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Recently a generalization of simple convex polytopes to combinatorial entities known as ab-
stract polytopes has been proposed. The graph of an abstract polytope of dimension d is a regu-
lar connected graph of degree d. Given a connected regular graph T' of degree d, it is interesting
to find out whether it is the graph of some abstract polytope P. We obtain necessary and suffi-
cient conditions for this, in terms of the existence of a class of simple cycles in T satisfying cer-
tain properties. The main result in this paper is that if a pair of simple convex polytopes or ab-
stract polytopes have the same two-dimensional skeleton, then they are isomorphic. Every two-
dimensional face of a simple convex polytope or an abstract polytope is a simple cycle in its
graph. Given the graph of a simple convex polytope or an abstract polytope and the simple
cycles in this graph corresponding to all its two-dimensional faces, then we show how to con-
struct all its remaining faces. Given a regular connected graph I' and a class of simple cyles D_in
it, we provide necessary and sufficient conditions under which Dis the class of two-dimensional
faces of some abstract polytope which has I" as its graph.

1. Introduction
1.1. Let K be the set of all feasible solutions of
Ax =b, x20, (D

where A is a matrix of order m X n and rank m. Suppose K is nonempty
and bounded. Also assume that the column vector & is nondegeneratein
(1), i.e., that it does not lie in any subspace generated by m—1 or less
column vectors of A. Under these assumptions, K is a simple convex
polytope of dimension d=n—m and X € K is an extreme point iff exact-
ly m of the )'c“] are positive and the remaining n—m are zero.
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of Industrial and Operations Engineering, and by the National Science Foundation under
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Let S= {1,...,n}.Corresponding to each extreme point ¥ of K, de-
fine
V(X)= {j: jsuch that¥; =0}.

Each V(¥) is a subset of S of cardinality d=n—m and will be called a
vertex. Let C be the class of all the vertices. Let P(K) denote the pair
(S,C). Clearly S* = Uy o ¥V may not be all of S.

In analogy with the definition of adjacency of extreme points on K,
we define that two vertices V; and V, in P(K) are adjacent iff V|, NV,
has cardinality equal to the cardinality of any vertex minus one. From
the theory of linear programming, we know that P(K) satisfies the fol-
lowing:

1.1.1. The class C of vertices is nonempty.

1.1.2. Every vertex is a subset of S of the same cardinality.

1.1.3.If E is a subset of S of cardinality equal to the cardinality of a
vertex minus one, then the number of vertices which contain F as a sub-
set is either O or 2.

1.1.4. If ¥V, and V, are a pair of vertices, then there exists a sequence
of vertices Vy, Vy, V5, ..., V;, Vi, known as an adjacency path or edge
path between V and V,, such that every pair of consecutive vertices in
the sequence are adjacent and every vertex in the sequence contains
Vo N V. as a subset.

1.2. The pair P(K)=(S,C) is known as an abstract polytope correspond-
ing to the simple convex polytope K. P(K) captures the essential adja-
cency structure between the extreme points of XK.

In general, any pair (S,C) satisfying 1.1.1—-1.1.4 defines an abstract
polytope. In analogy to simple convex polytopes, we define the dimen
sion of the abstract polytope (S,C) to be the cardinality of any vertex
inC. ~ : :

1.3. Faces. A nonempty face of the convex polytope K is a nonempty
set of feasible solutions of (1) after setting some of the variables x; to
zero. Analogously, let P=(S,C) be an abstract polytope and F C S. Let
Crp = {(V\F: Ve, V2 F}, where \ indicates set-theoretic difference.
If Cp is nonempty, it is clear that (S,Cy) is itself an abstract polytope,
and we call it the nonempty face of P generated by the subset F of S.
The dimension of this face is equal to the dimension of P minus the car-
dinality of /. Two faces (S, CFI) and (S, CF2) are distinct if Fj# F,.
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Clearly a nonempty face of dimension O of an abstract polytope
P=(S,C) is generated by a subset of S which is itself a vertex, and hence
it contains only that vertex.

A nonempty face of dimension | is generated by a subset of S of car-
dinality equal to the dimension of P minus one, and it contains exactly
two adjacent vertices of P. It will be called an edge of P.

1.4. Graph. The graph of an abstract polytope P=(S,C) is obtained by
representing each vertex in C by a vertex of the graph and joining a pair
of vertices by an edge of the graph iff these vertices are adjacent on P.
The graph is just the one-dimensional skeleton of P, and is a connected
regular graph of degree equal to the dimension of P.

1.5. The axioms defining abstract polytopes were first outlined by
Dantzig and discussed in [3]. References [1—3, 6] contain several re-
sults on abstract polytopes analogous to known results on convex poly-
topes.

1.6. Suppose that T is a given connected regular graph of degreed. If we
find a finite set of symbols S= {1,2,...,n} and a labelling of the ver-
tices of I' by subsets of S of cardinality d such that when C is the class
of labels on the vertices of I', (S, () is an abstract polytope and two ver-
tices of I" are connected by an edge of I' iff the labels on these vertices
represent a pair of adjacent vertices of (S,C), then we say that the ver-
tices of I" have been labelled to be the vertices of an abstract polytope
(S,0). We obtain necessary and sufficient conditions for the existence
of such a labelling.

We also obtain the result that two abstract polytopes which have the
same two-dimensional skeleton are isomorphic. Since the class of ab-
stract polytopes includes all simple convex polytopes, this result also
holds for simple convex polytopes. For other related results on the %-
skeletons of convex polytopes, see [5, ch. 12].

Finally, the connections between abstract polytopes and simplicial
complexes in combinatorial topology are easy to see. In the P(K)=(S,C)
derived from the simple convex polytope K, the vertices in C are the
d-1 simplices of a-simplicial complex which isisomorphic to the bound-
ary complex of the simplicial polytope dual to K. See [4, chs. 4,5].
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2. The results

2.1. Lemma. The graph of an abstract polytope P of dimension 2 is a
simple cycle.

Proof. By definition, the graph of P is a connected graph of degree 2
and is therefore a simple cycle.

2.2. Lemma. Let " be the graph of an abstract polytope P=(S,C) of di-
mension d=2 3. Let D = {eg,...crtbe the class of all the simple cycles
in I" determined by the two- dzmenszonal faces of P. Then:

() If a pair of simple cycles in D contain two common vertices, then
they must be adjacent and these cycles have no other vertex in com-
mon. Thus, a pair of simple cycles in D contain either exactly one com-
mon edge or no common edges at all.

(ii) Each edge of T’ occurs in exactly d—1 simple cycles in D ; or,
equivalently, for every pair of edges of T" with a common vertex, there
is a unique simple cycle in D containing both of them.

Proof. (i) Let ¢y, c, be the simple cycles in D which are the two-
dimensional faces generated by /| CS, and F, CS, respectively, F; # F,.
If Vy, V; are two distinct vertices which are on bothc¢; and ¢,, then both
Vo, Vi must contain both F;, F, as subsets. Since both F, and F, have
cardinality d—2, this implies that £} UF, = VN V| has cardinality d- 1
and hence V,, ¥, must be adjacent. Since every common vertex of ¢;
and ¢, must contain F| UF, as a subset, 1.1.3, ¥, and V,are the on-
ly two common vertices of ¢; and ¢, . This also implies that any pair of
simple cycles in D can have at most one common edge.

(ii) Let e; be an edge of I' which is the one-dimensional face of P
generated by F3. Both the vertices on e, contain F3 as a subset. Hence
every subset of /3 of cardinality d—2 generates a two-dimensional face
of P. Obviously there are d—1 of these two-dimensional faces, and by
(i) these are the only two-dimensional faces containing e, .

I' is a regular graph of degree d. Let V; be a vertex on e, and let
€y, ...,y be the other edges incident at V. By the above arguments,
e; 1s contained among d—1 simple cycles in the class D and the edge ¢,
is the only common edge between any pair of these simple cycles. This
implies that there is a unique simple cycle in D passing through each
pair of the edges ¢, ¢; for 2SS d.
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2.3. Lemma. Let " be the graph of an abstract polytope P=(S,C) of di-
mension d. Let e, . .. e, be the edges of I' incident at a vertex of T'.
Then there is a unique r-dimensional face of T" containing all the edges
€1, £y

Proof. Let V, = {1, .. .d}be the common vertex on e, .. .,e,.
Each subset of ¥, of cardinality d—1 generates an edge containing V.
Let e; be the edge generated by the subset {1, ..., i—1,+l,...,d}, for
i=1, ..., Then clearly the r-dimensional face of P generated by the
subset {r+1,...,d} is the unique r-dimensional face of P which con-
tains all the edgese;, ... e,.

2.4, We will now explore the properties of the class of simple cycles
which are the two-dimensional faces of an abstract polytope. In particu-
lar, we will develop a procedure for generating the faces of all dimen-
sions of an abstract polytope using only the class of its two-dimensional
faces. ‘

2.5. Theorem. Let T" be the graph of an abstract polytope P of dimen-
sion r. Let D be the class of simple cycles in I, which are the two-di-
mensional faces of P. Let Vi be a vertex with edges ey, . . . e, incident
at it. If a subclass vy of D is obtained by the rules
(a) for every pair of edges e;, e, 1< i<j<r the unique simple cycle
in D which contains both e;, e; is in v,
(b)any simple cycle in D which contains two edges from the edges
on the simple cycles which are already in 7y is itself in v,
then v=1.

Proof. Let V] be the other vertex at the end of edge e; and suppose
€41 - - - £9,_1 are the other edges incident at V| (see fig. 1).

€ Vi

€1 €r-1

Fig. 1.
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By Lemma 2.2, the simple cycles in D through the edges ¢;, ¢; for
i=2, ... must each contain one distinct edge amonge,,;,...,65,_ 1.
Each one of these simple cycles is in . Hence the fact that v contains
all the simple cycles in D which pass through the vertex ¥V, implies by
(b) that v contains all the simple cycles in D passing through each adja-
cent vertex of V. Since I' is connected, this Ergument applied repeated-
ly yields that y=7D.

2.6. Theorem. Let T" be the graph of an abstract polytope P=(S,C) of di-
mension d. Let D={cy, . .. ,cg} be the class of simple cycles in T which
are all the two-dimensional faces of P. Let e, ...,e beedges of ' with
a common vertex Vy. Let D {e;, ... e, } be thesubclass of D obtained
by the rules

(a) for every pair of edges e;, e, 1 £i<j<r, the unique simple cycle
in D which contains boz‘h e,, cisin Diey, ... e},

(b)any simple cycle in D which contains two edges from the edges
on the simple cycles which are already inD {e;, ... e} isitself
inDie,....el,

then D {e;,....e,} is the class of all the two-dimensional faces of the
unique r-dimensional face of P containing e, , . . . ,e,.

Proof. The fact that D{e,, ... ,e,} constructed in the above manner
contains all the simple cycles corresponding to the two-dimensional
faces. of the unique r-dimensional face of P containing ¢, . .. e, fol-
lows from Lemma 2.3 and Theorem 2.5.

Let Vo = {1,2,...,d}. For l i<, let ¢; be the edge of P generated
by the subset {1,...,i—1,+1,...,d}of S. Then the r-dimensional face
of P generated by the subset {r+1,...,d} is the unique r-dimensional
face of P which contains all the edges €1, .. .6, ~

If F{ and F, are two subsets of S which generate edges ofP then
from 1.3 it is clear that both these edges lie on a two-dimensional face
of P iff F; N F, has cardinality d—2, and in this case all the vertices on
this two-dimensional face contain F; N F, as a subset and all the edges
on this two-dimensional face are generated by subsets of S wich con-
tain F] N F, as their subset.

Hence all the edges on the two-dimensional faces which are included
inD {e,...,e} in step (a) are generated by subsets of .S which con-
tain {r+1, ... ,d }as a subset. Applying this argument repeatedly, from
(b) it is clear that every edge contained on the simple cycles included
inD {e,...,e} is generated by some subset of S which contains
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{r+1, ... d}asitssubset. Hence none of the simple cyclesin D{ey, . . . ,e,}
contain an edge which does not lie in the r-dimensional face of p gener-
ated by {r+1,... d}.

These things imply that D {e;, ... ..} is the set of all simple cycles
corresponding to the two-dimensional faces of the unique r-dimensional
face of P containingey, . . . .e,.

The partial subgraph of I" consisting of the vertices and edges appear-
ing among the simple cycles in D {e;, . ..,e, } is the graph of the r-di-
mensional face of P containing e, . . . ,e,.

2.7. Procedure. The two-dimensional skeleton of an abstract polytope
consists of its graph I' and the class D of simple cycles in I" which are
all the two-dimensional faces ¢ P. Theorem 2.6 provides an easy proce-
dure for generating the faces of all dimensions of P given only its two-
dimensional skeleton.

Pick a set of r edges of T', say ¢;, ... e, containing a common ver-
tex. Then D{e;, ... e, } obtained by using (a) and (b) of Theorem 2.6
determines an r-dimensiornial face of P. By picking all possible subsets of
r edges containing a common vertex, all 7-dimensional faces of P can be
generated in this manner. However, in this list, each r-dimensional face
of P is likely to appear several times. Duplication can be avoided by
picking each time a set of r edges with a common vertex, so that all
these r edges together did not appear in any r-dimensional face gener-
ated so far.

By varying r from 3 to the dimension of P, all the faces of P can be
generated.

2.8. Theorem. A pair of abstract polytopes which have the same 2-di-
mensional skeleton are isomorphic.

Proof. By Theorem 2.6, and 2.7, it is clear that if two abstract poly-
topes have the same two-dimensional skeleton, then they have the same
facial structure. Hence they are isomorphic.

2.9. Corollary. For the class of simple convex polytopes, the two-di-
mensional skeleton is unambiguous.

Proof. Since each simple convex polytope is an abstract polytope,
this result follows from Theorem 2.8. See [5, ch 12] for other related
results on k-dimensional skeletons of convex polytopes.
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2.10. We will now use these results to obtain necessary and sufficient
conditions for a regular connected graph to be the graph of an abstract
polytope. These turn out to be very simple when the degree of the
graph is 3 and we discuss this case now.

2.11. Theorem. A regular connected graph 1" of degree 3 is the graph of
an abstract polytope iff there existsin I'a class D ={¢;,...,cp} of
simple cycles satisfying properties (i), (ii) of Lemma 2.2 with d equal to 3.

Proof. The necessity part of this theorem follows from Lemma 2.2.
To prove the sufficiency, suppose the class D = {¢;, ... ,cy} of simple
cycles in I' satisfying (i), (ii) of Theorem 2.2 with d equal to 3 is given.
Associate the symbolj with the simple cycle ¢;inD,andletS={, ... T}
By (ii), each vertex in I lies in exactly 3 simple cycles in D . Let the
label on each vertex be the subset of 3 symbols associated with the
three simple cyclesin D containing that vertex. Let C be the class of all
the labels on the vertices of I'. We will now prove that (S,C) is an ab-
stract polytope of dimension 3 and that I' is its graph. Obviously the
pair (S,C) satisfies the axioms 1.1.1 and 1.1.2.

Let E be any subset of S of cardinality 2, say £={1,2}, and suppose
there is a vertex whose label contains E as a subset, say V; = {1,2,3}.
Let ¢, e,, e; be the edges incident at V},. Suppose the symbols 1,2,3
are associated with the simple cycles ¢;, ¢,, ¢, containing the pairs of
edges (ey, ey), (e;, e3), (e3, ¢), respectively. Then e, is common to
both the simple cycles ¢; and ¢, and by (i) the two vertices on e, are
the only two vertices whose labels contain E as a subset. Hence axiom
1.1.3 is satisfied and adjacent vertices in I" have labels which have two
symbols in common.

Let ¥V, and V, be the labels on two vertices. If V; NV, has cardinality
2,then by the above argument these vertices are adjacent on I". If VNV,
has cardinality 1, then both these vertices lie on a simple cycle in D, and
this simple cycle contains a path between these two vertices along the
edges of I' such that the label on every vertex along the path contains
VoN Vi as a subset.

If Von V. is empty, since I' is connected, there is a path between these
two vertices along the edges of I'. Thus axiom 1.1.4 is also satisfied.

Hence the pair (§,C) is an abstract polytope of dimension 3 and I is
its graph.
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2.12. When I' is a regular connected graph of degree d > 3, Adler [2]
has constructed an example to show that the mere fact of the existence
of a class of simple cycles in I satisfying (i), (ii) of Lemma 2.2 is not
sufficient to conclude that I" is the graph of an abstract polytope. So
when d >3 we have to impose some more conditions. For this we in-
troduce the following notation:

Let I' be a regular connected graph of degree d> 3. Let D be a class
of simple cycles in I' satisfying (i) and (ii) of Lemma 2.2. For any r such
that 2Sr<d—1, let e,...,€, be asetofredges of I' with a common
vertex. Define the subclass D {e,,...,e,} of D by (a), (b) of Theorem
2.6. There is a subset D {e, ... e, } of D for every set of distinct edges
{e;, . .. .e,;of I with a common vertex. Make a list of all these subsets.
In this list each subset D {e;, ... e} is likely to appear several times .
Let £, denote the family of all the distinct subsets of the form Dfe,, .. . ¢}

By this procedure we therefore get the families 7, F3, ... ,F; ; of
subsets of D.Obviously each subset in the family F, consists of just one
simple cycle in D.

2.13. Theorem. If T is a connected regular graph of degree d> 3, it is
the graph of an abstract polytope iff there exists in I a class D = {g;,

.,.cp } of simple cycles satisfying the following properties:

D satisfies properties (i) and (ii) of Lemma 2.2.

The families 5, . . . ,F;_; of subsets of D generated as in 2.12 satisfy
the following properties:

(iii) The partial subgraph of T' consisting of all the vertices and edges
appearing among the simple cycles in any subset of D belonging to the
family F;_q is a connected regular graph of degree d—1.

In addition to this, the conditions listed below are satisfied with
respect to each vertex in I'. Let V be any vertex in T" with edges ¢,

. g incident at it. Then:

(iv) V is the only vertex which appears among the simple cycle in
each of the subsets D{e;, ... .e;_1.j41,....€qtfori=1,. ... d.

(v) e; is the only edge, and the two vertices on e; are the only two
vertices which appear among the simple cycles in each of the subsets
Dieg,....6;_1.€i415---qt foralli=1, ... ,di+j

(vi) Let e, }be any subset of the edgese, ... eg With car-
dinality r between 2 and d—2. Then
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N Die,....e; 1.€uy, . .eqt =Dle ... ,e]-r}.
1<igd :
i€ {j1s o ir}

Proof. To prove the necessity: If I' is the graph of an abstract poly-
tope, let D be the set of all its two-dimensional faces, each of whichisa
simple cycle in I". If e¢;, . .. ,e, are edges of I' with a common vertex,
thenD {e, ..., e,} is the set of two-dimensional faces of the r-dimen-
sional face of I" containing ey, ..., ¢, by Theorem 2.6. Hence by Lemmas
2.2 and 2.3, and Theorem 2.6, all the conditions (i) to (vi) are satisfied.

To prove the sufficiency: Let D be a class of simple cyclesin I, and
Fy oo, F,; _y the families of subsets of D generated as in 2.12, which
satisfy all the conditions (i) to (vi). For convenience in referring to
them, let 1,72, ... ,f" be all the distinct subsets in the family F; .
Associate the symbol j with the subset f/ in F; _,, for j=1, ... 1. Let
S={1,...,n}. Label each vertex of I" by a subset of § by the rule: jis
contained in the label on a vertex iff that vertex appears among the
simple cycles in f/. Let C be the class of all the labels on the vertices of
I'. We will now prove that (S,C) is an abstract polytope and that I is its

graph.

Axiom 1.1.1 is obviously satisfied by the pair (S,C). Let V be any
vertex in I' with edges ¢/, .. ., ey incident at it. Then by (iii) each of
these subsets, D {¢;, ..., €i_1,Cix1s - - - ,eqt for i=1, ... d, is distinct

and these are the only subsets in the family F;_; which contain a
simple cycle through V. Hence the label on V consists of the symbols
associated with these subsets, and hence has cardinality d. Also by (iv),
V is the only vertex with this label. Hence axiom 1.1.2 is satisfied by
the pair (S,0).

Suppose i is the index associated with the subset D {e, .. ., €i_1,
€iy1,--..6qr fori=l,... d. Then the label on Vis {1, ... .,d}. LetE
be any subset of V of cardinality d—1, say E={1, ... j—1j+1,...,d}
By (v), the two vertices on edge ¢; are the only vertices of I' whose labels
contain £ as a subset. Hence axiom 1.1.3 is satisfied by the pair (S,C)
and a pair of vertices are adjacent on I if the labels on them contain
d—1 symbols in common.

Let V* be another vertex in I' such that the intersection of the labels
onVand V*is {1,...r} of cardinality r between 1 and d—2. Then V'*
is also contained among the simple cycles in the subset Die;..... &_ y,
€ir1, - - - ,€g} for 1<i<r. From (vi) this implies that both ¥ and ¥* are
contained among the simple cyclesinD {e,,;, ... .e;}, and the label on
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every vertex appearing among the simple cycles in D {e,.q,....e5}
contains {I,...,r} as asubset. By the definition of the subset D {e,,;,
...,eq}, the partial subgraph consisting of the vertices and edges ap-
pearing among the simple cycles in it is connected. This implies that
there exists an edge path between V and V* such that the label on every
vertex along the path contains {1, ...} as a subset. This, and the fact
that I' itself is connected, imply that the pair (S,C) satisfies axiom .1.1.4
also.

Hence (S5,0) is an abstract polytope of dimension d with I' as its
graph. Condition (vi) implies that D is the class of the two-dimensional
faces of this abstract polytope and that each subset in the family F; is
the class of two-dimensional faces of some r-dimensional face of this ab-
stract polytope.

2.14. Corollary. Given a regular connected graph T, and a class of simple
cycles D in it, the necessary and sufficient conditions under which D is
the class of two-dimensional faces of an abstract polytope are (i) fo (vi)
of Theorem 2.13.
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