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We consider the class of linear programs with infinitely many variables and constraints having the 
property that every constraint contains at most finitely many variables while every variable appears in 
at most finitely many constraints. Examples include production planning and equipment replacement 
over an infinite horizon. We form the natural dual linear programming problem and prove strong duality 
under a transversality condition that dual prices are asymptotically zero. That is, we show, under this 
transversality eondition, that optimal solutions are attained in both primal and dual problems and their 
optimal values are equal. The transversality condition, and hence strong duality, is established for an 
infinite horizon production planning problem. 
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1. lntroduction 

C o n s i d e r  t h e  f o l l o w i n g  d o u b l y  in f in i t e  l i n e a r  p r o g r a m m i n g  p r o b l e m :  

(P)  m i n  ~ c'~xi 
i = l  

s u b j e c t  to  

A l l x l  i> b i ,  

Ai, i-lXi-1 + Aiixi >~ bi (i = 2, 3 , . .  ), 

O<~xi<~ui ( i =  1 , 2 , . . ) ,  

This material is based on work supported by the National Science Foundation under Grant No. 
ECS-8700836. 
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and its natural dual 

o o  

! t (D) max ~ (b iY~l -  u~yi2) 
i = 1  

subject to 

AüYil+A~+l,iYi-~l,1-Yi2 <~ ci (i = 1, 2 , . .  ), 

y q ~ 0  ( i=  1 , 2 , . .  ; j =  1,2), 

where ci, ui, x~, yi26 ~n, and bi, y i l c R  m' are all column vectors, and A u is an 
(mix nj)-matrix. The problem (P) represents the class of all (bounded) linear 
programs having the property that every constraint contains at most finitely many 
variables and (in a dual fashion) every variable appears in at most finitely many 
constraints (Schochetman and Smith, 1992). Applications include infinite horizon 
production planning under nonstationary demand, equipment replacement under 
technological change, and capacity expansion. In this paper, we establish a theory 
of  duality for (P) and (D) by providing conditions under which both weak and 
strong duality hold. 

Historically, abstract duality theory allowing for consideration of the infinite 
dimensional case began with the fundamental paper of Duffin (1956). Charnes, 
Cooper and Kortanek (1963) subsequently stated and proved a strong duality 
theorem for semi-infinite linear programming using an extension of Farkas' lemma 
as proven by Haar. However, as later pointed out by Duffin and Karlovitz (1965), 
they failed in that paper to explicitly include an interior point condition in whose 
absence a duality gap may exist. The failure of  strong and even weak duality to hold 
in the infinite dimensional case in the absence of interior point conditions (Luenber- 
ger, 1969, p. 217) or, more generally, closedness (Anderson and Nash, 1987, p. 52; 
Ponstein, 1980), has kept much of the literature at an abstract level. The difficulty 
has been in establishing these conditions in concrete cases. Much of the success 
thus far has in fact been limited to the semi-infinite case, introduced in Charnes, 
Cooper and Kortanek (1963), and subsequently developed in Ben-Israel, Charnes 
and Kortanek (1969), Karney (1981), Borwein (1981, 1983), and Duffin, Jeroslow 
and Karlovitz (1983). The so-called separably infinite programs introduced in 
Charnes, Gribek and Kortanek (1980) allow an infinite number of variables and 
constraints, although no infinite subset of constraints is allowed to contain more 
than finitely many distinct variables. Programs that are truly doubly infinite are 
excluded and in particular, (P) is not included in this class. 

Work on the doubly infinite case includes Evers (1973, 1983), Hopkins (1971), 
Grinold (1971, 1977), and Jones, Zydiak and Hopp (1988). Grinold (1971) provides 
sufficient conditions for the existence of  optimal primal and dual solutions for a 
special class of doubly infinite problems and establishes a weak duality theorem 
for a stat ionary infinite stage LP in Grinold (1977). This latter work was extended 
to convex programs in Grinold (1983). Jones, Zydiak and Hopp (1988) applies the 
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general theory developed in Grinold and Hopkins (1972) to a cost stationary infinite 
horizon equipment replacement problem with time varying demand to establish the 
existence of optimal stationary dual solutions. 

Our approach as in Grinold (1971, 1977, 1983) is to establish properties for (P) 
and (D) indirectly through the inheritance of  such properties from finite dimensional 
approximations of (P) and (D). These are formed by truncating beyond finitely 
many variables and constraints. This approach avoids the necessity of establishing 
closedness or interior point properties for (P) or (D) directly. Viewing the index i 
in (P) as corresponding to the /th period in a multiperiod planning problem, the 
above truncation to (P) becomes a finite horizon approximation to an infinite horizon 
problem. This so-called planning or solution horizon approach to the analysis of 
(P) has an extensive literature (for more recent work, see, e.g., Bean and Smith, 
1984; Bès and Sethi, 1988; and Schochetman and Smith, 1989). 

Throughout the paper, we adopt the following assumptions. 

Assumption A. The set, X, of feasible solutions to (P) is nonempty, i.e., X ~ O. 

Assumption B. The objective function C(x)= ~~-1 c'ixi in (P) is uniformly conver- 
gent over x, i.e., ~~=l Ilcilloo <°e where I[c, ll~=max{Ic',x[: o<~x«-u3. 

A sufficient condition for Assumption B to hold is that each c~ be of the form a ~k~ 
where 0 < c~ < 1, and the k, and ui are uniformly bounded (a corresponds hefe to 
a discount factor). 

In Section 2, we establish topological spaces within which to embed (P) and (D) 
and thereby establish that (P) has an optimal solution, we  also formally define the 
finite dimensional truncations (P(N)) and (D(N)) consisting of the first N variables 
and N constraints of (P) and (D) respeetively. 

In Section 3, weak duality is established for the pair (P) and (D) under the 
condition that the oft diagonal submatrices A~+l.i are eventually nonnegative for all 
i. Moreover, whenever weak duality holds, we show that no duality gap exists, i.e., 
the infimal value of the primal program (P) equals the supremal value of the dual 
program (D). 

In Section 4, strong duality is established under a transversality condition requiring 
that the optimal dual multiplier associated with the / th  constraint converges to zero 
as i goes to infinity. Roughly speaking, we require that the optimal prices of future 
resources become arbitrarily small. Under this condition, an optimal dual solution 
is shown to exist at which primal and dual objective values are equal and complemen- 
tary slackness holds. 

Finally, in Section 5, as an illustration of the general theory, we establish strong 
duality under mild regularity conditions for a general nonstationary infinite horizon 
production planning problem. 
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2. Mathematical preliminaries 

We begin by forming the product spaces H~1 R", and [I~=1 R m'+"' within which we 
embed (P) and (D) respectively. Each is equipped with the corresponding product 
topologies inherited from the underlying Euclidean spaces so that for example a 

oo n 
sequence {x"}_ [I~=, N"' converges precisely when its components x~ converge in 
the Euclidean metric for all i. That is, 

n ..~ n x x a s n ~ c o  i f a n d o n l y i f  x i - ~ x i  a s n ~ o o ,  

for all i = 1, 2 , . . . .  Similarly for {y"} _c H~-a N"+"'.  Note that the nonnegative orthant 
has an empty intefior in both spaces, so that interior point conditions do not hold 
here. 

Since the feasible region for (P), X, is closed and contained within the compact 
set I~~_1 [0, ui], it is also compact and, by Assumption A, nonempty. By Assumption 
B, the objective function C ( x )  - ~ ~  c~x~ is a continuous function over X (Schochet- - -  i = 1  

man and Smith, 1989). It follows that an optimal solution x* to (P) exists. 
Since the objective function in (D) may fail to converge for some feasible 

y e l~~=~ N"'+"', we shall for now replace the objective function in (D) by 

N 

B ( y )  =lim sup Z (blYil- u~yi2). 
N ~ o o  i = 1  

We shall see later that the two objective functions are in agreement over a subset 
of the feasible solutions Y to (D) known to contain any optimum. 

We shall establish duality results for (P) and (D) by demonstrating their inheri- 
tance from finite dimensional approximations (P(N)) and (D(N)).  These are formed 
by dropping all variables and constraints beyond the first N of (P) and (D), 
respectively. More formally, we define (P(N)) by 

N 

(P(N)) min ~. «'ix~ 
i - - 1  

subject to 

A I  l X l  ~ b i ,  

Ai, i_lXi_l+Aiixi>~bi ( i = 2 , 3 , . . ,  N),  

O<~xi<~ui ( i=  1 , 2 , . . ,  N), 

and (D(N)) by 

N 

(D(N)) max Z (blyg~-u~Yi2) 
i = 1  

subject to 

A~~yia + AI+a,~y~+I,1-yi2 <~ ci (i = 1, 2 , . . ,  N -  1), 

A~:vYN1 - YN2 <~ cN, 

yo >~O ( i=  l , 2 ,  .. N ; j =  l ,2 ) .  
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Note that (D(N))  is the ordinary linear programming dual of (P(N))  so that 
classical weak and strong duality holds for each pair (P(N)) ,  (D(N))  for all N. 
That is, byweak duality, we have that B(y;  N) <~ C(x; N) for all x ~ X ( N ) , y  c Y (N)  
and for all N, where B(y; N) and C(x; N) and Y(N)  and X ( N )  are the objective 
functions and feasible regions of (D(N))  and (P(N))  respectively. Here X ( N )  is 
regarded as a subset of N~_I R", with the first N elements arbitrarily extended to 
elements of [I~=1 R"'. It will also, at times, be convenient to think of X ( N )  as a 

N ~ n i  subset of I-[~=~ We shall use the same notation for both where the interpretation 
should be clear from the context. Similarly, for Y(N).  Strong duality provides that 
B*(N) = C*(N) for all N where B*(N) and C*(N) are the optimal values to 
linear programs (D(N))  and (P(N))  respectively. Note that (P(N))  has an optimal 
solution for all N since its feasible region is nonempty and compact (since X c_ X ( N )  
for all N)  and its objective function is continuous. 

In the next section, we construct a counterexample to weak duality for the pair 
(P) and (D) and provide a sufficient condition for weak duality to hold. We end 
this section with a summary of notation. 

X:  feasible region of (P), 
Y: feasible region of (D), 
X ( N ) :  feasible region of (P(N)) ,  
Y(N):  feasible region of (D(N)) ,  
C(x)  = E~_l c',xi, 
c ( x ;  N )  = E , ~ ,  ' CiXi~ 

B(y) = lim supu_~o~ B(y; N), 
n(y; N) = EN1 (b;yil- u;y,2), 
C*: optimal value of (P), 
C*(N) :  optimal value of (P(N)) ,  
x *  : {x e x [ c ( x )  = c ' I ,  

X*(N)  ={xe X ( N )  IC(x; N) : C*(N)},  
B*: optimal value of (D), 
B*(N):  optimal value of (D(N)) ,  

Y* = { y c  YIB(y) = B*}, 
Y*( N) = {y c Y( N) I B(y; N)  = B*(N)}. 

3. Weak duality 

Because the feasible region to (D) is unbounded,  weak duality for the pair (P) and 
(D) may fail to hold. Consider for example the following instan¢e of (P)" 

(P) min ~ z / 
i=1 
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subject to 

Xl~ 1, 

y l + Z a ~ l ,  

-2yi  l+xi>~O ( i = 2 , 3 , . . ) ,  

-2xi_l+yi+zi>~O ( i=2,  3 , . . ) ,  

O<~xi<~2 i I ( i = 1 , 2 , . . ) ,  

O<~yi<~2 i 1 ( i = 1 , 2  . . . .  ), 

0~<zi~< 1 (i-- 1 , 2 , . . ) ,  

so that (D) is given by 

(D) s u p l i m s u p ( u l + v ~ -  ~ (2~pi+2~q~+r~)) 
N~oc) \ i~2 

subject to 

u~-2V~+l-p~«_O ( i = 1 , 2 , i . . ) ,  

vi-2ui+l-qi<~O ( i= 1 , 2 , . . ) ,  

v~-r~<~(½) ~-~ ( i=  1 , 2 , . . ) ,  

ui, vi, pi, ri>~O ( i=  1,2 . . . .  ). 

It is a simple matter to verify that (P) satisfies Assumptions A and B. However, 
the following solution is optimal for (P) with value 0: 

Xi=2 i-1 ( i= 1 , 2 , . . ) ,  

yi~-2 i-I ( i=  1 , 2 , . . ) ,  

zi=O ( i= 1 , 2 , . . ) ,  

while the following solution is optimal for (D) with value 2: 

ui = (½) ~-1 ( i=  1 , 2 , . . ) ,  

vi=(½) i-1 ( i=  1 , 2 , . . ) ,  

p i = q i = r i = O  ( i=  1 , 2 , . . ) .  

Hence weak duality fails for this instance of (P). It is interesting that weak duality 
holds and is easily shown when (D) is defined as the algebraic dual of (P) (Anderson 
and Nash (1987, p. 18)). However a concrete representation of algebraic duals is 
usually unattainable in the infinite dimensional case. Evidently, (D) as given here 
is not such a representation. In fact, its objective function is not a linear functional. 

The pathology exhibited above can be eliminated by requiring that all feasible 
solutions of (D) be feasible for (D(N)),  i.e., 

y c  Y ( N )  

for large N. The following theorem provides a sufficient condition for this to occur. 
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Theorem 3.1. Suppose that Ai+l,g is eventually nonnegative, Le. there exists a positive 
integer N '  such that Ai+l,i ~ 0 for all i >t N'.  Then 

B(y) ~ C(x)  

for all x c X,  y ~ Y. 

Proof. I f  y ~ Y, then we have for all N >i N ' ,  

CN >I A'NNYN1 + A~+I,NYN+I,1 -- YN2 >! A'NNYNI -- YN2 

since YN+I,~ >t 0 and AN+~,N contains only nonnegative elements. Hence y is also 
feasible for (D(N) ) ,  i.e., y c  Y ( N ) ,  for all N ~ N ' .  By weak duality for finite 
dimensional LP-problems we have 

B(y;  N)<~ min C(x;  N ) =  C * ( N )  
x ~ X ( N )  

for all y ~  Y, N > ~ N  '. Our assumptions on the function C ( . )  imply that value 
convergence holds for (P), i.e., limN_.ooC*(N) exists and is equal to C* 
(Schochetman and Smith, 1992). Therefore we have 

B(y)  : lim sup B(y; N )  <~ lim C * ( N )  = C* <~ C(x)  
N~oo N->oo 

for all x ~ X, y c Y. [] 

Fortunately, the nonnegativity condition on the oft diagonal elements Ai+l,  i is 
not restrictive in most multistage planning problems where Ai+l,i corresponds to 
inventory carryover from the previous period. 

Theorem 3.1 teils us that every feasible value of the primal (P) will be an upper  
bound to every feasible value or the dual (D). The next result shows that the 

supremum of the latter equals the infimum (i.e., minimum) of the former. We 
summarize this claim by saying that no duality gap exists. 

Theorem 3.2 (No Duality Gap).  Suppose weak duality holds, i.e., B(y)  <~ C(x)  for 
all x c X,  y ~ Y. Then 

B* = sup B(y)  -- min C(x)  = C*. 
y~ y x ~ X  

Moreover, value convergence holds for (D), i.e., B * =  limN_,~ B*( N) .  

Proof. Consider y * ( N )  ~ Y * ( N )  (y*(N)  is an optimal solution of (D (N) ) ) .  Then 
define z N as 

N = y ~ ( N )  ( i = 1 ,  N;  j = l , 2 ) ,  Z/j ...~ 

N z i l : 0  ( i :  N + I , . . . ) ,  

N z~2:max(O,-c~)  ( i = N + l , . . . ) ,  
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where f =  max(d,  e) (d, e, f e ~  n) is defined as follows: 

f =max(d i ,  el) ( i =  1 , 2 , . . ,  n), 

and where 0 = ( 0 , . . ,  0)'. Obviously,  z N satisfies the first N -  1 constraints o f  (D). 

Furthermore,  

t N a ;  N N 
A N N Z N 1  + ~ N + I , N Z  N+I,1 --  Z N 2  = A~NY*NI( N) -y*N2(N) <~ CN 

and 

, N --, N N _max(O,_c i )=min(O,  ci)<~c i A i i Z i l  -t- Z - l i+ l , iZ i+l ,1 - -  Zi2 

for  i = N +  1 , . . .  Thus,  z N c Y. Note  also that z N ~ Y * ( N ) .  N o w  we have 

B* = sup B(y)  
y c Y  

>~ ß(z  ~) 

t N r N = lim sup ( b i Z i l  -- UiZi2  
M ~ o o  \ i = 1  

• ; N ,' N 
mMSU H i Z i 2 ) _  ~ (biZilt N t N = h  p ( b i Z i l  - ~ - u i z i 2  

i 1 i = N + l  

= ( b : y * ( N ) - u : y * ( N ) ) + l i m s u p -  ~, u:max(O,-c~)  
i ~ l  i ~ N + l  

i n (  = B ( y * ( N ) ; N ) - l i m  f ~ u : m a x ( 0 , - c i )  
M ~  \ i = N + l  

(~ ) = B * ( N )  - liü~!nf 2 ~ (-uijcü) 
M oo \ i = N + l j : c u < O  

= C * ( N ) -  ~ ~ (-uo.cii) 
i - - N + l  j: co.<O 

for  all N. In the last step we have used the absence o f  a duality gap for finite 

dimensional  LP, and the fact that  -uo.c~ j > 0 for all ( i , j )  such that c o < 0 .  Since 

}~ }~ (-uijcij) <~max ~ Z uijcij, F~ ~ (-uüci j 
i = 1  j:ci/<O i ~ l  j: Cij> 0 i = l  j :  c o < O  

~< }~ max 2 uücij, ~ (-uijcij) 
i= 1 j: cij>O j: c(j<O 

co 

= E IIc~froo<oo, 
i - - 1  

we can conclude that  

oo 

lim ~ 
N ~ c o  i = N + I  j :  cij<O 

( -  uuc ~ ) = O. 
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Furthermore, limNooo C * ( N )  exists and is equal to C*. So now we have 

B* >/C*. 

By weak duality we have B* = SUpy~ y B(y)  <~ infx~x C(x)  = C*, so we can conclude 
that 

B* = C*. 

Also, 

lim B*(N)= lim C*(N)= C * =  B*. [] 

4. Strong duality 

In this section, we establish conditions under which an optimal solution, y*, exists 
to the dual program (D). Under weak duality and Theorem 3.2, it will follow that 
optimal primal and dual values are attained and equal, i.e., strong duality. The 
method will be to construct a candidate solution for y* from the set Y*(~)  of 
accumulation points of finite dimensional dual optima Y*(N) .  

We begin by establishing that every pair of accumulation points x* and y* of 
corresponding finite dimensional optimal solutions are primal and dual feasible and 
moreover necessarily satisfy complementary slackness. 

Lemma 4.1. Suppose x * ( N ) c X * ( N ) ,  y * ( N ) ~  Y * ( N )  are optimal solutions for 
(P(N))  and (D(N)) ,  respectively, N = 1, 2, 3 , . . .  Furthermore, assume that for some 
subsequence { Nk} of the positive integers that is independent of i, we have 

l i m x ~ ( N k ) = X *  ( i = 1 , 2 , . . ) ,  
k~co 

l imy*(Nk)=y*~ (i-- 1 , 2 , . . ) ,  

i.e., x* c X*(oo) and y* ~ y*(oo), the sets of accumulation points of X * ( N )  and 
Y * ( N )  respectively. Then x* c X and y* c Y, i.e., 

X*(oo) c_X and y*(oo) c y. 

Furthermore, x* and y* satisfy complementary slackness, i.e., 

(Ai.,-lX*l + Aùx*~ - bi)'y*n = O, 

( ui - x*)'y*2 = 0 

and 

( C i r :~ t :~ ~ , ~< __ - -  A u Y i l  - Ai÷l,iYi+l,14-Yi2) x i  - 0 

for i= 1, 2 ,  . . .  
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Proof. The fact that x* ~ X and y* ~ Y follows immediately from the fact that every 
constraint is a linear function of finitely many variables. By complementary slackness 
for finite dimensional linear programming we have, for all k: 

Taking the limit for k-~ ~ in, for example, equation (2) yields for all i, 

lira ( ui -- X-*, ( Nk ) )' y~(  Nk ) = 0 
k-~co 

thus 

and 

Analogously we get for all i, 

o r  

and 

The next theorem provides a transversality condition that under weak duality 
guarantees optimality for any pair of primal and dual feasible solutions that satisfy 
complementary slackness. 

Theorem 4.2. Suppose ~ ~ X, f ie  Y satisfy complementary slackness. Furthermore, 
suppose that 
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If, moreover,  weak  duali ty  holds, then ù2 is an opt imal  solution f o r  (P), and ~ is opt imal  
fo r  (D).  Futhermore,  i f  

lim y~+l,lAi+l,ixi = 0, 
i o o o  

then 

t ~ u iYi2) .  B ( y ) =  E ( b , y , 1 -  ' '  

i = 1  

Proof. By complementary slackness we have,  for all i, 

( ci - AI~yù - A~+l,iYi+l,i + Yi2)'xi = 0, 

or equivalently 

C~X i = xlA' i i f i i l  4- x IA~+l , i f i i+lA - ~¢~fii2. 

Summation over all i on both sides yields 

co co 

C('Y) = E c»xi" E (x,Aùyù" ' " " ' - " "  - xiyi2). = -~-x iA i+l , iY i+l ,  1 
i = 1  i = l  

Also by complementary slackness, 

X i - l A i ,  i - l Y i l  x i A i i Y i l  biYil 

and 

S O  

- t  ~ - -  t ~ 
x i y i 2  -- u i y i2  , 

N 

BO 7) = lim sup Z (b~ffil - -  Urifii2) 
N - ~ o o  i ~ l  

N 
= lim sup 

N ~ o o  i - -1  

- !  t - _~ " t  t ~ . t -  

( X i - l A i ,  i - l Y i a  x i A i i Y i l -  x iY i2 )  

( x i A i i y i l  n t- x i A i + l , i Y i + l ,  1 -- x i Y i 2  ) --  X N A N + I , N Y N + I ,  1 
N ~ o o  i = 1  

= ~ ('Y~Al~fi,~ + ~'iA~+~,37,+1,1 - ~'0~,2) - lim inf X ~ N A ~ N + I , N f i N + I A  
i = l  N ~ ~  

oo 
~ --F v -- - t  t « - ! -  ( x~Aùy,~ + x~A~+l,~Y~+ l,1 - x~y~2) = C ( Y¢). 

i = 1  

Since weak duality holds,  we have the optimality o f  Y and 37. Furthermore, if 

lim "' ~ - Y i + l , l A i + l , i X i  -- O, 
i~oo 
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we can conclude 
N N 

B(37) = lim sup • (biyn - uiy~2) - lim inf ~ (biyn - u~yi2) 
N - ~ o o  i ~ l  N ~ c o  i = l  

co 

= ~ (biYil - uiYi2 ). [] 
i = l  

Note that the objective function values given for the dual formulation of Sections 
1 and 2 are in agreement for )7 under the conditions of Theorem 4.2. 

The following theorem is the main result of the paper. 

Theorem 4.3. Suppose the following conditions on (P) hold: 

(i) The constraint data Ai+l,g, ui, m~ and ne for  (P) are uniformly bounded over 

i, i.e., ( u i ) : < ~ ü < ~ ,  (A i+l , i ) k l~ä<O0»  m i ~ f f t < o o  and n~<~f i<~ for  all 

i , j , k , l ,  
(il) Weak duality holds for  (P) and (D), 

(iii) Transversality holds for  (D), i.e., 

l imy~ =0  

for  some y* ~ y*(oo).  
Then y* c Y*  and strong duality holds, i.e., there exist optimal solutions x* c X *  and 

y* ~ Y*  such that 

C(x*)  = B(y*).  

Proof. Since y*~ Y*(~), there exists a subsequence {Nk} such that 

lim y * ( N k ) = y *  
k--~ oo 

for all i, where y * ( N k )  c Y * ( N k )  for all k. Choose x * ( N k )  ~ X * ( N k )  n X for all k. 
Then, passing to a subsequence of {Nk} if necessary, we have 

lim x * ( N k )  = x* 
k ~ c o  

for all i for some x* c X by the compactness of I]~~1 [0, u~] in the product topology. 
By Lemma 4.1, x* and y* satisfy complementary slackness. By assumption, 

lim e'y*l = O. 
i--~ cO 

So we have 
m i +  1 n i 

= (Yi+I,1)k(Xi)t(Ai+l,,)k, Yi+l,lZli+l,i'a'i Z Z 
k : l  1 = 1  

m i + l  n i 

<~ E E (Y~+l,1)k üä 
k ~ l  / = 1  

/'rli + 1 

= niua ~ * - -  (Yi+l,1)k 
k = l  

<~ fiüä( e' y*+l:), 
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which gives 

lim inf y*'l ~ A ù  ix* <~ fiüä lim e' y*÷l,1 = O. 
i ---> ~ " ' i ~ c O  
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So, Theorem 4.2 provides that x* is optimal for (P) and y* is optimal for (D), and 
the corresponding objective function values are equal. [] 

Remarks. (a) Condition (ii) by Theorem 3.1 may be replaced by the requirement 
in ( i ) tha t  0<~ (Ai+l,i)kl ~< ä <o0 for all i, k, I. (b) From the proof of Theorem 4.3, 
we may relax the requirement that mi ~< rh < oo in (i) by replacing condition (iii) 
with the requirement that lim e'y*l = O. 

The important condition in Theorem 4.3 for strong duality to hold is the transver- 
sality condition that requires (in the language of Schochetman and Smith, 1989) 
that algorithmically optimal prices of resources available in the /th period go to 
zero as i goes to infinity. To this point, it is not clear whether any nontrivial instance 
of (P) satisfies this condition. In the next section, we prove that a classic production 
planning problem satisfies the transversality condition and hence is an important 
problem for which duality holds. 

5. An application to production planning over an infinite horizon 

Consider the problem of scheduling production to meet nonstationary demand over 
an infinite horizon. The problem may be formulated by the following linear program 
(Denardo, 1982, p. 87): 

(Q) min ~ (k~P~+h~l~)a" 
i = 1  

subject t o  

L ~+P~-I~ >~d, ( i = 1 , 2 , . . ) ,  

0 ~< P~ <~/5~ ( i=  1 , 2 , . . ) ,  

0~<I~~< ~ ( i=  1 , 2 , . ) ,  

where /j is the net inventory ending period j with I0 = 0, Pj is the production in 
period j, Dj is the demand for production in period j, kj is the production cost and 
hj is the inventory holding cost for periodj,  j = 1, 2 , . . . .  The factor a is the discount 
factor reflecting the time value of money where 0 < a < 1. The dual (D) becomes 

N 

(D) sup lim sup ~ ( d i w i  - P i u i  - ~ v i )  
N ~ c o  i = 1  
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subject to 

Wi--ui~kiog i l ( i =  1 , 2 , . . ) ,  

- w i + w i + l - v i ~ h i c t  i-1 ( i=  1 , 2 , . . ) ,  

wi, ui, vi>~O ( i =  1 , 2 , . . ) .  

Note that without loss of  optimality, we have that demand is met exactly, i.e., 
Ii_ 1 d- Pi - Ii = di for all i, in program (Q). 

As in Schochetman and Smith (1992), we make the following assumptions: 

Assumptions. 

(i) inf(/si - d~) > O. 
i 

(ii) ~ ~< P < co for all i, 

l i < ~ I < ~  for all i. 

(iii) ki, h~>~Oandmax(k i ,  h i ) < ~ G y i f o r a l l i f o r s o m e O < G < ~ , O < y < l / a .  

Note that (Q) is of the form (P) under the identification xi = (Pi I~)', ci = (ki hi)a ~-1, 

Ai, i_~ = (1 0), Aù = (1 -1) ,  bi =di ,  and/~i = (P/ /~)'. 
It is easily verified that Assumptions A and B of Section 1 are satisfied. Moreover, 

since the oft diagonal submatrices Ai ~.i = (1 0) I> 0 for all i, we have by Theorem 3.1 
that under assumptions (i), (ii) and (iii), weak duality holds for (Q) and therefore 
there is no duality gap by Theorem 3.2. Verification of the transversality conditions 
for strong duality will be considerably more difficult. We begin by establishing that 
we may restrict consideration without loss of  optimality to a bounded subset of the 
feasible solutions to (D) and (D(N)) .  

Set Yi = (w~, ui, vi) c ~3 and y = (w, u, v). 

Lemma 5.1. For the Production Planning Problem (Q), there exists Yi < oo for  all i, 
such that 

sup  B(w, u, v) = sup  B(w, u, v). 
y~ Y y~ Y 

where Y = {y c Y: Yi ~ Yi f o r  all i}. Moreover, for  all N,  

sup B(w,  u, v; N ) =  sup B(w,  u, v; N ) ,  
y c  ~f( N )  y~ Y( N )  

where Y ( N )  = {y c Y ( N ) :  Yi <~ fil for  all i}. 

Proof. See Appendix. [] 

Lemma 5.2. For the Production Planning Problem (Q), suppose y (  N )  c ~"( N )  for  all 

N. Suppose fur ther  that 

lim wi(Nk)  = Wi 
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exists for all i for some subsequence { Nk} of the positive in tegers. I f  

lim sup wi < 0, 
i ~ o O  

then 

93 

lim inf B(y(  N);  N)  = -co. 
N -9  c o  

Proof, See Appendix. [] 

We are now ready to prove the main result of  this section. 

Theorem 5.3. Suppose the production Planning Problem (Q) satisfies Assumptions (i), 
(ii), and (iii). Then weak and strong duality hold for (Q) and (D), i.e., 

B(y)  <~ C(x)  

for all x c X and y c Y and there exist x* c X*  and y* c Y* such that 

B(y*) = C(x*).  

Proof. Consider any sequence {y*(N)}, y * ( N )  c Y * ( N )  for all N. Without loss of  

generality we can assume y * ( N ) c  Y for all N. Since Y lies in the product  of  
compact  sets, it is compact  in the product topology. Hence there exists a subsequence 
of  {y*(N)} converging to some y* c Y. Since no duality gap exists for (Q), we have 
by Theorem 3.2 that l imu~~ B(y*(N);  N)  = B* = C* > -co. Thus, by Lemma 5.2, 

lim w* = 0. 
i ~ ~ x 3  

Hence conditions (i) through (iii) of  Theorem 4.3 are satisfied (with ü = max(P,  1), 
ä = 1 and fi = 2). We conclude that strong duality holds for the production planning 
problem. [] 

Hence weak and strong duality hold for the Production Planning Problem under  

very mild regularity conditions. One might expect the same results under comparable  
conditions for a wide variety of investment planning problems including equipment 
replacement and capacity expansion. 

6. Conclusions 

We have established weak and strong duality for a large class of  doubly infinite 
linear programs under the key transversality condition that dual prices asymptotically 
converge to zero. Moreover  this transversality condition was shown to be met by a 

nonstationary infinite horizon production planning problem. 
Using weak duality, one can bound the optimal primal value thus providing a 

measure of  error to approximate  solutions to (P). Moreover, under strong duality, 
it becomes possible in principle to analytically establish optimality of a candidate 
feasible primal solution by demonstrating equality in value with a candidate feasible 
dual solution. 
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Appendix 
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Lemma 5.1. For the Production Planning Problem (Q),  there exist Yi < oo for all i, 
such that 

sup B(w, u, v) = sup B(w, u, v), 
y~ Y y~ Y 

where fz = {y e Y: Yi <~ ~9i for all i}. Moreover, for all N, 

sup B(w, u, v; N ) =  sup B(w, u, v; N),  
3'E Y ( N )  y~ Y ( N )  

where I"( N )  = {y G Y(  N): Yi ~ Yi for all i}. 

Proof. 
fo l lowing holds :  

We will prove  that,  for  all i, there  exist  #i < oo such that  for  all N / >  i the 

sup B ( w , u , v ; N ) < O .  
y~ Y( N ) ; w i ~ w  i 

C o m b i n i n g  this with 

sup B(w,u ,v ;  N)=B*(N)>~O,  
y~ Y ( N )  

we can conc lude  that  

sup B(w, u, v; N ) =  sup 
y c  Y( N )  )'~ Y( N ) ; w i ~ ~  i 

for  all i and  N / >  i. Fu r the rmore ,  we will  have that  

sup  B(w, u, v) = sup B(w, u, v) 
)ùc Y y~ Y ; w i ~ w  i 

for all i. 

Choose  some index  i. Then,  for  all N > i, 

N 

B(w, u, ~; N)= E (4w~-guj-~~j) 
j = l  

N 

j = l  

((4 - g)wj + g(w, - u~)) 
N 

- - E  

j =  1 

B(w, u, v; N) 

N 

~<(4-P,)w,+ E gkj« j-' 
j 1 

N 

<~ (a , -g)w,+ Z &:;~'(«~'Y-' 
ùj= 1 

PG7 
<~ (d~ - ~ )w~  + - -  

1 -cey" 
( 5 )  
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Thus,  choos ing  e.g., 

t5G7 

< - ( 1  - ~ v ) ( J  õ,  - d , )  

we get 

+1 <ec ,  

/SG 7 
sup B ( w , u , v ; N ) < ~ ( d ~ - P i ) # i q - - - - d i - P i < O  

y ~  y ( N ) ; w i ~  % 1 - -  O[.'y 

for i<~ N. Since inequa l i ty  (1) holds  for  all  N ~  > i, we also have 

B(w, u, v)=lim sup B(w, u, v; N)<~(di-  ff'i)wi-F ÆG7 
N~~ 1 -  o~y 

and  thus 

sup B(w,u,v)<O. 
y E  Y;wi~~l~' i 

We can now conc lude  tha t  for  all N, 

sup B ( w , u , v ; N ) =  sup B ( w , u , v ; N )  
y ~  Y ( N ) ; w i ~ w  i y ~  Y ( N )  

and  

sup B(w, u, v) = sup B(w, u, v). 
~,~C Y;w'i~~- ~' i y c  Y 

Moreover ,  combin ing  the results  for all indices  i, 

sup B ( w , u , v ; N ) =  sup B ( w , u , v ; N )  
y ~  Y (  N ) ; w i ~ ~ i V i  y c  Y ( N )  

and  

sup B(w, u, v) = sup B(w, u, v). 
y E  Y ; w i ~ ~ - ~ i V i  y c  Y 

Now,  observe  that  in an op t ima l  so lu t ion  we will have 

i - I  ui = max(O, w i -  kia ), 
i - I  vi = max(O, -wi  + wi+l - hia ), 

ui <~ max(0,  wi - ki« i-l) - :  üi, 

vi ~< max(0,  w i + l -  hi c~'- j) =: Ü» 

SO 

B(y, N) 

[] 

C o m b i n i n g  the results gives 

sup B(y; N ) =  sup 
y c  Y (  N )  y ~  Y (  N )  

for  all N, and  

sup B(y) = sup B(y). 
y ~  Y ),E Y 
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Lemma 5.2. For the Produetion Planning Problem (Q), suppose y( N)  c Y'( N )  for all 
N. Suppose further that 

l im wi(Nk) = wi 
k o o o  

exist for all i for some subsequence {Nk} of the positive integers. I f  

l im sup wi > O, 
i~oO 

then 

l im in f  B(y(  N);  N )  = -oo. 
N ~ o o  

P r o o f .  By hypothes is ,  there  is a subsequence  {ij} such that  

l im l im wij(Nk) >~ ~ > O. 
j ~ ~  k ~ ~  

Assume wi thou t  loss o f  genera l i ty  that  6 < ~ .  This means :  

V 0 < e < 6 ,  3J~suchthatforallj>~J~: l im w~j(Nk)>~6-e>O 
k ~ c o  

and  

V 0 < e < / ~ ,  3JE s u c h t h a t  f o r a l l j ~ > J « :  

VO < ~ < • - e, 3 K , ( j )  such that  for  all k i> K , ( j ) :  

w(~( N~)>~ 6 -  e + rl > O. 

Choose  some fixed 0 < e < 6, and  0 < 7/</~ - e. Let tz = 6 - e - ~7. Wi thou t  loss o f  

genera l i ty  we assume K , ( j +  1) > K , ( j )  for  all j .  N o w  define 

#k :={j>~ J~[wii( N k ) ~  t x, i j~ Nk}. 

Choose  a posi t ive  in teger  M, arbi t rary .  Then,  for  k > ~ K , ( J « + M - 1 )  we have 

[Jk]/> M. Thus,  since M was chosen  arbi t rar i ly ,  we can conc lude  

l im I#~l-- oo 

have,  for  all k, 

B(y(Nk);  Nk)= 

Now we 

N k 

E (d,w,(N~) - ~ u , ( N k )  - Lvi(N~)) 
i ~ l  

Nk  

<~ E ( ( d l - # i ) w i ( N k ) + # i ( w i ( N ü ) -  ui(N«))) 
i ' l  

N k N k 

<~ E (d~-fi ,)wi(N«)+ E #,k, a'-I 
i ~ l  i ~ l  

N~ PG'y 
< ~ - «  E w , ( N D + - -  

i=l  1 - a y  

PG.y 
. - - °  
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Thus: 
lim inf B(y(N); N) <~ lim B(y(Nk); Nk) 

N ~ ~  k~oo 

<~ l i m  ( - -o ' /x l~k[  + ~ )  k-~~ 

PGv 
- :  - « ~  2 L m  I~k l  = - ~ .  

l - t e  3, 
[] 
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