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We consider sequential decision problems over an infinite horizon. The forecast or solution horizon 
approach to solving such problems requires that the optimal initial decision be unique. We show 
that multiple optimal initial decisions can exist in general and refer to their existence as degeneracy. 
We then present a conceptual cost perturbation algorithm for resolving degeneracy and identifying 
a forecast horizon. We also present a general near-optimal forecast horizon. 
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I. Introduction 

Dynamic  sequential  decision problems are an impor tan t  class of opt imiza t ion  

problems.  Appl icat ions  include p roduc t ion  and  inventory  control,  capacity 

expansion,  and  equ ipment  replacement.  In  some cases the decis ion variables  are 

cont inuous ,  al lowing a mathemat ical  p rogramming  formula t ion  with a con t inuous  

solut ion space. Often, however,  a problem calls for a model  with discrete decisions 

as, for example,  in the choice between the various pieces of equ ipmen t  avai lable 

to replace one current ly in use. A great majori ty  of these problems share the 

characteristic of an indefinite horizon. The economy,  firm, or government  involved 

has no predetermined m o m e n t  of extinction. To appropr ia te ly  model  these problems,  

it is necessary to assume that the problem may cont inue  indefinitely. 

The t radi t ional  and  most  commonly  used solut ion approach for such problems 

is to assume some finite horizon,  T, and s imply proceed as if the world ended  there. 

The hope is that in format ion  beyond T will have little or no effect on the opt imal  

solut ion,  for at least the first few decisions, since those first decisions will be 

implemented  immediately.  A finite hor izon with this guarantee  is know n  as a forecast 

horizon. This solut ion method  is known  as a solut ion or forecast hor izon approach  

This material is based on work supported by the National Science Foundation under Grants ECS- 
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(Lundin and Morton (1975); Charnes, Dreze and Miller (1966); Modigliani and 

Hohn (1955)). 
Nearly all forecast horizon existence results require a unique optimal initial 

decision (see Bean and Smith (1987); Hopp,  Bean and Smith (1987); Bbs and Sethi 

(1988), Schochetman and Smith (1986)). Multiple optima may lead to cases with 
no forecast horizon. We refer to this as degeneracy. For the problem of minimizing 
discounted costs, this paper  addresses two questions: 

1. How often does degeneracy occur? 
2. How can degeneracy be resolved? 
Bean and Smith (1984) showed that forecast horizons exist when every optimal 

sequence of decisions includes the same initial decision and that uniqueness of  the 
optimal initial decision depends on the interest rate used. We approach the first 
question by characterizing the interest rates that may allow degeneracy and show 

that, even in simple problems, every "reasonable"  interest rate potentially allows 
degeneracy. We conclude that degeneracy is a serious theoretical problem and turn 
to the second question. 

Recently, B~s and Sethi (1988) found an algorithm for the case of discrete time 

and discrete decision sets that is guaranteed to identify a forecast horizon when the 
optimal initial decision is unique. Schochetman and Smith (1986) extended their 
results to the case of  continuous time and continuous decision sets. In this paper, 
we adapt the B~s and Sethi algorithm to the context of continuous time and discrete 
decision sets. More important,  we present a scheme for perturbing time zero costs 
which guarantees that the optimal initial decision is unique. We also calculate, for 
any e, a horizon that yields an initial decision that is part of  a strategy with cost 
within e of  the optimal cost. 

Section 2 includes a mathematical statement of  the problem and assumptions. 
Section 3 is a discussion of the relationship between degeneracy and the interest 

rate. Section 4 gives characteristics of the cost function important to the forecast 
horizon results in Section 5. Section 6 presents our method for degeneracy resolution. 
Finally, Section 7 contains conclusions. 

2. Problem definition and assumptions 

Suppose we are faced with making a sequence of decisions over a continuous or 
discrete time frame. Each individual decision, denoted 7ri, will be called a policy, 
and a sequence 7r = (7rl, 7r2, • . . )  of policies constitutes a strategy. Let Hn be the set 
of  policies available after n -  1 decisions have been made. We assume Hn is finite 

for all n. Let H _~ X~=I Hn be the set of all feasible strategies. Associated with each 
strategy, ~-, is a cumulative net cost function C=(t). In order to compare costs 
incurred over time, we continuously discount them to time zero. Hence C=( r )=  
co -rt 

S0 e dC~(t)  is the resulting infinite horizon discounted cost as a function of the 
interest rate, r. Also, C=(r, T) =So e-r '  dC~(t)  is the discounted cost over the finite 
horizon T. Bean and Smith (1984) showed that infinite horizon discounted costs 
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converge if r is larger than 

lnlC~(t)l 
1/= sup lim sup 

~ H  t ~ o o  t 

The set {r I r >  3'} is called the range of convergence for interest rates. 
We keep the assumptions of Bean and Smith (1984); in particular: 

C~(t) =the  cumulative net cost for strategy ~- up to time t 

=K=(t)-R~(t), 

3 0 7  

0<~ K~(t) <~ M e~'~ 
O<~R~(t)<~Me~, j Vt>~To, M , % T o i n d e p e n d e n t o f ~ - ,  

K=( t), R~( t) nondecreasing. 

The functions K~(t) and R~(t) represent cumulative pure cost and cumulative 
pure revenue, respectively. Without loss of generality, we can assume To = 0 (if not, 
replace M by M e~To). 

As in Bean and Smith (1984) we define the metric 

p(~-, ~r')= ~ ~b,(1r, ~")2 -n, 
n = l  

where 

{10 if the nth policies in ~r, ~" are different, 
tbn(~', ~") = _ if the nth policies in ~r, ~-' are the same. 

This metric has the property that, for any L, any two strategies which agree in the 
first L policies are closer than any two strategies which do not. This metric induces 
a topology on H. 

Given an interest rate, r, the problem we wish to solve is: 

min C~(r). 
~rE ll 

As shown by Bean and Smith (1984), subject to an assumption that H is complete, 
the minimum exists s ince/7  is compact and ( ~ ( r )  is continuous in ~-. 

The forecast horizon approach involves solving finite horizon problems: 

min C~(r, T). 
"n" ~ / 7  

We define C*(T)  to be the minimum finite horizon value and C* to be the minimum 
infinite horizon value. A strategy ~" is termed infinite horizon optimal if it minimizes 
C=(r) and finite horizon optimal if it minimizes C'~(r, T) for some T. Let H* and 
H*(T) be the sets of optimal strategies for the infinite horizon and finite horizon 

where (1) 
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problems, respectively. An optimal initialpolicy is an initial policy included in some 
optimal strategy. The sets of  optimal initial policies for the infinite and finite horizon 

problems, respectively, are denoted HI* and H*(T) .  

We formally define a (weak) forecast horizon as a time, T, such that for T ~  > i?, 
H * ( T )  = H*,  with [Hl*] = 1. As mentioned earlier, Bean and Smith (1984) showed 

that ] / /*[= 1 is sufficient to ensure existence of a forecast horizon. We define 
degeneracy in infinite horizon optimization as the case when ]H* I > 1. 

3. Degeneracy and the interest rate 

Whether or not a problem is degenerate is a function of the interest rate chosen. In 
this section we investigate the interest rate's effect on the number  of  optimal initial 

policies. I f  an interest rate allows multiple optimal initial policies, we call it a 
degenerate rate. 

Since C,~(r) is a Laplace-Stieltjes transform, it is analytic (Widder, 1946). From 
analytic function theory (see Bartle, 1964) we know that for any two strategies ~.1 
and 1r 2, C ~ l ( r ) =  C 2 ( r )  for at least countably infinite r in any closed interval in 
(% ec) if and only if C=l(r) = d=2(r) for all r >  Y- It follows that if d ~ ( ~ )  ¢ C,,2(k') 

for some ~> 7 then C ~ , ( r ) =  C~:(r) for at most finitely many r in every closed 
interval in (3, o0). Using this fact, Bean and Smith (1984) proved the following: 

Theorem 1. I f  the set o f  potentially optimal strategies is at most countable, then 
degeneracy can occur for at most a countable number of  interest rates in the range of  

convergence. 

When Theorem 1 holds, the set of degenerate rates has measure zero. Hence the 
probability of  selecting a degenerate rate is zero. I f  degenerate rates are also isolated 
in the range of convergence, then if a degenerate rate is encountered we can apply 
an arbitrarily small perturbation to the interest rate to find a nondegenerate rate, 
which will yield a forecast horizon. A special class of problems in which degenerate 
rates are guaranteed to be isolated is described in Ryan and Bean (1986). 

Bean and Smith (1984) include a discussion of cases in which the set of  potentially 
optimal strategies is countable. However, in general this set is uncountable. I f  two 
policies are available at each policy epoch, each strategy corresponds to an infinite 
sequence of ones and zeros. The set of  all such sequences is uncountable (Rudin, 
1976). 

To examine the case of  uncountable strategies, consider a case where decisions 
are made periodically and each policy incurs a discrete cost at the beginning of the 
period in which it is implemented. Thus a strategy ~- incurs the sequence of costs 
{c~, c~, . . .} .  Letting c~ = e -r, we can write the discounted cost as C~(c~) = ~ - 1  c~a% 
We further assume that c~ ~ {0, 1, 2 , . . . ,  L} for each 7r ~ H, where L is a large integer. 
In this case y = 0. 
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Let C = {c = {c,},°°-110~ < e, ~< L, c, in teger  Vn}. Given  or, let f ( e )  = Y~,~ e ,a" .  We  

can show the fol lowing:  

Lemma 2. I f  1 / ( L +  1) <~ a < 1, then the image  o f  C under the f unc t i on  f is 

{0, L a / ( 1 - a ) ] .  

Proof. Claim (1): If c c C, then f ( c )  ~ [0, Lc~/(1 - a)] .  

Proof:  

m c~  L O L  n 
k <  L k cka E a k < ~ L  E a - 

k=n k ~ n  k=n 1 -- Ol 

For  every e > 0, 3 N  such that  Lo~"/ ( l  - e~) < e, V n  >- N.  Therefore  the series conver-  

ges by  the Cauchy  cr i ter ion.  

Fo r  any c, 

o~ Lcr 
0<~ Y~ c.o~" <~ - .  

n = l  1 - a  

Cla im (2): f :  C~--~[0, L a / ( 1 - a ) ]  is onto• 

Proof." Given  x c [ 0 ,  L a / ( 1 - c e ) ] ,  if  x =  L a / ( 1 - a )  then set c, = L Vn.  f ( c ) = x .  

Suppose  x < Lcr/(1  - a ) .  Let cl = the largest  in teger  ~ < L such tha t  Cla < x. Given  

cl ,  let  e2 = the largest  in teger  ~ < L such that  c l a  + c2a 2 < x. 

In general ,  given c l , c 2 , . . . , c ,  l ,  let c , = t h e  largest  in teger<~L such that  

k~l ck ak  < x .  We cla im Y,,°° 1 e ,a  = x .  

Suppose  Y~_a e ,a"  < x .  Note  that  x < L a / ( 1 -  a ) ~ c ,  < L for  some n. Suppose  

that  for  some k, Ck < L and  c, = L, V n  > k. Then  

Lff k+l 1 
c.o~ " = -  >~ ak  since ~ >  

,=k+l 1 -c~  L + I  

k 1 n 
Then  ~ ,=1  c ,a  + (Ck + 1)a  k < X which  cont rad ic t s  the cons t ruc t ion  of  ck. Hence  for  

a n y k ,  3 n > k w i t h  c , < L .  

Now,  

c,o~" < x ~ e ,a"  + b = x, b > 0 .  
n = l  n = l  

There  exists n such that  a "  < b. Let no be the  smal les t  such n. Let nt be the smal les t  

n > no such that  c, < L. Then  

oo 

eno~n + o~n~ ~ x ,  
n = l  

n I n and  c.~ could  be inc remen ted  wi thout  ~ .=~ c .a  exceed ing  x. This con t rad ic t s  the  

cons t ruc t ion  of  e. . Therefore  ~.~=i c.o~" >~ x. 
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Now suppose ~ n n N n ~=1 cna > x. T h e n  ~,,ne°=l CnOl -- d = x, d > 0. Then ~n=l c,,a + 
~,,°° N+ 1 c n a n - d = x .  But d--~,n°°=N+ 1 c ~ a n > ~ d - L a N + l / ( 1 - a ) > O  for N 

N 
sufficiently large. Hence Y~,= 1 c~a n > x  for N sufficiently large which contradicts 

the construct ion of  CN. Hence E~_I c,a ~ <~ x. Therefore ~,~-1 c~ a" = x. [] 

Theorem 3. I f  1 / ( L +  1) < a < 1 then there exist infinitely many pairs c 1, C2C C such 
1 2 a n d f ( c  1) =f(c2).  that c~ ~ c~ 

Proof. Let 

K 
A 

c K = { c 1 ; O , O ; . . . , O ~ C K + 2 , . . . } ,  C l > 0 .  

Then f(CK)~[ClCe, ClC~+LaK+2/(1--o~)]. Let B = { b 6 C [ b l = C l - 1 } .  For  b~B,  
+ co n 

f ( b )  = (Cl - 1)a }~n=2 b,,a . By a variation o f  Lemma 2, 

{ f ( b ) l b c  B}= [ (Cl -1 )a ,  (C l -1 )a  + l-c~La2] 

N o w ,  

1 La 2 

L + I  1-c~ 

and 

( L + l ) a - 1  
L K+ 2 La 2 log L 

~ +  < - -  for K >  1. 
1 - a  1-c~ logc~ 

Hence for K sufficiently large we have 

LaK+2]c  Lo~ 2 ] 
[c,a, Cla+ l _ a  ] [ ( c , - 1 ) % ( c l - l ) a + l _ a _  ]. 

Hence f ( c  K ) c { f (b)  ] b ~ B}. Therefore,  3 b c B such that f ( b )  = f ( c  K ). This holds 

for each value of  K sufficiently large. Therefore there exist at least countably  

infinitely many  such pairs for each value o f  a > I l L +  1. [] 

Theorem 3 implies that for any interest rate r, 0 < r < L, infinitely many  pairs o f  

strategies can attain the same cost, with disagreement in the initial policy. It remains 

unknown whether  such pairs o f  strategies can tie for optimal for many  interest rates. 

But at this point,  we must  assume that degeneracy is a serious theoretical problem 

in infinite horizon optimization. In the remainder  of  the paper  we develop ways of  

resolving degeneracy when it occurs. 
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4. Cost function characteristics 

311 

This section contains results that  will be used to derive forecast  hor izon results in 
Section 5. They were derived by B6s and Sethi (1988) for  the case of  discrete t ime 
and discrete policy sets and extended to the case of  cont inuous  t ime and cont inuous  

policy sets by Schoche tman  and Smith (1986). We refer  the reader  to Ryan  and 
Bean (1986) for  details on their  adap ta t ion  to the case of  cont inuous  t ime and 
discrete pol icy sets. 

Using the exponent ia l  bound  on cumulat ive  costs, we can derive bounds  on 
discounted costs. 

c o  - - r t  

Definition. a ( T ) = ( r M / ( r - 3 " ) ) e  -(~-~)r is an uppe r  bound  on I r e  dC=( t )  for  
any 1r c H, where  M is defined in (1). 

Note  that  a (T)  - 0 as T -  o0 for  r > 3'. 

Lemma 4. For rr ~ H, r > 31, and T >~ 0, 

(a) ] C ~ ( r ) -  C . ( r ,  T ) [ ~  < a( T). In particular, it follows 

C~(r, T)] ~ 0 uniformly with respect to 7r c 11. 

(b) For S>~ T, ]~(r, S)-~(r, T)I<~a(T).  

(c) I ~ * ( r ) - C * ( r ,  Y)[<~a(Y).  

that as T - > ~ ,  ] C ~ ( r ) -  

Lemma 5. Let  {7",} be a sequence o f  positive times such that Tn ~ ~ as n ~ ~ .  For 
each n = 1 , 2 , 3 , . . . ,  let 7 r "c H*(Tn ) .  Then 3 a subsequence {Tr k) o f  {Tr n} and an 

element it* c H*  with the property that k ~ 7r* as k ~ ~ .  This property holds for  any 

convergent subsequence o f  {Tr'}. 

5. Forecast horizon results 

The existence of  a forecast  hor izon and the a lgor i thm for  identifying it are based  
on the bounds  on the d iscounted costs derived in Section 4. L e m m a  6 allows us to 
restrict the set o f  potent ial ly  opt imal  strategies based  on their  m i n i m u m  cost up to 
a finite t ime horizon. Theorem 7 expresses a s topping criterion for  identifying a 
forecast  horizon.  Theorems  8 and 9 state that  the s topping criterion will be satisfied 

if the op t imal  initial pol icy is unique. For  the remainder  of  the pape r  we assume 
r > 3' is fixed. 

Denote  the set of  initial policies a s  H I  ~-- {,/7-~, 'WI2, . . . , 7J'l k} for  some k. Let i(~*(T) = 
m i n { ~ , ( T )  ] ~r ~ H, 7rl = ~r~} and ,C* --- min{~= ] 7r e H, ~'1 = ~r~}. These  min ima  exist 

since {Tr c H IT rl = ~'il} is compact .  Also, let C ( T )  = min{ iC*(T)  li: ~r~ ~ HI*(T)} be 
the m i n i m u m  T-hor izon cost given a subopt imal  initial pol icy and C =  
min{iC*[ i: ~'~1 ~ Hi*} be its infinite hor izon counterpar t .  
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Lemma 6. Iffor any strategy "~, d e(T) - d*(  T) > 2a (T) then ~r ¢: H*(S) for all S >~ T. 

Proof. For each S ~> T, and V~-c H, 

d,~(S)<~ d ~ ( T ) + a ( T ) ,  

by Lemma 4(b). Then by taking infimums on the right and then the left, 

d*(  S) <~ C*( T) + a( T). 

We also have 

d e( S) >~ d,÷( T) - a( T) 

by Lemma 4(c). Then, by subtracting, 

C e ( S ) -  C*(S)/> d e ( T ) -  C * ( T ) - 2 a ( T ) >  0. [] 

We generalize two theorems of Bbs and Sethi (1988) to continuous time. 

Theorem 7. / f C ( T )  - C*(T)  > 2a(T)  and H * ( T )  = {Tr*(T)} then II*(S) = {Tr*(T)} 
for all S >~ T. 

Proof. Choose S >  T, and consider any ~ - c H  with ~ ' l~7r*(T) .  By definition, 
d , ( T )  i> C(T) .  Therefore, 

d~(r)- d*(r)> 2a(r). 

Then by Lemma 6, ~- ~ /7" (S) .  This is true for each ~r c / 7  with ~3" 1 ~;~ 3Tlg<( r ) .  Hence 
/7"(S)~_/7"(T).  [] 

Theorem 8. If~7* = {~'l*} then 3 T  such that V S )  T, II1(S)= {~rl*}. 

Proof. Suppose not. Then B a sequence {Tn} such that Tn~oo and one can find 
7 r ' c / / * ( T , )  with 7r~¢ ~r*. By Lemma 5, 3 a subsequence {~.k} of {~r"} such 
that ~ . k  ~. ~ /7 , .  Then, for k sufficiently large, 7r~ = ~'~. But ~1 = ~rl*, which is a 
contradiction. [] 

Now let b(t) be any function satisfying b ( t ) > 0 ,  for t > 0 ,  and b( l )~O as t~oc.  
B~s and Sethi (1988) prove the following result for discrete time and discrete policy 
sets. Schochetman and Smith (1986) extend it to continuous time and continuous 
policy spaces. The version here applies to continuous time and discrete policy sets. 
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Theorem 9. I f  IH*I = 1, then there exists T > 0 such that C( T) - C*( T) > b( T). 

Proof. See Ryan and Bean (1986). [] 

We can sum up our results so far: 

Theorem 10. I f  lI*l is a singleton then 3 T >  0 such that T is a forecast horizon. 

Proof. Follows from Theorems 7, 8, 9, with b(t) = a(t).  [] 

Theorem 10 was also proved by Bean and Smith (1984). But from Theorems 7, 

8 and 9 we also get an algorithm, generalized from B6s and Sethi (1988), guaranteed 

to find a forecast horizon whenever [H*] = 1: 

Z ~ Algorithm. (1) Choose any sequence { ,}n=~ such that 7",, ~ co as n ~ oo. Set n ~ 1. 
(2) Solve the T,-horizon problem to get I I*(T,) ,  C*(T,) ,  and C(T,) .  
(3) If  IH*(T.)I=I and C ( T , ) - C * ( T , , ) > 2 a ( T ~ )  then STOP: T, is a forecast 

horizon. Else set n ~- n + 1 and go to (2). 

Theorem 11. I f  H*l is a singleton then the Algorithm will terminate with an infinite- 
horizon optimal initial policy for finite T,,. 

Proof. Follows from Theorems 7, 8, 9. [] 

6. Degeneracy resolution 

The results in Section 5 show that we can find a forecast horizon if the optimal 

initial policy is unique. Degeneracy can occur if there is more than one optimal 
initial policy. In this section we present two approaches to resolving degeneracy 

that follow from the results of the previous section. One is an exact algorithm for 

finding an optimal initial policy by perturbing costs. Together with the algorithm 

in Section 5, this constitutes the first method guaranteed to terminate in finite time 

when solving any of a general class of infinite horizon problems. The second 

approach is the calculation of a forecast horizon with the guarantee that any finite 

horizon optimal first policy has infinite horizon discounted cost nearly as small as 

that of the infinite horizon optimal first policy. 

We make some additional definitions: 
Let G = { I :  t e / /*} ,  the set of indices for optimal initial policies. Let e = 

{e~, e2,. • •, ek) be a perturbation vector and set C~(t) = C~(t) + ei, t > 0, if ~r~ -- ~.i; 

that is, add an instantaneous, discrete cost of ei for 1r~ at time 0. Define C~(r), 

C~*, iC**, C~ as for C~(t). Let //~* ={~-: ~r= arg min~1~ CL(r)} be the set of 

optimal strategies for the perturbed problem and let Hi*  be the set of initial policies 
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corresponding  to ~- c H ~*. Set G ~ = {1: ¢rtl c H~*}, the set o f  indices for  opt imal  
policies for  the per turbed  problem.  Finally, let g =- C - C* be the min imum penal ty  
for  choosing a subopt imal  initial pol icy in the original p roblem.  

Adjust  M if necessary so that  

K ~ ( t ) + ~ < ~ M e  ~' for  t~>0. 

Lemma 12. Let e be such that ei < ~ Vi, and ei # ejfor i # j. Then G ~ ~_ G and ]G ~ ] = 1. 

Proof.  Suppose  j ~ (7. Then for  any i c G, jC*  - i(~* ~> g. Then  

But 0 < e~ < ~ ' q ' i ~ ] ~  i - e~ I < g. Hence,  jC~* - ~C~* > 0. Therefore ,  j ~ (7 ~. Thus G ~ _~ 
G. Now suppose  i c G ~. Suppose  j c G ~ also. Then i c G a n d j  ~ G. Hence  ~C* = j C * .  
But e~ # e j ~ C  ~* #jC~*. This is a contradict ion.  [] 

Theorem 13. Let costs be perturbed as in Lemma 12. Then the Algorithm will terminate 
in finite time. 

Proof.  After  the per turbat ion,  II~* is a singleton. The result follows f rom 
Theorem 11. [] 

Because calculating g requires all the data over  the infinite horizon,  this per turba-  
t ion scheme cannot  be implemented .  We are currently working on an algori thm to 

implement  these ideas wi thout  calculating ~ directly. But as a consequence  of  L e m m a  
6, we can find a near -opt imal  forecast  horizon.  

We say that  T is an e-forecast horizon if  C~*(s) - C*  ~< e for  all S/> T and all 
~*( S) c II*( s). 

Theorem 14. I f  T, > ( 1 / ( r -  7)) l o g ( 4 r M / ( r -  7)e) then T~ is an e-forecast horizon. 

Proof.  For  any vr, C~<~ C ~ ( T ) + a ( T )  by L e m m a  4(a). Also, C* >~ C*( T ) -  a( T) 
by L e m m a  4(c). For any S I> T, let ~_s c / / * ( S ) .  Then C s (T)  - C * ( T )  ~< 2a (T)  by 
L e m m a  6. Then 

C ~ s -  C* <~ C~*( r )  + a( r )  - C*( T) + a( T) <~ 4a( T) 

1 4rM 
< e  if T >  l o g - - .  []  

r - 7  ( r - y ) e  

Note that  by L e m m a  4(c), (~*<~ a(0).  Let p = e/a(O)= e ( r - 7 ) / r M  be the error 

expressed as a p ropor t ion  of  the m a x i m u m  possible  total d iscounted cost. Then 
T~ = ( 1 / ( r -  3')) log(4 /p) .  Thus the e-forecast  hor izon length grows propor t iona l ly  
to the log of  the accuracy desired and inversely p ropor t iona l ly  to the interest rate 
used. These proper t ies  are consistent with those of  the e-forecast  horizons found 
by Bean and Smith (1985) for  capaci ty  expans ion  p rob lems  and by Bean, Birge and 
Smith (1987) for determinis t ic  infinite dynamic  programs.  
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7. Conclusions 

Forecast horizon existence results have been  found  for problems with special 

structure (see Gilmore and  Gomory,  1966; Morton,  1978; Shapiro and  Wagner ,  

1967). But all general existence results (Bean and  Smith, 1984; Hopp,  Bean and  

Smith, 1987; B~s and Sethi, 1988; Schochetman and  Smith, 1986) assume that the 

opt imal  init ial  policy is unique .  The results in this paper  indicate that this a s sumpt ion  

may not  be valid. An example is constructed in which every reasonable  interest  rate 

may lead to degeneracy. We have therefore tu rned  our a t tent ion to resolving 

degeneracy when it occurs and  present  the first a lgori thm guaran teed  to stop 

regardless of degeneracy. Though our method  for per turbing time zero costs canno t  

current ly be implemented ,  it shows that degeneracy resolut ion is theoretical ly 

possible. 

In  some situations a near-opt imal  init ial  policy will suffice. Then  an e-forecast  

hor izon can be calculated using only the interest rate and  parameters  of an exponen-  

tial func t ion  that bounds  the total cost for any strategy. Stronger near -opt imal  

horizons,  as in Bean and  Smith (1985), are likely to exist for specific appl icat ions.  
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