D
such that{y — x, f(x)» < 0. Hence no x in D\C can be a fixed point of g,
and (iii) follows.

The primary tool in the proof of Theorem 3.5 below is the fixed
point index of a mapping. Let H;(M) denote the j® (singular) homology
group of manifold M over the integers Z. For NC M, let H;(M, N) be
the corresponding relative homology group. For example, if S™ is the
m-dimensional sphere, H]-(S’" )=12Z for j =0 orm and H;(S™)= {0} for
all other j. The element in H,, (§™) corresponding to 1 € Z is called the
fundamental class v(S™ ). A continuous map G: M| - M, induces group
homomorphisms Hj(G): H]-(M1 )~ H]-(MZ) for all j. If G is a homeomor-
phism, each H;(G) is an isomorphism. If G: §” -~ 8™, H,, (G) is a homo-
morphism of the integers. So H,, (G)(v(S™))=d y(S™) for some integer
d, called the degree of G. Roughly speaking, the degree of G measures
how many times the image of G wraps around S™ .

Let Z be an isolated fixed point of G: R" - R”. Choose the disk
D= {x€R": Ix—zI<r} of radius r about z containing no other fixed
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points of G. Let $”~1 be the boundary of D. The map
G(x) =r(G(x) — x)/1G(x) — x|+ z forx € §"~!

takes S"~! to §”1. Its degree is called the index of the fixed point z,
Io(z). If G has a finite number of fixed points {z!, ..., z* }, the fixed
point mdex of G, I, is the sum of the indices of the fixed points
Ig = T | 1.(z). More generally, if U is an open subset of R” and
G: U~ R" has a compact fixed point set F;, then H, (U, U\F) and
H,(R", R"\{0}) are both isomorphic to the integers Z and thus each
has a “fundamental class” vy. Since

id-G: (U, \F;)~ (R",R"\{0}),
H, (id-G) is a homomorphism of the integers and
H,(id-G) v(U, U\F; ) =15 v(R", R"\{0})

for some integer /; (the fixed point index of G). As shown in [7] and
[17], the fixed point index has the following properties for G: U~ R":
(I.1) If F; is a finite set, both definitions above yield the same inte-

ger. In particular, if U= U] +U;, where the U; are open, then I =

pXia IIGIU
(1.2) it G maps all of U to the point p€ R", then I =+1if pe U

and I —Olfpe;é U.
(I3)If G,: U~ R" for 0 < ¢t< 1 is a continuous family of maps and

itU,Fg, is compact then Ig, = I,
dI4)If Fo c KC WC U, where K is compact and W open, then

H,(id-G) y(W, W\K) = I; v(R", R"\{0}) .

(LS)If G: V- R}, where V=W N R} for some open W in R", let
i R" > R" be the inclusion and r: R” - RY be a retract, i.e., a map with

«i = identity on R} . Then /; is defined as [;og.,; {5 is mdependent of
ch01ce of » and satisfies (1.1)—(1.4).

Lemma 3.4. Assume that f€ C* (R, R") satisfies the generic condi-
tions (1) and (i1) of Corollary 2.6. Let hy be as defined in (2). Every
fixed point of hf has index 1.
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Proof. Extend f to a C! function on all of R” asin Section 2. Then
(3) defines an extension 7 of hy to all of R”, whose range is still R”.
Let ¥ be a fixed point of hs. By Corollary 2.6 and Lemma 3.1,
fON+y>0. So f(y) 0 if and only if y; > 0 for each component
i=1, .., n. By (3) % is C! in some nelghborhood W of y. Now
ye RA mf '(R%), where R" =R* @ R® . Soy = (y,,05), 7= (f4.f3),
andh—(hA,hB) On W,

%A(xA,xB)=xA —~fA(xA,xB)€RA

and %B =0,ie.,

17 (xey,x5) = (4 (X, %), Xp) .

Therefore,

D(dT)(y) = (DfA Cad D).

1

By Corollary 2.6, DfA (¥4 ) is non-singular. So, D(id—%)(y) is non-singular.
By the Inverse Function Theorem again, there is an open set V' C W
containing ¥y with (id-%)IV a smooth homeomorphism onto its image.
Choosg V to be a ball of radius € about y, 0 < e < 1. Therefore
H, (id-h): H,(V, V\y) > H,(R",R"\{0}) is an isomorphism of the in-
tegers and sends +1 to 1. So I, = 1.

However, our goal is to compute Ih (y)= Ih AR - Let p': R" > R”
be the following homotopy, for 0 < ¢ < 1:

x; ifx; 2 —¢
pt = t = |7 i ’
@y, - DY), pi(xys s Xp) ; iij< ;

plisa  retract of RY. Since V'is a ball of radius € about y, K opeiV = .
Since h(R”) C R” and (1d-h) IV is a homeomorphism, y is the only fixed
point of 72 < p’ in Vfor0< t <e. Thus

L a R = Liepepoy (Y (15))
= Iioﬁopolv (sincehep =h-p)
= Loy 0V (13)
=L, =21,

hV
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Theorem 3.5. Let f€ CH(R”, R") and let (1) denote the complemen-
tarity problem corresponding to f. Suppose [ satisfies the generic condi-
tions (i) and (ii) of Corollary 2.6 and also condition (K) for the exis-
tence of a solution to (1). Then (1) has an odd number of solutions.

Proof. Let h = h; as in Lemma 3.1. Let C be the compact set of con-
dition (K). Without loss of generality, one can take C to be the closure
of an open set in R}. Let DD C and g: R} - D be as described in
Lemma 3.3. Fix x € C and define the homotopy H,: R} - R” by

H(x)=(1—gkx) +tx

for t€ [0, 1]; Hy=gand H, = x. Since D is convex, H,(R?) C D. Let
K=U,{x:H,(x)=x}. Then K is compact since g(R”)C D and D is
compact. By Lemma 3.3, the fixed point set F, of 2 equals F, and is
compact. Since A =g in a neighborhood of £y in RY, I; =1, by (1.4).
By (1.2) and (1.3), {, IH1 +1. By Theorem 2.5 and Lumma 3.2, F,
is discrete and compact Thus Fj, is a finite set, say {y'....,»™}. By
Lemma 3.4, [h(y )=21 for eachi. By (I.1), [, =Z7% [h(_y ) Therefore,
since 1 is the sum of m real numbers of absolute value 1, m is odd.

An interesting class of maps that satisfv condition (K) are the strongly
co-positive maps, i.e., f: R? > R* with (f{x) — f(0),x) 2 a(x,x) for some
a> 0 and all x. In this case, the compact set C needed for condmon
(K)is {x: x <a LIA0)I}, as shown in [13].

Corollary 3.6. If - Rl » R" is strongly co-positive and non-degene-
rate (in the sense of Theorem 2.5), then (1) has an odd number of solu-
tions.

An example of such a map is any square matrix with all entries posi-
tive and all principal minors non-zero. This corollary can be considered
as a generalization of a result of Lemke [14] for co-positive matrices in
the linear complementarity problem.
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