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Recently a generalization of simple convex polytopes  to combinatorial  entit ies known as ab- 
stract polytopes has been proposed.  The graph of  an abstract  polytope o f  d imension d is a regu- 
lar connected  graph of degree d. Given a connected  regular graph F o f  degree d, it is interesting 
to find out  whether  it is the graph of  some abstract polytope P. We obtain necessary and suffi- 
cient condit ions for this, in terms of  the existence of  a class o f  simple cycles in P satisfying cer- 
tain properties. The main result in this paper is that  if a pair o f  simple convex polytopes or ab- 
stract polytopes have the same two-dimensional  skeleton,  then  they are isomorphic.  Every two- 
dimensional  face of a simple convex polytope or an abstract  polytope is a simple cycle in its 
graph. Given the  graph of  a simple convex polytope or an abstract  polytope and  the  simple 
cycles in this graph corresponding to all its two-dimensional  faces, then  we show how to con- 
struct all its remaining faces. Given a regular connected graph F and a class o f  simple cyles D ,in 
it, we provide necessary and sufficient condit ions under  which ~ i s  the  class of  two-dimensional  
faces of  some abstract polytope which has  r as its graph. 

1. Introduction 

1.1. Let K be the set of  all feasible solutions of  

A x  = b, x >= O, (1) 

where A is a matrix of order m X n and rank m. Suppose K is nonempty  
and bounded. Alsoassume that the column vector b is nondegenerate in 
(1), i.e., that it does not lie in any subspace generated by m - 1  or less 
column vectors of  A. Under these assumptions, K is a simple convex 
poly tope  of  dimension d = n - m  and 2"~ K is an extreme point iff exact- 
ly m of  the Y/are positive and the remaining n - m  are zero. 

* This research has been partially supported by the  ISDOS Research Project at the  Depar tment  
of  Industrial and Operations Engineering, and by the National Science Founda t ion  under 
Grant No. GK-27872 with the  University of  Michigan. 
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Let S-- { 1 , . . .  ,n}. Corresponding to each extreme point 2 of  K, de- 
fine 

V(~') = {/: ] such that 2 i = 0}. 

Each V(~) is a subset of  S of  cardinality d=n-m and will be called a 
vertex. Let C be the class of  all the vertices. Let P(K) denote the pair 
(S,C). Clearly S* = Uv~ c V m a y  not be all of S. 

In analogy with the definition of adjacency of  extreme points on K, 
we define that two vertices V 1 and V 2 in P(K) are ad/acent iff  V 1 n V 2 
has cardinality equal to the cardinality of any vertex minus.one. From 
the theory of  linear programming, we know that  P(K) satisfies the fol- 
lowing: 

1.1.1. The class C of  vertices is nonempty.  
1.1.2. Every vertex is a subset of  S of  the same cardinality. 
1.1.3. If E is a subset o f  S of  cardinality equal to the cardinality of  a 

vertex minus one, then the number of  vertices which contain E as a sub- 
set is either 0 or 2. 

1.1.4. I f  V 0 and V, are a pair of  vertices, then there exists a sequence 
o f  vertices V o, V1, V 2 . . . .  , V t, V,, known as an adjacency path or edge 
path between V 0 and V,, such that every pair of  consecutive vertices in 
the sequence are adjacent and every vertex in the sequence contains 
V 0 n V, as a subset. 

1.2. The pair P(K)=(S,C) is known as an abstract polytope correspond- 
ing to the simple convex polytope K. P(K) captures the essential adja- 
cency structure between the extreme points of  K. 

In general, any pair (S, C) satisfying 1.1.1-1.1.4 defines an abstract 
polytope. In analogy to simple convex polytopes, we define the dirners 
sion of  the abstract polytope (S,C) to be the cardinality of  any vertex 
in C. 

1.3. Faces. A nonempty  face of  the convex polytope K is a nonempty  
set of  feasible solutions of  (1) after setting some of  the variables x / to  
zero. Analogously, let P--(S,C) be an abstract polytope and F c S. Let 
C F = {V\ F: V~ C, V D__ F},  where \ indicates set-theoretic difference: 
If C F is nonempty,  it is clear that  (S,C~) is itself an abstract polytope, 
and we call it the nonempty  face of  P generated by the subset F of  S. 
The dimension of  this face is equal t o  the dimension of  P minus the car- 
dinality of F. Two faces (S, CF1 ) and (S, CF2) are distinct if F 1 :~ F 2 . 
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Clearly a nonempty face of  dimension 0 of  an abstract p olytope 
P=(&C) is generated by a subset of  S which is itself a vertex, and hence 
it contains only that vertex. 

A nonempty  face of  dimension [ is generated by a subset of  S of  car- 
dinality equal to the dimension of P minus one, and it contains exactly 
two adjacent vertices of P. It will be called an edge of  P. 

1.4, Graph. The graph of an abstract polytope P=(&C) is obtained by 
representing each vertex in C by a vertex of the graph and joining a pair 
o f  vertices by an edge of the graph iff these vertices are adjacent on P. 
The graph is just the one-dimensional skeleton of  P, and is a connected 
regular graph of degree equal to the dimension of P. 

1.5. The axioms defining abstract polytopes were first outlined by 
Dantzig and discussed in [3]. References [1 -3 ,  6] contain several re- 
sults on abstract polytopes analogous to known results on convex polyo 
topes. 

1.6. Suppose that F is a given connected regular graph of  degree d. If we 
find a finite set of  symbols S= ( 1 , 2 , . . .  ,n } and a labelling of  the ver- 
tices of  P by subsets of  S of cardinality d such that when C is the class 
of  labels on the vertices of P, (S,C) is an abstract polytope and two ver- 
tices of P are connected by an edge of F iff the labels on these vertices 
represent a pair of  adjacent vertices of (S,C), then we say that the ver- 
tices of P have been labelled to be the vertices of an abstract polytope 
(S,C). We obtain necessary and sufficient conditions for the existence 
of  such a labelling. 

We also obtain the result that two abstract polytopes which have the 
same two-dimensional skeleton are isomorphic. Since the class of ab- 
stract polytopes includes all simple convex polytopes, this result also 
holds for simple convex polytopes. For other related results on the k- 
skeletons of  convex-polytopes, see [5, ch. 12]. 

Finally, the connections between abstract polytopes and simplicial 
complexes in combinatorial topology are easy to see. In the P(K)=(S, C) 
derived from the simple convex polytope K, the vertices in C are the 
d-1 simplices of  a.simplicial complex which is isomorphic to the bound- 
ary complex of the simplicial polytope dual to K. See [4, chs. 4,5]. 
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2. The  results 

2.1. Lemma. The graph o f  an abstract polytope P o f  dimension 2 is a 
simple cycle. 

Proof. By def in i t ion ,  the  graph o f  P is a co n n ec t ed  graph o f  degree 2 
and is the re fo re  a simple cycle.  

2.2. Lemma. Let  I" be the graph o f  an abstract polytope P=(S,C) o f  di- 
mension d ~_ 3. Let l) = {c I , . . .  ,c T } be 'the class o f  all the simple cycles 
in I" determined by the two-dimensional faces o f  P. Then: 

(i) I f  a pair o f  simple cycles in D contain two common vertices, then 
they must be adjacent and these cycles have no other vertex in com- 
mon. Thus, a pair o f  simple cycles in l? contain either exactly one com- 
mon edge or no common edges at all. 

(ii) Each edge o f  I" occurs in exactly d - 1  simple cycles in l) ; or, 
equivalently, for  every pair o f  edges o f  F with a common vertex, there 
is a unique simple cycle in l) containing both o f  them. 

Proof. (i) Le t  c 1, c 2 be the  simple cycles in l) which are the two- 
d imensional  faces genera ted  by  F 1 c S, and F 2 c S, respect ively,  F 1 4= F 2 . 
I f  V 0, V 1 are two  dist inct  vert ices which are on  b o t h c  1 and c 2 , t h en  b o t h  

V 0, l/  1 must  conta in  b o t h  F 1, F 2 as subsets. Since b o t h  F 1 and F 2 have 
cardinal i ty  d - 2 ,  this implies tha t  F 1 u F  2 = V0n V 1 has cardinal i ty  d 1 
and hence  V 0, V 1 must  be adjacent .  Since every c o m m o n  ver tex  o f  c 1 
and c 2 must  con ta in  F 1 u F  2 as a subset,  1.1.3, V 0 and V 1are the on- 
ly two  c o m m o n  vertices o f  c 1 and c 2 . This also implies tha t  any pair o f  
simple cycles in l? can have at mos t  one c o m m o n  edge. 

(ii) Le t  e I be an edge o f  1-" which is the one-dimensional  face o f  P 

genera ted  by  F 3 . Bo th  the vert ices on e 1 conta in  F 3 as a subset.  Hence  
every subset  of  F 3 o f  cardinal i ty  d - 2  generates  a two-dimens iona l  face 
o f  P. Obviously  there  are d - 1  o f  these two-dimens ional  faces, and by  
(i) these are the on ly  two-dimens ional  faces conta ining e 1 . 

I" is a regular graph o f  degree d. Let  V~ be a ve r tex  on  e 1, and let 
e 2 , . . .  ,e d be the  o the r  edges incident  at V 1 . By the  above arguments ,  
e 1 is con ta ined  among  d - 1  simple cycles in the  class D and the  edge e 1 
is the only  c o m m o n  edge be tween  any  pair o f  these simple cycles. This 
implies tha t  there  is a unique  simple cycle in l) passing th rough  each 
pair o f  the  edges e I , e / f o r  2 _-< ] <= d. 
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2.3. Lemma. Let P be the graph o f  an abstract poIytope P=(S,C) o f  di- 
mension d. Let  e l , . . .  ,e r be the edges o f  F incident at a vertex o f  P. 
Then there is a unique r-dimensional face o f  P containing all the edges 

e I , • . . ,e r . 
Proof. Let V 0 = (1, . . . , d ) b e  the common vertex on e l , . . . , e  r. 

Each subset of  V 0 of  cardinality d - 1  generates an edge containing V 0. 
Let e i be the edge generated by the subset ( 1 , . . .  , i -1,i+1, . . .  ,d),  for 
i = 1 , . . .  ,r. Then clearly the r-dimensional face of  P generated by the 
subset ( r + l , . . .  ,d} is the unique r-dimensional face of  P which con- 
tains all the edges e 1 , . . .  ,e r. 

2.4. We will now explore the properties of  the class of  simple cycles 
which are the two-dimensional faces of  an abstract polytope.  In particu- 
lar, we will develop a procedure for generating the faces of  all dimen- 
sions of  an abstract polytope using only the class of  its two-dimensional 
faces. 

2.5. Theorem. Let  P be the graph o f  an abstract poly tope P o f  dimen- 
sion r. Let  1) be the class o f  simple cycles in F, which are the two-di- 
mensional faces o f  P. Let  V o be a vertex with edges e I . . . .  ,e r incident 
at it. I f  a subclass "y o f  1) is obtained by the rules 

(a) for  every pair o f  edges e i, e/, 1 ~_ i < j ~_ r the unique simple cycle 
in 1) which contains both e i, ej is in % 

(b) any  simple cycle in 13 which  contains two edges f rom the edges 
on the simple cycles which are already in ~t is itself in % 

then ~1= 1). 

Proof. Let V lbe  the other vertex at the end of  edge e 1 and suppose 
er+ 1 . . . .  ,e2r_ 1 are the other edges incident at V 1 (see fig. 1). 

V 0 e 1 V 1 

~ 2  er+ l~~Q2r-1 

F i g .  1. 
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By Lemma 2.2, the simple cycles in 1) through the edges e 1, e i for 
i = 2 , . . .  ,r must each contain one distinct edge among e r + l , . . .  ,e2r_ 1" 
Each one of  these simple cycles is in 3'. Hence the fact that 3' contains 
all the simple cycles in 1) which pass through the vertex V 0 implies by 
(b) that ~, contains all the simple cycles in 1) passing through each adja- 
cent vertex of  V 0 . Since P is connected, this a'rgument applied repeated- 
ly yields that ~= 1). 

2.6. Theorem.  Le t  P be the graph o f  an abstract  p o l y t o p e  P=(S,C) o f  di- 

mension d. Le t  1) = ( C l , . . .  ,c r } be the class o f  s imple cycles in F which 

are all the two-d imens ional  faces o f  P. Le t  e I . . . . .  e r be edges o f f  wi th  

a c o m m o n  vertex V o. Le t  1) {e I , . . .  ,e r } be the subclass o f  l) ob ta ined  
by the rules 

(a) for  every pair o f  edges e i, e/, 1 <= i<  ]<= r, the unique  s imple cycle 

in 1)which contains both  e i, e / i s  in l) {e 1 . . . .  ,er } , 
( b ) a n y  s imple cycle in 1) which contains two edges f r o m  the edges 

on the s imple cycles which are already in 1) { e 1 . . . .  ,e r } is i tsel f  

in 1) (e 1 , . . .  ,e r }, 
then 1) (e  1 . . . . .  e r } is the class o f  all the two-d imens ional  faces o f  the 
unique r-dimensional  face  o f  P containing e 1 , . . .  ,e r. 

Proof .  The fact that 1 ) { e l , . . .  ,er} constructed in the above manner 
contains all the simple cycles corresponding to the two-dimensional 
faces, of  the unique r-dimensional face of  P containing e l , . . .  ,e r fol- 
lows from Lemma 2.3 and Theorem 2.5. 

Let V 0 = { 1 , 2 , . . .  ,d }. For 1 <- iN  r, let e i be the edge of  P generated 
by  the subset ( 1 , . . .  , i -1 , i + 1 , . . .  ,d} of  S. Then the r-dimensional face 
of  P generated by  the subset ( r+l ,  . . . ,d} is the unique r-dimensional 
face o f  P which contains all the edges e l , . . .  ,e r. o 

If F 1 and F 2 are two subsets of  S which generate edges of  P, then 
from 1.3 it is clear that bo th  these edges lie on a two-dimensional face 
of  P iff F 1 n F 2 has cardinality d - 2 ,  and in this case all the vertices on 
this two-dimensional face contain F 1 n F 2 as a subset and all the edges 
on this two-dimensional face are generated by subsets of  S wich con- 
tain F 1 n F 2 as their subset .  

Hence all the edges on the two-dimensional faces which are included 
in 1) (e  1 . . . .  ,e r } in step (a) are generated by subsets of  S which con- 
tain { r + l , . . .  ,d } as a subset. Applying this argument repeatedly,  from 
(b) it is clear that every edge contained on the simple cycles  included 
in 1) (e I . . . .  ,e r )  is generated by  some subset of  S which contains 



342 K. G. Murty 

{1"+1,... ,d} as its subset. Hence none of  the simple cycles in D{el, . . .  ,e r} 
contain an edge which does not lie in the r-dimensional face of  p gener- 
ated by  {r+l . . . . .  d}. 

These things imply that 1) (e 1 . . . . .  e r } is the set of  all simple cycles 
corresponding to the two-dimensional faces of  the unique r-dimensional 
face of  P containing e 1 . . . .  ,e r. 

The partial subgraph of IF' consisting of  the vertices and edges appear- 
ing among the simple cycles in D {e I , . . . ,e r } is the graph of  the r-di- 
mensional face of P containing e l , . . .  ,e r. 

2.7. Procedure. The two-dimensional skeleton of  an abstract polytope  
consists o f  its graph 1-' and the class D of  simple cycles in I" which are 
all the two-dimensional faces e f P .  Theorem 2.6 provides an easy proce- 
dure for generating the faces of  all dimensions of P given only its two- 
dimensional skeleton. 

Pick a set of  r edges of  I', say e 1 . . . . .  er, containing a common ver- 
tex. Then D { e l , . . .  ,e r } obtained by  using (a) and (b) o f  Theorem 2.6 
determines an r-dimensional face of  P. By picking all possible subsets of  
r edges containing a common vertex, all r-dimensional faces of  P can be 
generated in this manner. However, in this list, each r=dimensional face 
of  P is likely to appear several times. Duplication can be avoided by 
picking each time a set of  r edges with a common vertex, s o  that all 
these r edges together did not appear in any r-dimensional face gener- 
ated so far. 

By varying r from 3 to the dimension of  P, all the faces of  P can be 
generated. 

2.8. Theorem. A pair o f  abstract polytopes which have the same 2-di- 
mensionat skeleton are isomorphic. 

Proof. By Theorem 2.6, and 2.7, it is clear that if two abstract poly- 
topes have the same two-dimensional skeleton, then they have the same 
facial structure. Hence they are isomorphic. 

2.9. Corollary. For the class o f  simple convex polytopes, the two-di- 
mensional skeleton is unambiguous. 

Proof. Since each simple convex polytope is an abstract polytope,  
this result follows from Theorem 2.8. See [5, ch 12] for other  related 
results Ola k-dimensional skeletons of  convex polytopes.  
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2.10. We will now use these results to obtain necessary and sufficient 
conditions for a regular connected graph to be the graph of  an abstract 
polytope.  These turn out  to be very simple when the degree of  the 
graph is 3 and we discuss this case now. 

2.1 1. Theorem. A regular connected graph I" a f  degree 3 is the graph o f  
an abstract polytope i f f  there exists in I" a class l? = { C a , . . .  ,c r } o f  
simple cycles satisfying properties (i), (ii) o f  Lemma 2.2 with d equal to 3. 

Proof. The necessity part of  this theorem follows from "Lemma 2.2. 
To prove the sufficiency, suppose the class l) = { q , . . .  ,c r } of  simple 
cycles in I" satisfying (i), (ii) o f  Theorem 2.2 with d equal to 3 is given. 
Associate the symbol ]  with the simple cycle cj in ~), and let S= { 1 , . . .  ,T}. 
By (ii), each vertex in I" lies in exactly 3 simple cycles in D . Let the 
label on each ver tex  be the subset of  3 symbols associated with the 
three simple cycles in D containing that vertex. Let C be the class of  all 
the labels on the vertices of  r .  We will now prove that (S,C) is an ab- 
stract polytope  of  dimension 3 and that I" is its graph. Obviously the 
pair (&C) satisfies the axioms 1.1.1 and 1.1.2. 

Let E be any subset of  S of  cardinality 2, say E-- {1,2}, and suppose 
there is a vertex whose label contains E as a subset, say V 0 = (1,2,3}. 
Let e 1, e 2, e 3 be the edges incident at V 0. Suppose the symbols  1,2,3 
are associated with the simple cycles q ,  c 2, c3, containing the pairs of  
edges (e 1, e2) , (e2, e 3), (e3, e 1), respectively. Then e 2 is common to 
both the simple cycles q and c 2 and by (i) the two vertices on e 2 are 
the only two vertices whose labels contain E as a subset, Hence axiom 
1.1.3 is satisfied and adjacent vertices in 1-' have labels which have two 
symbols in common.  

Let V 0 and V, be the labels on two vertices. If V 0 n V, has cardinality 
2, then by  the above argument these vertices are adjacent on I'. If  V 0 n V, 
has cardinality 1, then both  these vertices lie on a simple cycle in D, and 
this simple cycle contains a path between these two vertices along the 
edges of P such that the label on every vertex along the path contains 
V 0 n V, as a subset. 

If V0n V, is empty,  since P is connected, there is a path between these 
two vertices along the edges of  I'. Thus axiom 1.1.4 is also satisfied. 

Hence the pair (& C) is an abstract polytope  of  dimension 3 and I" is 
its graph. 
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2.12. When P is a regular connec ted  graph o f  degree d > 3, Adler  [2] 
has cons t ruc ted  an example  to show that  the mere  fact  o f  the existence 
of  a class o f  simple cycles in P satisfying (i), (ii) o f  L e m m a  2.2 is not  
sufficient  to conclude  that  P is the graph of  an abstract  po ly tope .  So 
when d > 3 we have to impose  some more  condit ions.  For  this we in- 
t roduce  the fol lowing no ta t ion :  

Let P be  a regular connec ted  graph o f  degree d >  3. Let  13 be  a class 
o f  simple cycles in P satisfying (i) and (ii) o f  L e m m a  2.2. For  any r such 
that  2 ~_ r ~ _ d - 1 ,  let e l ,  . . . ,e r be a set o f r  edges of  P wi th  a c o m m o n  
vertex• Define the  subclass 13 { e l , . . .  ,e r } of  13 by  (a), (b) o f  Theorem 
2.6. There is a subset  13 {e I . . . .  ,er } of  1) for  every set o f  dist inct  edges 
{ e l , . . .  ,e r ) of  P with a c o m m o n  vertex• Make a list o f  all these subsets• 
In this list each subset  13 { e l , . . .  ,e r ) is l ikely to appear  several t imes . 
Let  F r deno te  the family of  all the dist inct  subsets  o f  the form D {el , . . .  ,er}. 

By this p rocedure  we therefore  get the  families F 2, F 3 . . . .  ,Fd-  1 o f  
subsets  o f  13. Obvious ly  each subset  in the family F 2 consists o f  just  one 
simple cycle in 13. 

2.13. Theorem. I f  P is a connected  regular graph o f  degree d > 3, it is 
the graph o f  an abstract po ly tope  i f f  there exists in P a class l) = { q ,  
• . .  ,c T } o f  simple cycles satisfying the fo l lowing properties: 

I3 satisfies properties (i) and (ii) o f  Lemma 2.2. 
The families F2, . . . ,Fcl_ 1 o f  subsets o f  13 generated as in 2.12 satisfy 

the fo l lowing  properties.  

(iii) The partial subgraph o f  I' consisting o f  all the vertices and edges 
appearing among the s imple cycles in any subset o f  13 belonging to the 
family  F a_ 1 is a connected  regular graph o f  degree d -  1. 

In addition to this, the condit ions listed below are satisfied wi th  
respect to each vertex in I'. Le t  V be any vertex in I" wi th  edges el ,  
• . .  ,e a incident at it. Then: 

(iv) V is the only vertex which appears among the simple cycle in 

each o f  the subsets 13 (e l ,  . . .  ,ei_l,ei+l , . . . , e  d } f o r  i=1 . . . . .  d. 
(v) e] is the only edge, and the two vertices on e] are the only two 

vertices which appear among the simple cycles in each o f  the subsets 

13 {el ,  . . . ,e i_ 1,ei+i , . . . ,e d ) for  all i=l . . . . .  d, i 4= f 
(vi) Let  {e/1 . . . .  ,e, } be any subset o f  the edges e l ,  . . .  ,e d with car- 

I r 
dinality r be tween 2 and d - 2 .  Then 
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f] ~{e 1 . . . .  , e i _ l , e i +  1 . . . . .  e d ) = 1) (e h . . . . .  e / r } .  
1<_ i_<d 

i ~ {h, ..., Jr) 

P r o o f .  To prove the necessity:  If  I" is the graph of  an abstract  poly- 
tope,  let 1) be the set of  all its two-dimensional  faces, each of  which is a 
simple cycle in I'. I f  e 1 . . . . .  e r are edges of  1 ~ with a c o m m o n  vertex, 
then  l) (e  I . . . . .  e r } is the set o f  two-dimensional  faces of  the r-dimen- 
sional face of  12 containing e l ,  ..., e r by Theorem 2.6. Hence by  Lemmas  
2.2 and 2.3, and Theorem 2.6, all the condi t ions  (i) to  (vi) are satisfied. 

To prove the suff iciency:  Let  1)be  a class o f  simple cycles in 17, and 
F2 . . . . .  F d -  1 the families o f  subsets of  D generated as in 2.12, which 
satisfy all the condi t ions (i) to (vi). For  convenience in referring to 
them,  let f l , f 2  . . . . .  fn  be all the distinct subsets in the family  F d_ 1 - 
Associate the symbol  j wi th  the subset f /  in F d _ l ,  for j = l ,  . . .  ,n. Let  
S= ( 1 , . . .  ,n}. Label each vertex of  P by  a subset of  S by the rule: j is 
conta ined in the label on a vertex i ff  tha t  vertex appears among the 
simple cycles in f / .  Let  C be the class of  all the labels on the vertices o f  
P. We will now prove tha t  ( S , C )  is an abstract po ly tope  and tha t  1 ~ is its 
graph. 

Ax iom 1.1.1 is obviously satisfied by the pair (&C). Let  V be any 
vertex in 1P with  edges e I . . . . .  e d incident  at it. Then by (iii) each of  
these subsets, 1) (e 1 . . . . .  e i _ l , e i +  1 . . . . .  ed}  for  i=1, . . .  ,d, is distinct 
and these are the only  subsets in the family F d _  1 which contain a 
simple cycle th rough  V. Hence the label on V consists o f  the symbols  
associated with these subsets, and hence has cardinal i ty  d. Also by  (iv), 
V is the only  vertex with  this label. Hence axiom 1.1.2 is satisfied by  
the pair (S, C). 

Suppose i is the index associated wi th  the subset l) (e 1 . . . . .  ei_ 1, 

ei+ 1 . . . . .  e d }  for i=1, . . . ,d. Then the label on V is ( 1, . . .  ,d}. Let  E 
be any subset o f  V of  cardinal i ty d - l ,  say E=(1 . . . . .  d - l , j + l , . . .  ,d}. 
By (v), the  two vertices on edge ej are the only  vertices of  17 whose labels 
conta in  E as a subset. Hence axiom 1.1.3 is satisfied by t h e  pair (S,C) 
and a pair of  vertices are adjacent  on I ~ i f  the labels on them contain 
d - 1  symbols  in common.  

Let  V* be ano ther  vertex in I '  such that  the intersect ion of  the labels 
on  V and V* is ( 1 , . . .  ,r ) o f  cardinal i ty r be tween  1 and d - 2 r  Then V* 
is also conta ined  among the simple cycles in the subset l )~ie~ . . . .  , e i - 1 ,  

ei+ 1 . . . . .  e d }  for 1 ~_i~_r. F r o m  (vi) this implies tha t  bo th  V and ~:* are 
contained among the simple cycles in l) ( e r +  1 . . . . .  e d ) ,  and tbe label on 
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every vertex appearing among the simple cycles in D {er+ 1 . . . . .  e d} 
contains {1 . . . . .  r } as a subset. By the definition of  the subset D (er+ 1, 
. . . .  ed}, the partial subgraph consisting of  the vertices and edges ap- 
pearing among the simple cycles in it is connected. This implies that 
there exists an edge path between V and V* such that the label on every 
vertex along the path contains (1 . . . .  ,r } as a subset. This, and the fact 
that F itself is connected, imply that the pair (S, C) satisfies axiom ~1.1.4 
also. 

Hence (S,C) is an abstract polytope of  dimension d with P as its 
graph. Condition (vi) implies that D is the class of  the two-dimensional 
faces of  this abstract polytope and that each subset in the family F r is 
the class of  two-dimensional faces of  some r-dimensional face of this ab- 
stract polytope. 

2.14. Corollary. Given a regular connected graph I', and a class o f  simple 
cycles D in it, the necessary and sufficient conditions under which O is 
the class o f  two-dimensional faces o f  an abstract polytope are (i) to (vi) 
o f  Theorem 2.13. 
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