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Separable sublinear functions are used to provide upper  bounds  on the recourse function of a 
stochastic program. The resulting problem's objective involves the inf-convolution of  convex 
functions. A dual of  this problem is formulated to obtain an implementable procedure to calculate 
the bound.  Function evaluations for the resulting convex program only require a small number  
of  single integrations in contrast with previous upper  bounds  that require a number  of  function 
evaluations that grows exponentially in the number  of  random variables. The sublinear bound  
can often be used when other suggested upper  bounds  are intractable. Computat ional  results 
indicate that the sublinear approximation provides good, efficient bounds  on the stochastic program 
objective value. 
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1. Introduction 

We consider  the following stochastic program with recourse: 

find x c ~'1, X c R "~2 such that A x  = b, Tx  - X = O, x >I O, 

and z - - -cx+  g t (X  ) is minimized,  

where ~ ( X ) =  E{qJ(X, so)} and ~O(X, ~:) is the recourse func t ion  defined by 

qJ(X, £) = inf  {qy[ W y  = £ - X } .  
y c R +  2 

(1.1) 

(1.2) 
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The random m2-vector ~ is defined on a probability space (S, ~,  ~) .  The vectors 
b c ~m,, c c R ~,, q c R n2, and matrices, A ~ ~m,×n,, TC ~ 'n2×n', WC R m2×~2, are deter- 

ministic. In more general models, q and T may be stochastic, but we confine our 
attention to the case of random right-hand sides in (1.2). 

Difficulties in performing the multiple integration to evaluate ~F(X) make the 
solution of (1.1) especially complex. Solution procedures that do not assume special 
structure, therefore, involve some approximation to ~F(X ) and its derivatives. One 
type of procedure is to sample from ~ randomly and to use sample information to 
guide an optimization algorithm. These stochastic quasi-gradient methods (see 
Ermoliev, 1983; and Ermoliev and Gaivoronski, 1987) have asymptotic convergence 
properties, but they are limited by a lack of computable bounds. 

Other approximation procedures for (1.1) provide bounds by discretizing S 
(Huang, Ziemba and Ben-Tal, 1977; Kall and Stoyan, 1982; Birge and Wets, 1986a). 
Lower and upper bounds are used to provide termination criteria for solution 
algorithms (Birge, 1983). The lower bounds are based on Jensen's inequality and, 
in general, require a small number of function evaluations. The upper bounds are, 
however, obtained by extremal measures that require evaluating q~(X, • ) at all extreme 
points of -~ (or some region containing S ) ,  i.e., at least 2 r~2 solutions of (1.2) with 
varying 6 These approaches are then limited to problems with small m2. The 
sublinear upper bound we propose requires only solving O(m2) linear programs 
(1.2), so that a much broader class of problems can be considered. 

Various methods have been suggested for solving the large-scale linear program 
associated with a discretization of ~ (Wets, 1987). These methods include basis 
factorization (Strazicky, 1980; Kall, 1979), inner linearization (Dantzig and 
Madansky, 1961), and outer linearization (Van Slyke and Wets, 1969). Implementa- 
tions are described in Kall and Keller (1983) and Birge (1985, 1987). In general, 
the number of realizations in the discretization is limited to numbers in the hundreds 
(i.e., m2 < 10). The discretization level is not always enough to provide close bounds 
on the objective value. Solution times can also become extremely long. The situation 
is better, however, if (1.1) has special structure. 

The stochastic program with simple recourse is a special instance of (1.1) in which 
W = (I, - I ) ,  where I is an m2 x m2 identity matrix. This allows for the use of general 
nonlinear optimization procedures (Nazareth and Wets, 1986) and combinations of 
linear and nonlinear procedures (Qi, 1986). Separability reduces the m2-dimensional 
integration to m2 independent one-dimensional integrals; it renders possible the 
direct computation of the values and the derivatives of gr for use in optimization. 

We obtain efficient upper bounds by replacing the recourse function with functions 
similar to simple recourse functions. We generalize and extend the ray funct ion 

approximation in Birge and Wets (1986a) and the efficient network implementation 
in Wallace (1987). We show that linear transformations of the random vectors can 
be used to obtain a variety of separable, sublinear bounding functions. We also 
give a dual-based solution procedure for combining these bounding functions. The 
separable sublinear functions allow for monotropic optimization (Rockafellar, 1984). 
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The convex hull of several of these functions is used in the calculation of the upper  
bound. In our experience, the solution of this upper bounding problem provides 
quick solutions that are close in value to the optimum. It may be especially valuable 
in providing initial solution values (as in Birge and Wets, 1984) for further optimiz- 
ation procedures (Nazareth and Wets, 1986). 
The simple recourse problem and its properties are described in Section 2. Section 
3 describes the sublinear approximation procedure and its relation to the simple 
recourse problem. Section 4 explains how the sublinear approximation is solved 
using its dual, and Section 5 discusses our implementation. Section 6 presents 
computational results. Section 7 discusses possible extensions. 

2. The simple recourse problem 

The simple recourse problem has a separable recourse function that is written as 

~ ( g ) = ~  ~i(Xi) where lt~i(Xi ) =~ I~i(Xi, ~i)dPi(~i) ,  Pi is the marginal distribution 
function of ~:i, which we assume has bounded first and second moments, and 

~O~(X~, ~i) = inf{q+Y + + q ~ y T l y  + - y i  = ~ - xi ,  y+ >~ O, y i  >10} 

~q+(~:~-X,) if X~ ~< ~i, 
(2.1) 

t q~(x~ - ~ )  if X, > s~i - 

Detailed properties of the simple recourse problem are given in Wets (1966, 1974a) 
and Parikh (1968). 

The simple recourse func t ion  components ~(X~) can then be written as 

gt~(X~) = q [ ~  - q+x~ + qix~Pi(xi) - qi ~ dPf (~:~), (2.2) 

where qi = q~[ + qT > 0 and ~ = I ~:~ dP~(~). The functions X ~ gr (X) and Xi ~ ~(Xi)  
are continuous convex functions on R m2 and R, respectively (Wets, 1974a). The 
subditterential at X~ is given by 

oltti(Xi) = { ¢J'F]- q+ + q~PT(xi) <~ ~r <~ - q ~  + q~P~(xi)}, (2.3) 

where P~(Xi)  =limy,x, P/(Y) (Wets, 1974a). From (2.3), if P~ is continuous, then ~i 
is differentiable. 

The development of our sublinear approximation relies upon the use of conjugate 
functions. To find the conjugate of ~i, first define 

G , ( p )  = {ylPr, (y)  <~ p <~ P~(y)}. (2.4) 

The conjugate of qt  is written 

T * ( v i )  = sup{v~X~- qt,(X~)}. (2.5) 
Xi 
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The conjugate function o f  ~ defined in (2.2) is given by 

i f  -q+ < vi < qi,  

i f  vi = -q+, 

if  vi = qF, 
otherwise, 

134 

Proposition 2.1. 

[ -q : ( - i+(v i+q+)Y-q iYPi (Y)+qi  f Y  ¢idPi(¢i), 

~ f ( v i )  =~-q+s~i (2.6) 

]q;~i 
k + ~ ,  

where y c G~((vi + q+)/q~). 

Proof. From (2.5) and (2.2), we have 

g t * ( v i ) = s u p / v i x i -  +- + L } q, ~ + qi Xi -q~x~P~(x~)+q~ s¢:~ dP~(~:i) 
Xi t 

= - q ~ + s u p  (v~+q~)xi-q~xiP~(x~)+q~ ~ dP~(~:~) . (2.7) 

From (2.7), it is clear that ~*(vi) = +o0 if vi < - q [  or v~ > q~. We, therefore, assume 
that -q[<~ v ~  < qi. For v~ c (-q~,  q~-), the set of ,g~ that attains the supremum in 
(2.7) is {X, I P , ( x , )  <~ (v, + q+)/qi <~ Pi(xi)} = Gi((vi + q+)/q~). Substitution of y 
G~((v~ + q+)/q~) yields the first formula in (2.6). For vi on the boundary of I -q+,  
q7] and bounded distributions, the same argument applies. The formulas for 
unbounded distributions follow directly given our assumption of bounded first and 
second moments. [] 

The following corollaries follow immediately from Proposition 2.1. 

Corollary 2.2. I f  P~ is continuous, then 

r q+~+q~ f Y  ~i dp~(s~) 

~*(v i )= -q+~  

+oo, 

where y c G~((vi + q+)/q~). 

Corollary 2.3. I f  ~i has the degenerate distribution 

otherwise, 

then 

gt . (  vi) = ~ vi~ i f  -q+ <~ vi <~ q , ,  
[+o0 otherwise. 

/f -q+  < vi < q~-, 

i f  v, = - q L  
i f  vi = qT, 
otherwise, 

(2.8) 

(2.9) 

(2.10) 
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In addition to q t*  we are also interested in its subgradients. 

Proposition 2.4. The subdifferential of ~ *  at vi e ri(dom ~ * )  (the relative interior of  
the effective domain of ~*i ) is given by 

+ q:l 
Oqr*(v,) = G, \ ~ - / .  (2.11) 

Proof. The subgradients are found directly using (2.6). [] 

3. The sublinear upper bound 

Simple recourse functions are used here to approximate the general recourse function 
#J as defined in (1.2). We assume that ~(X, ~:) is finite for all values o f x  and s c, i.e., 
pos W = R m2. This assumption corresponds to complete recourse in stochastic pro- 
gramming. In practice, it can be achieved by introducing appropriate penalties in 
the recourse problem. In this case, the function 05 defined by 

05(~c-X) = tP(X, s c) (3,1) 

is sublinear (positively homogeneous and convex). This property allows the simple 
recourse function approximation. The function 05 is also polyhedral (i.e., its epigraph 
is a polyhedral cone). 

Birge and Wets (1986a) introduced a method for approximating ~ b y  simple 
recourse functions. This method was based on solving the linear program: 

find y 6 ~ n2 such that Wy = ei, y >~ O, and qy is minimized, (3.2) 

where ei is the ith unit m2-vector. The optimal solution value of (3.2) is q~-(n. If we 
substitute -e~ for e~, the optimal solution value is -q[<n. By sublinearity, 

m 2 
t~(X, ~)<~ ~PI(X, ~:) = ~ 01(,)(Xi, ~:~), (3.3) 

i 1 

where 

lq,+u)(~,-X~), ~,~Xi, 
~b'(')(X/' ~') = tq}-(,)(X~- ~i), (, <X,. 

The function qq is a simple recourse function. 
By integration in (3.3), we have 

q'(x) ~< te,(x), 

where 

f 
1 I l l ( X )  = J ~  Irbl(X' ~) d P ( s  c) 

q]'o)(sc~ -X,)  dP(~:~) + 
i = 1 '~i ~ Xi '~i "< Xi 

(3.4) 
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Note that qrl is separable in the components of X and only line integration is 

required in its computation. 
Other approximations are obtained by considering directions other than ±ei in 

(3.2). Let h i , . . .  , hK ~N-,2 positively span R "2 (i.e., Rm 2 =p o s [h l , . . . ,  hK]). Sub- 
stitute hj,j = 1 , . . . ,  K, for ei in (3.2) and let the optimal solution values be q , ( j ) , j  = 
1 , . . . ,  K. We then have 

/ 
j = l  j = l  

If H = [ h ~ , . . . ,  hK] includes all columns of  W, then (3.5) becomes an equality (see 

Birge and Wets, 1986b). 
A difficulty in using (3.5) for approximating T is that in general an optimization 

must still be performed inside the integral. This solution is immediate, however, if 
H is a positive linear basis for R m2, i.e., every point in R "~2 corresponds to a unique 
positive combination of the hi. A convenient choice for such a set is to use a linear 
basis D = [ d ~ , . . . ,  dm~] for R "~2 and - D =  [ - d l , . . . , - d m 2 ] ,  so that p o s [ D , - D ] =  
~"~. In this case, ~ - X  =Y~-:~ (D ~)i(~-x)d~, where (D-~)~ indicates the ith row 
of D -~. The approximation is 

m 2 

q'(X, ~) ~< kbo(X, ~:) = 5~ kOo(o(X, ~:) (3.6) 
i - -1  

where 

[q+D(,~(D-1)~.(¢-X) if (D ~),.(~-X)~>0, (3.7) 
~o(i)(X, ~)= ~q-o(i>(D ~)i.(X-~) if (D-1)~.(X-sc)>0, 

and q~(i> and q~(i~ are the optimal solution values of (3.2) with di and -d~, 
respectively, substituted for ei and -ei .  

Several different bases are used in the sublinear approximation of q~. For @ = 
{D~, . . . ,  DL}, a set of linear bases for R "~, 

O(X, ~:) <~ inf ~ MqJDJ(X, s cj) hJ~ j = s c, M = 1, M ~> O, for all j , 
j 1 j = l  j = l  

= co(~OoJ(X," ) , j  = 1 , . . . ,  L)(~:), (3.8) 

the function obtained by taking the convex hull of the epigraphs of 4J/9~, j = 1 , . . . ,  L. 
Of course, if @ includes all linear bases in W, then (3.8) is satisfied as an equality. 
Although it might be simpler than (3.5), inequality (3.8) is still difficult to use 
computationally, again because of the minimization required inside the integral. A 
weaker, but usable inequality is obtained by reversing the infimum and integration. 
For this, we define 

m 2 

~ o ( x )  = Y q'o~,>(x), 
i = l  
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where 

q'ov~(x) = / qo( , ) (D )~ . (~-X)  dP(~) 
+ 

o~ D-~)~.(~-X)>-O 

-'~ f(D_l)i.(,~_X).< 0 qD(o(D-I)~.(X - ~) dP(~:). 

Proposition 3.1. Let ~ be a set o f  linear bases o f  R %, then 

~(X) ~< co{ qto, D ~ ~}(X). 

(3.9) 

(3.1o) 

Equality in (3.10) can only be guaranteed in very special cases, even if @ includes 
all linear bases from W. To see this simply observe that if @ is rich enough, then 

Sc°~D=f inof~°>~inffo 'eD 
with strict inequality except in degenerate cases such as: @ is a singleton, the ~o ' s  
are linear, the probability measure is degenerate, etc. But as suggested by Proposition 
3.1, co{~D, D c ~}(X) always provides us with an upper bound, which we call the 
sublinear upper bound. This bound is relatively easy to compute, even when extremal 
measure procedures require more computations than can be implemented in realistic 
times. For example, for ten random variables, the basic sublinear upper bound 
requires the solutions of twenty linear programs. Extremal measure methods require 
the solutions of more than one thousand linear programs for a single bound in this 
case. 

We have also observed that the solution obtained from solving the "stochastic" 
program 

find x ~ R "1, X ~ E m2 such that A x  = b, Tx = X, x >1 O, 

and z = cx + co{ ~ o ,  D c @}(X) is minimized, 

instead of (1.1), is usually a very good approximation of the optimal solution, much 
better than may be expected from the relatively lax inequality (3.10). Our experience 
shows that the function co{qto, D c ~} is "parallel" to qt, i.e., 

0qt (X) -~ 0 co{ ~D, D c @}(X). (3.12) 

In the Appendix, we provide a heuristic argument and small example. 

Proof. Integration of (3.6) yields 

q'(x) ~< v',,(x) (3.11) 

for any D c @. So, ~ A~qs(X ~) ~ m~ ~i=1 hi~D(~(i)'  for any h '  >0 .  Letting ~im~21 h i=  1 
and X =Y~i~l hiX i yields (3.10) by the convexity of g'. [] 
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4. Dualization and solution procedures 

Several questions must be answered in order to solve (1.1) with co{qto, De@} 
substituted for qt. The first concern is that finding the convex hull of a set of functions 
is itself a difficult task. The second problem is to evaluate ~D efficiently. A third 
area involves the choice of @. We address each of these problems in this section. 
After substituting for ~,  (1.1) becomes: 

f i n d x c ~ , , X c ~  "~ such that Ax=b ,  Tx-x=O,x>~O, 

and z = ex+co{~o,  D ~ ~}(X) is minimized. 
(4.1) 

Instead of solving (4.1), we consider a dual program to (4.1). The dual program 
has a computational advantage because the convex hull operation is replaced by a 
supremum. 

Proposition 4.1. A dual program to (4.1) is given by 

find crcR" ,  zr6~ "2 such that ~A+zrT<~c 

and w = o-b- (sup qi*)(-~-) is maximized, 
D ~  

(4.2) 

where qt* is the conjugate function of ~o  and where the optimal value of  (4.2), 
w* = z*, the optimal value of (4.1). 

Proof. A general dual of (4.1) (see, e.g., Rockafellar, 1974; Geoffrion, 1971) can 
be written as 

max I~,,~ tx~o,xinf cx+g(x )+~r (b -Ax )+Tr (X-  Tx)} (4.3) 

where g(x) = co{qto I D ~ @}(X). Since (4.1) involves linear constraints, the optimal 
values of (4.3) and (4.1) are the same. We can rewrite (4.3) as 

max/~,~ (x~0.xinf ( c - o ' A - c r T ) x - ( - T r x - g ( x ) ) + o - b } ,  (4.4) 

which is equivalent to 

find o - ~ " i ,  ~-c8~'2 such that o'A÷1rT<~c 

and w = ~b - g * ( - ~ ' )  is maximized. 

By Theorem 16.5 of Rockafellar (1970), 

(co{ ~D I O c @}(X))* = sup{ ~ * [ O  e ~}, 

(4.5) 

(4.6) 

yielding (4.2). [] 
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A solution of the dual program (4.2) is simpler to compute than a solution of 
(4.1) because g*(-Tr) is much easier to evaluate than g(x).  We must, however, 
obtain an expression for gr*. First, let Po(o be the distribution function of ff~ = 
( D  1 ) i . ( ~ _ _ ) ( )  and let ~i =~. ~i d P o o ) ( ~ i ) .  Also define 

GD(i ) (p )  = {y [ P D(i)(y) <~ p <~ PD(i)(Y)  }. 

Proposition 4.2. The conjugate function of  ~ o  is given by 

where 

m 2 

~ * ( v )  = Y, aF*(,)(v), (4.7) 
i = l  

f + ~ q_ --q D( ,)~i + ( vD.~ + q D( ,)) Y -- qD( ~yPD(,)(y ) 
fy 

+qD(O J_~ ~i dPo(i)(~i), /f - q ~ ( 0 <  vD.i < qP(O, 

4 -  - -  4 -  

--qD(i)~i i f  YD.  i =- --qD(i),  

q5(,)~, i f  yD., = qD(,), 
+o0 otherwise, 

+ + 
. + q D(O)I qD(i;)" where  qo(i) = qo(~) + q-oo) and v ~ GD(~)((vD.~ 

(4.8) 

where 

~ *  = ( ~ ' D - ' ) *  = D - l ( a / f s )  *, 

D - l ( ~ ' ) * ( v )  = (~ ' )* (vD) .  

Applying (4.11) and (4.12) to (2.6) yields the result. [] 

A subgradient of gr* is used in the optimization procedure. It is also calculated 
from the subdifferential of (gr')*. 

(4.11) 

(4.12) 

Proof. From (3.9), observe that 

~o(o(X) = f ~b~((D-1x)i' ~) dPD(o(~i), (4.9) 

where ~b~ is a simple recourse function as in (2.1) with q~(o and q~(o substituted 
for q~- and q ,  respectively. From (4.9), it follows that 

ttl 2 

qZD(X) = ~, ~ ( ( D - ' x ) , ) =  ~ ~ ( D - ' x ) ,  (4.10) 
i = 1  

where ~Fi ~ has the form of the simple recourse function in (2.2) and ~F" is the simple 
recourse function defined for the random variables ff~, . . . ,  if,,2 in place of £~ . . . . .  G~2. 

The dual of ~ o  is then (see Theorem 16.3 of Rockafellar, 1970) 
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Proposition 4.3. The subdifferential of gr* at v c ri(dom ~F*) is 

{ I  \(vD'j+----q-q+D('))'i=lqo(i) . . . . .  m2}" O(gt*)(v) = Dy y c N " 2 ,  yi C GD(i) / 

(4.13) 

Proof. If  w* is a subgradient of ( ~ s ) ,  at w, then 

(z - w)" w*+ (grs)*(w) ~< (gz~)*(z). (4.14) 

From (4.11) and (4.12) if z = uD and w = vD, (4.14) becomes 

(v - u)Dw* + ~*(v )  <~ ~*(u) .  (4.15) 

From Proposition 2.4, w* = (Wl*,.. . ,  w* 2) where w* c Go(n((vD.i + q O+)/qD), so 
Dy in (4.13) is a subgradient of gt* at v. A reverse argument shows that any 
subgradient of gt* has the form Dy in (4.12), proving the result. [] 

The expressions for gr* and 0q t*  in (4.7), (4.8) and (4.13) are used in an 
optimization procedure for (4.2). A difficulty is that, even when each qt* is differenti- 
able (i.e., the distribution function of ff~ is strictly increasing on its support, but not 
necessarily continuous), the objective function in (4.2) is not necessarily differenti- 
able. Nondifferentiable methods (see, e.g., Lemar6chal, 1978; Lemar6chal et al., 
1981; Nazareth and Wets, 1986; Polak, 1987; Wolfe, 1975) can be applied to this 
program. We, however, transform (4.2) into a smooth optimization problem with 
nonlinear constraints (as suggested, for example, in Gill, Murray and Wright, 1981). 
The new problem becomes 

find c~ c N~',, ~- c ~"2, 0 ~ N such that 

~rA +¢rT ~< c, 

g t * ( - ~ - ) - 0  <~0, fora l l  D c ~ ,  and 

w = o-b - 0 is maximized. 

(4.16) 

General methods for optimization problems with nonlinear constraints can be 
applied to (4.16). In our examples, we use the MINOS computer code (Murtagh 
and Saunders, 1980) to solve (4.16). Note that (4.16) is similar in form to a master 
problem in a linear outer approximation algorithm (e.g., the L-shaped method), but 
we solve the dual and use a nonlinear outer approximation. 

5. Implementation considerations 

In solving (4.2) or (4.16) one needs to find Po(i), the distribution function of ~'i, 
and GD~o, the inverse function. If  the random variables ~ are independently, 
normally distributed with means, t% and variances, cr~, then ff~ = (D ~)~( ( -g )  is 
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also normally distributed with mean ~i'~:1 (D-~)~(/~J-XJ) and variance 
~j'~l ~ '  ,-,-~2 ~ ijo-j.2 (Note that degenerate and correlated random variables can also be 

included among the ~ with ~ remaining normally distributed.) Other distributions 
require special schemes in order to integrate with respect to ~'~. In our experiments, 
we used normally distributed random variables because of the ease in performing 

these computations. Upper  bounds can be obtained for other distributions by using 
the approaches in Birge and Wets (1986a, 1987). 

Given a problem form ((4.2) or (4.16)) and a method for finding Po(~), the set 
of  bases must still be chosen. For the problem of approximating ~F, it appears that 
the matrices to include in 9 should be chosen so that the level sets of  ~b o cover 
high probabili ty regions of the level sets of ~b. This coverage, however, depends on 

X, so the choices should be good for a range of  values of  X (that would ideally 
include an optimal value of X). In our experience, the identity provided a good 
starting basis, especially when an optimal X was close to 

We implemented several basis generation procedures that started with the identity 
as the first basis and then included additional bases. Generating random bases from 
the set of  all bases proved inefficient because the corresponding functions ~F* often 

did not improve the solution. Bases were then generated from the set of  optimal 
bases for some ( by solving (1.2) for varying values of ~: and X. A patterned choice 
of  values for ~: (using ~ ±3o-~) proved slightly more efficient than random selection 
of ~i and was, therefore, used in the experiments described below. Two different 
choices for X were implemented. On the kth solution of (4.16) with new bases added 
to 9,  we used X =X k-~ or - X  k-~ where X k ~ was the optimal value of X from the 

( k -  1)th solution of  (4.16). In our experiments, X = - X  k-J proved more effective 
because it included a broader  class of bases by exploring different regions of X. 

The sublinear upper  bounding method with this implementation is given below. 

The basic tolerance parameters are T O L I N F  for infinity, TOLTERM for termination 
if improvements greater than TOLTERM are not found, and L for the number  of  

values to search over for a new basis. 

Sublinear Upper Bounding Method 
Step O. Initialization. Let D r = I, K - 1, 9 = {D r, . . . ,  DK}, ~ = 0, Wold = TOLINF ,  

I=0 ,  x = O .  
Step 1. A d d  New  Basis. Let D K = [D K ( 1 ) , . . . ,  D K (m2)]. 

a. For i = 1 , . . . ,  m2, i f D K ( i ) C : 5 , 1 e t ~ = S u D ~ : ( i ) a n d f i n d  qDK(i),+ qDK(i).-- 
b. For i = 1 , . . . ,  m2, calculate parameters for Po~(i). 

I f  K = 1, go to 3. 

Else, if 1 = 0, choose a set of  L values, ~ 1 , . . . ,  ~L, of  the random vector, ~. (These 
may be random or according to some pattern.) 

Step 2. Search for  N e w  Basis. I f  1< L, let 1 = 1+ 1. Find ~b(X , ~/) with an optimal 
basis, D' .  

I f D ' ~ 9 ,  D K + ~ = D ' , K = K + l , g o t o  1. 
Else, go to 3. 
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Step 3. Find N e w  Bound. Solve (4.16) to obtain W~ew and let the dual variables 
associated with the linear constraints be x. Let X = Tx. 

I f  TOLTERM < (Wold - Wncw)(/IW~wl if w,c,¢ ~ 0), go to 2. 
Else, stop, Wn~w is the sublinear upper  bound. 

Note that an upper  bound is obtained at every iteration (completion of Step 3). 
For each iteration, the central work is in calculating qD~i~+ and q~K~o for every new 
basis, DK (assuming that P o ~ o  is easily calculated as in the normal distribution). 
The work of each iteration is then dominated by O(m2) linear programs if L, the 
maximum number  of  trials in Step 2, is of the order O(m2). 

In our examples, we considered all 3 "2 combinations of  sc~, sc~ +3o-~, and ~-3o-~ 

for i = 1 . . . .  , m2, because m2 was small (at most three), and each Step 2 check was 
executed quickly. These additional trials would be avoided in larger problems. This 
option to adjust the work according to the problem does not exist in extremal 
measure procedures, which require function evaluations at all extreme values for a 
single bound. The next section presents a further comparison of the computational 
effort required by the sublinear and extremal measure bounds for a few examples. 

6. Numerical  results 

Formulation 4.16 was used with the M I N O S / A U G M E N T E D  (MINOS Version 4.0) 
computer program for nonlinearly constrained problems. This implementation on 

The University of  Michigan's Amdahl 5860 Computer  found optimal solutions for 
(4.16) for all of  the test problems tried. 

The appropriate use of  tolerances on constraint satisfaction was especially impor- 
tant in our implementation. A value of  10 5 was used for ROW TOLERANCE in 

the MINOS SPECS file. This allowed some flexibility in satisfying the constraints 
without creating large infeasibilities. To avoid infinite values of  qs*, the constraints 

-q+o~i~ <~ vD.i <~ q-o~o, (6.1) 

were added to (4.16). A penalty term was included in the subgradient definition 

from (4.13) when (6.1) was satisfied as an equality (within the tolerance). This made 
the subgradient definition consistent at the boundary of the effective domain of ~ * .  

Problem testing initially involved simple recourse problems which were solved 
exactly by the formulation in (4.16). After conducting this check, the method was 
applied to general recourse problems. The results reported here apply to the small 
energy decision problem in Louveaux (1987). In this problem, rnl = 2, nl = 4, me = 7, 
and n2 = 12. Of  the seven recourse problem constraints, four are balancing constraints 

that are fixed at zero and three are demand constraints that are stochastic. Larger 
problems were not considered because there was no easily available computer code 

that allowed for enough refinements of  the bound obtained via extremal measures. 
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The demands were assumed independent and normally distributed. Different prob- 
lems were generated by varying the means and standard deviations of these random 
variables (see Table 1). 

To check the accuracy of the sublinear approximation method (SUB), the test 
problems were also solved using the L-shaped code, NDSP (Birge, 1985), with upper 
bounds (EM) from the Edmundson-Madansky inequality (Madansky, 1959) and 
lower bounds (J) from Jensen's inequality. Our comparison is with the EM bound 
because upper bounds (not just lower bounds) are needed to establish stopping 
conditions in an algorithm. After the kth solution of the problem for EM and J, 
the bounds were refined for each ~i until NDSP's limit of 125 realizations of the 
random vector ~: was reached. This occurs here when k--4 .  

The results for the EM upper bound and CPU second times for each iteration 
appear in Table 2. Corresponding results for SUB are also provided in Table 2. 
These results are intended to illustrate the behavior of the two methods on problems 
where both bounds can be applied. In problems with more random variables, the 
EM bound quickly becomes too expensive to calculate. Note, for example, that in 
Problem 8 after 33.80 CPU seconds, NDSP terminated because a limit of 100 
L-shaped algorithm iterations (corresponding to 100 cutting planes) had been 
performed. Execution was not continued because of large row residuals caused by 
instability in the bases including these cuts (see Birge (1986) for a discussion of 
this phenomenon).  

For the SUB results in Table 2, the algorithm is terminated when the addition of 
new bases does not change the solution. This is indicated by " b "  in Table 2. Further 
improvement would be possible using groups of random variables as noted in the 
next section. The computation times include some iteration logging that is compar- 
able but not identical to iteration log times included in the CPU times for EM. 

A key property to note in examining Table 2 is that the sublinear method times 
are comparable for all problems, but the accuracy relative to the EM bounds does 

Table 1 

Problem parameters 

P r o b l e m  R a n d o m  Var i ab le s  P a r a m e t e r s  

~1 iT1 13'2 0"2 /Z3 Cr3 

1 5.0 1.0 4.0 0.0 3.0 0.0 
2 5.0 0.0 4.0 1.0 3.0 0.0 
3 5.0 0.0 4.0 0.0 3.0 1.0 
4 5.0 1.0 4.0 1.0 3.0 0.0 

5 5.0 1.0 4.0 0.0 3.0 1.0 
6 5.0 0.0 4.0 1.0 3.0 1.0 

7 5.0 1.0 4.0 1.0 3.0 1.0 

8 2.0 1.0 4.0 1.0 3.0 1.5 

9 4.0 1.0 5.0 1.0 5.0 1.0 
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Table 2 

Results on upper bounds 

Problem Iteration EM SUB 

Bound CPUs a Bound CPUs  

1 1 395. 0.41 452. 0.82 

2 367. 0.75 385. 1.79 

3 366. 1.12 383. 2.38 
4 366. 1.27 b 2.75 

2 1 345. 0.38 398. 0.54 

2 335. 0.71 345. 1.48 

3 335. 0.79 b 1.71 

4 335. 0.88 - -  - -  

3 1 291. 0.42 304. 1.44 

2 289. 0.47 289. 2,03 
3 b __ b 2.42 

4 . . . .  

4 1 1180. 0.42 572. 3.37 

2 454. 1.01 440. 5.78 

3 425. 1.85 b 6.22 

4 424. 2.88 - -  - -  

5 1 1140. 0.50 478. 0.63 

2 505. 1.19 407. 2.14 

3 388. 1.97 402. 3.82 

4 377. 4.30 b 4.37 

6 1 1100. 0.37 425. 2.17 

2 473. 0.73 350. 7.01 

3 357. 1.05 b 7.53 

4 347. 1.54 - -  - -  

7 1 2060. 0.51 617, 0.56 

2 1100. 2.09 470. 3.56 

3 488. 9.59 b 4.09 

4 466. 26.44 - -  - -  

8 1 2360. 0.61 511. 0.62 

2 1350. 2.17 359. 2.82 
3 491. 11.63 b 3.52 

4 c 33.80 - -  - -  

9 1 2420. 0.48 626. 0.72 

2 878. 1.49 476. 5.07 

3 475 6.94 b 5.62 

4 471. 13.52 - -  - -  

a c P u  seconds 
bNo improvement 
CIteration limit exceeded 

not degrade as problem size increases. The EM bound times, however, increase 
greatly as additional random variables are included into the problem. The true 
advantage of the sublinear method is, therefore, in problems with greater numbers 
of random variables, as is evident in Problems 7-9. Here, the sublinear method 
obtains relatively good bounds (within 25% of  the best lower bound J) in fractions 
of the times for NDSP. 
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The sublinear method implemented here also solves a smaller number of linear 
programs than the EM bound. In these examples, the fourth iteration EM bound 
requires five linear programs for Problems 1 to 3, twenty-five linear programs for 
Problems 4 to 6, and one hundred twenty-five linear programs for Problems 7 to 9. 
In SUB, these sets of problems involved three, nine and twenty-seven linear pro- 
grams, respectively, of the same size as in EM. These comparisons are meant just 
to give another example of the work in the implementations explored here. The 
linear programs, however, involve different constraints in the two procedures and 
cannot be equated. 

7. Discussion and extensions 

The results in Section 6 indicate that the sublinear upper bounding method efficiently 
provides good upper bounds on some stochastic programming examples. The sub- 
linear upper bound can also be applied when many random variables are present. 
This ability distinguishes the sublinear bound from other approaches. The sublinear 
bound, however, only majorizes the optimal objective value. Lower bounds, obtained 
from the Jensen inequality or other outer linearization approach (see Marti, 1975; 
Birge and Wets, 1986a) should be used in a full optimization procedure. 

A further refinement of the bound for the recourse function value can be obtained 
by evaluating the recourse function with respect to groups of random variables. As 
the number of random variable in these groups increases, the bound is tightened. 
This procedure is, of course, only useful as long as the integrals are simple enough 
to allow easy calculation. For example, suppose m2 = 3, 

q'2(X, ~) --- min{qy I Wy = (C1 - X1, ~:2 - X2, 0) v, Y I> 0} 

= ~i~l + ~ 2  (7.1) 

where (if1, if2) = (~1 -X~, ~:2-X2) ~ R i, i = 1 , . . . ,  r, and we can evaluate 

(qTl~ 1 + 3T~2) dP(~'~, ~2)- (7.2) 

We then combine the approximation in (7.2) with a simple recourse function 

approximation, ~/'3(X3), evaluated with respect to ~3--~3- X3. The result is another 
upper bound on qz, where 

~(X)  <~ ~2(X~, X2) + qt3(X3). (7.3) 

Again, convex combinations of approximations of the form (7.3) for every pair of 
random variables can be used to approximate ~ from above. The practicality of 
this approach of course relies upon the possibility to evaluate integrals as in (7.2) 
efficiently. For large groups of random variables, this effort may negate any advan- 
tages from this approximation scheme. Pr6kopa's (1986) sharp approximations of  
multiple integrals using integrals with respect to small numbers of random variables 
is, however, encouraging for this approach. 
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The following heuristic argument and small example give some justification for the 
observation in (3.12). Suppose (x °, X °) is a feasible solution of (1.1) that is near the 
optimal solution. Suppose @ contains all bases (in W) that correspond to basic 
optimal solutions, for any possible pair (s c, X), of the linear program that defines 
4'(X, so), cf. Wets (1974b) for the Basis Decomposition Theorem. Also, suppose that 
for some Do ~ @, 

co{q@, D c  ~}(X °) = q@o(X°). (A.1) 

(A convex combination of ~c, values would, in general, appear above. We consider 
a single function to simplify the argument.) Given (A.1) 

0{co ~D}(x °) = aq%(x °) 

= I OOD°(xO' ~) dP(~:). 

Observe that OODo(X °, s c) = -qDo+ if ( c  =o,- where 

~o = {s~J Do's  c ~> Do'X°} - 

Since ~.o  gives the convex hull operation value, the region of • in which 9".o is 
exact should be large. One can then reasonably expect ~o, or more generally the 
region surrounding ~0, to contain most of the probabiliy mass of -~. Hence the 
subgradients of a~o0 at X ° are approximated by -q~o. On the other hand (Wets, 
1974b, Section 7), excluding possibly some boundary cases, 

O~(X °)= f 06(X°' ~) dP(s c) 

= Y~ (-rrD)P[D-'~>~D 'X °] (A.2) 
D e ~  

where rrD are the multipliers associated with the basis D. Again, since ~o and its 
neighbors occupy much of the probability mass of ~, Oq~(X °) is reasonably well 
approximated by --7rDo. From construction, q+oo = ~'Do" Hence, both 0 co{qtD} and 
O ~ at X ° are near -zrDo. 

As an example, consider the stochastic program: 
+ -- q_ 

find x, Yl, Yl, Y2, Y~, Y3~>0 such that (A.3) 

X ~ < 1 ,  

hx +Yl -Y~ +Y3 = ~1, 

t2x +Y~ -Y~ +Y3 = ~2, 

to minimize z = cx+ E¢[y[+yl- +Y2++Y2-+Y3], 

where sc~ is uniformly distributed on [0, 1], for i =  1, 2. The optimal subproblem 
basis (or the related basis with positive coordinates) is indicated for each region of 
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[0, 1] × [0, 1] in Fig. 1. The three bases are 

which we use to develop approximat ing funct ions ~D~, qr~2 and ~ D  ~. 
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Fig. 1. Optimal subproblem basis regions. 
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A c o m p a r i s o n  o f  the  th ree  a p p r o x i m a t i o n s  a n d  the  exac t  v a l u e  o f  ~F is g iven  in 

Fig. 2, w h e r e  X2 = 0.1. N o t e  tha t  the  s l ope  o f  the  c o n v e x  hul l  o f  the  a p p r o x i m a t i n g  

f u n c t i o n s  c lose ly  a p p r o x i m a t e s  the  s lope  o f  ~ .  A t  l ow v a l u e s  o f  X1, the  O 3 a n d  D 2 

o p t i m a l  r e g i o n  o c c u p y  m o s t  o f  ~ a n d  h e n c e ,  c o n v e x  c o m b i n a t i o n s  o f  t he i r  sub-  

g r ad i en t s  p r o v i d e  g o o d  a p p r o x i m a t i o n s  o f  0 ~ .  At  h i g h e r  va lues  o f  X1, the  o p t i m a l  

r eg ions  fo r  D 3 and  D 2 d i m i n i s h ,  so tha t  0~Fo~ p r o v i d e s  a g o o d  a p p r o x i m a t i o n  o f  0 q  t. 
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