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Abstract. Here we investigate the rational cohomology of the moduli space M0,n(P
r , d)

of degree d stable maps from n-pointed rational curves to Pr . We obtain partial results for
small values of d with an inductive method inspired by a paper of Enrico Arbarello and
Maurizio Cornalba.

1. Introduction

Let M0,n(P
r, d) be the moduli space of degree d pointed stable maps to the

projective space Pr . As proved in [6], this moduli space is a projective variety
of complex dimension (d + 1)(r + 1) + n − 4, with finite quotient singularities.
From a topological point of view, M0,n(P

r, d) can be alternatively viewed as
a smooth orbifold. This space has been intensively studied in the past few years
for its various applications to enumerative geometry and quantum cohomology
(see, for instance, [1]). However, a systematic study of the geometric properties
of M0,n(P

r, d) – specifically of its rational cohomology – has been only partially
accomplished (see [3], [4], and the references cited therein). In particular, in [4] we
prove that when r = 1 all odd cohomology groups vanish; additionally, we give
generators and relations for the second cohomology group. Hereafter, instead, we
deal with the case r ≥ 2. We are able to prove some partial results similar to the
r = 1 case for small values of r and d.

Our methods rely on an inductive strategy inspired by [2], where the vanishing
of some cohomology groups of the moduli space of n-pointed genus g stable curves
is carried through in a very simple way. In fact, if one can prove that the cohomology
with compact support of the moduli space of smooth curves Mg,n vanishes in low
degree, then the long exact sequence of cohomology with compact support and a bit
of Hodge theory imply that the cohomology of the compactification of Mg,n injects
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into the direct sum of the corresponding cohomology of the boundary components.
The explicit description of such components allows one to apply induction.

These very same arguments can be applied to moduli spaces of stable maps
too. However, a different approach is required for a couple of problems, namely:

1) the vanishing of the cohomology with compact support of M0,n(P
r, d) in suf-

ficiently low degree, which for Mg,n follows from a cellular decomposition by
means of Strebel differentials (cf. [8]);

2) the study of the cohomology of the boundary components, which for moduli
spaces of stable curves follows directly from the Künneth formula.

As for problem 1), in [4] we prove that M0,n(P
1, d) is almost always affine.

Indeed, a map fromP1 toP1 is given by a pair of homogeneouspolynomials without
common roots. Consequently, such maps are parametrized by the complement of
a resultant hypersurface in a projective space. However, for maps to Pr , r ≥ 2, it is
no longer true thatM0,n(P

r, d) is affine. More precisely, maps of degree d fromP1 to
P

r are parametrized by the complement in a suitable projective space of a resultant
variety R which corresponds to (r + 1)-tuples of degree d polynomials having
a common zero. By the Elimination theory (see [10], Proposition 3, and [13], I,
§ 6), R can be explicitly described in terms of algebraic equations in the coefficients
of the r + 1 polynomials, so exhibiting its complement as a union of a bounded
number of affine open subsets. Unfortunately, this approach yields a number of
equations which is too high in order to provide any information on the cohomology
of M0,n(P

r, d). To circumvent this problem, we introduce a natural open dense
subset M∗

0,n(P
r, d) ⊂ M0,n(P

r, d), which turns out to be a union of a lower
number of affine open subsets (see Proposition 3). A little variant of the inductive
argument outlined above (see Lemma 4) yields the needed vanishing result.

As for problem 2), it is well known that the boundary components of M0,n(P
r, d)

are fibered products (and not simply products as in the case of stable curves) of
moduli spaces of stable maps with either a lower number of marked points or lower
degree. Although the Künneth formula can not be applied here, an elementary
spectral sequence argument makes induction still work.

As a consequence, we obtain the vanishing of H1(M0,n(P
r, 2)) and of

H3(M0,n(P
r, 2)), and a complete description in terms of generators and rela-

tions of H2(M0,n(P
r, 2)) for small values of r (see Proposition 5 and Corollary 6).

Moreover, we are able to prove that all odd cohomology of M0,n(P
r, d) vanishes

whenever d ≤ 1 (see Theorem 1), d = 2 and either r = 2 or r = 3 and n is
odd (see Theorem 7 and Proposition 8). We conjecture that the vanishing of the
odd cohomology of M0,n(P

r, d) may hold for all r’s and d’s, but such a result is
probably out of reach with the elementary methods implemented in the present
paper. In the future, we hope to carry out further investigation on this topic by
applying different techniques.

Throughout, we work over the field C of complex numbers; all cohomology
groups are intended to have rational coefficients.
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2. Stable maps of degree 0 and 1

In this section we briefly discuss all the cohomology groups of stable maps of
degree d ≤ 1.

For every n ≥ 3 and r ≥ 1, M0,n(P
r, 0) is isomorphic to M0,n × Pr , where

M0,n is the moduli space of n-pointed rational stable curves. Hence, by the Künneth
formula,

Hk(M0,n(P
r, 0)) =

⊕

p+q=k

H p(M0,n) ⊗ Hq(Pr).

Since H∗(M0,n) was computed in [11], we have a complete description of the
rational cohomology of M0,n(P

r, 0). In particular, from the vanishing of the odd
cohomology of both M0,n and Pr , we deduce

Hk(M0,n(P
r, 0)) = 0 (1)

for every odd k.
Analogous results hold for d = 1. Indeed, recall from [6, § 0.4], that M0,0(P

r, 1)

is the Grassmannian G(P1,Pr), and if n ≥ 1, then M0,n(P
r, 1) is a locally trivial

fibration over G(P1,Pr) with fiber the configuration space P1[n] defined in [5].
Hence, if n = 0 we simply refer to [7, Proposition on p. 196]; if, instead, n ≥ 1 we
introduce the Leray spectral sequence associated with the fibration

π : M0,n(P
r, 1) −→ G(P1,Pr),

with E2-term

E p,q
2 = H p(G(P1,Pr)) ⊗ Hq(P1[n]).

Since Hodd(P1[n]) = 0 (see [4, proof of Proposition 9], for a detailed explanation
of this fact), it follows that the differential

d2 : E p,q
2 −→ E p+2,q−1

2

is identically zero, so the spectral sequence abuts at E2. Thus, for every k we have

Hk(M0,n(P
r, 1)) =

⊕

p+q=k

H p(G(P1,Pr)) ⊗ Hq(P1[n]). (2)

This gives an explicit description of the rational cohomology of M0,n(P
r, 1), since

H∗(P1[n]) is determined in [5, Theorem 6] (with the intersection ring taken to
be the cohomology ring with rational coefficients). In particular, we point out the
following fact:

Theorem 1. If k is odd, then Hk(M0,n(P
r, 1)) = 0 for every n ≥ 0, r ≥ 1.

Proof. Recall that, for each odd i, we have both Hi(G(P1,Pr)) = 0 and Hi(P1[n])
= 0. Hence, if n = 0 the thesis follows from the isomorphism M0,0(P

r, 1) ∼=
G(P1,Pr), and if n ≥ 1 it is a direct consequence of (2). �	
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3. The general set-up

Let Qr,d be the set of degree d maps from P1 to Pr . As an algebraic variety,
Qr,d is a Zariski-open subset of the projective space P(⊕i=0,... ,r H0(P1,O

P1(d)).
Its complement has codimension r, and corresponds to (r + 1)-tuples of degree d
homogeneous polynomials in two variables having at least a common root.

Assume d ≤ r. Set

Q∗
r,d := { f ∈ Qr,d : Im( f ) spans a Pd in Pr},

and

M∗
0,n(P

r, d) := {[ f ] ∈ M0,n(P
r, d) : Im( f ) spans a Pd in Pr}.

Define N := (r+1
d+1

)
.

Lemma 2. The algebraic variety Q∗
r,d is covered by N affine open subsets.

Proof. First, recall that all points P ∈ P1 are linearly equivalent and that by the
Riemann–Roch theorem, h0(P1,O

P1(dP)) = d + 1. Therefore,

Q∗
r,d

∼= G(Pd,Pr) × PGLd+1(C).

Now, G(Pd,Pr) is covered by N affine open subsets, since G(Pd,Pr) ⊂ PN−1 via
the Plücker embedding. Moreover, PGLd+1(C) is affine, since it is the complement
in P(Matd+1,d+1(C)) ∼= P(d+1)2−1 of the hypersurface defined by the vanishing of
the determinant. Hence the claim follows. �	

Lemma 2 also provides a bound on the number of affine open sets which may
cover M∗

0,n(P
r, d) for any n. In fact, the following holds:

Proposition 3. For every d ≥ 2, M∗
0,n(P

r, d) is covered by N affine open subsets.

Proof. We are going to mimic the proof of Proposition 1 in [4]. If n ≥ 3, then

M∗
0,n(P

r, d) ∼= M0,n × Q∗
r,d .

Therefore, the claim follows from Lemma 2 since M0,n is affine. If, instead, n ≤ 2,
fix 3 − n points in Pr , P1, . . . , P3−n , and define X to be the locus

X := ν−1
n+1(P1) ∩ . . . ∩ ν−1

3 (P3−n),

where

νi : M0,3(P
r, d) −→ P

r, 1 ≤ i ≤ 3 − n,

are the natural evaluation maps. Consider the map

ρ : X −→ M0,n(P
r, d),
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which forgets the last 3 − n marked points. Since d ≥ 2, the map ρ is surjective
and generically finite. Note also that

ρ−1(M∗
0,n(P

r, d)
) = µ−1

n+1(P1) ∩ . . . ∩ µ−1
3 (P3−n),

where

µi : M∗
0,3(P

r, d) −→ P
r, 1 ≤ i ≤ 3 − n,

are the corresponding evaluation maps. If U1, . . . , UN are open affine subsets
which cover M∗

0,3(P
r, d) ∼= Q∗

r,d , then we have

ρ−1(M∗
0,n(P

r, d)
) =

N⋃

i=1

(
ρ−1(M∗

0,n(P
r, d)

) ∩ Ui
)
,

where every ρ−1(M∗
0,n(P

r, d)) ∩ Ui is affine since it is a closed subset of the affine
open set Ui . In order to conclude, just notice that for every i, ρ(ρ−1(M∗

0,n(P
r, d))

∩ Ui) is open, since the forgetful map ρ is flat, and affine by Chevalley’s theorem
(see [9, Corollary 1.5 on p. 63]), since the restricted map

ρ−1(M∗
0,n(P

r, d)
) −→ M∗

0,n(P
r, d)

is surjective and finite. �	
Theorem 4. Let d ≤ r and fix an odd integer k such that k ≤ (d + 1)(r + 1) +
n − 4 − N. Assume that for every n ≥ 0 and for every odd h ≤ k we have

Hh(M0,n(P
s, d)) = 0, 1 ≤ s < d, (3)

and

Hh(M0,n(P
r, t)) = 0, 0 ≤ t < d. (4)

Then Hk(M0,n(P
r, d)) = 0 for every n ≥ 0.

Proof. Since every map of degree d to Pr whose image does not span a Pd is in
fact a map to a Ps, 1 ≤ s < d, embedded in Pr , there is a natural identification:

M0,n(P
r, d) \ M∗

0,n(P
r, d) = ∂M0,n(P

r, d) ∪
⋃

1≤s<d

G(Ps,Pr) × M0,n(P
s, d).

Consider now the long exact sequence:

... → Hk
c

(
M∗

0,n(P
r, d)

) → Hk(M0,n(P
r, d)) →

→ Hk

(
∂M0,n(P

r, d) ∪
⋃

1≤s<d

G(Ps,Pr) × M0,n(P
s, d)

)
→ . . . .

Since a variety Y , which is covered by (q+1) affine open subsets, has the homotopy
type of a finite complex of dimension ≤ q +dim(Y ), from Proposition 3 we deduce
that

Hk
c

(
M∗

0,n(P
r, d)

) = 0, k ≤ (d + 1)(r + 1) + n − 4 − N.
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Thus, we have

Hk(M0,n(P
r, d)) ↪→ Hk

(
∂M0,n(P

r, d) ∪
⋃

1≤s<d

G(Ps,Pr) × M0,n(P
s, d)

)
.

As usual (see [2, Lemma 2.6], and [4, Lemma 4]), it follows that the map

Hk(M0,n(P
r, d)) −→

⊕

d1+d2=d,n1+n2=n

Hk(M0,n1+1(P
r, d1) ×Pr M0,n2+1(P

r, d2))

⊕
⊕

1≤s<d

Hk(G(Ps,Pr) × M0,n(P
s, d))

is injective too. By the vanishing of the odd cohomology of G(Ps,Pr) (see, for
instance, Proposition on p. 196 in [7]) and by assumption (3), the Künneth formula
yields

Hk(G(Ps,Pr) × M0,n(P
s, d)) = 0

for every 1 ≤ s < d. Therefore, we get the injective map:

Hk(M0,n(P
r, d)) −→

⊕

d1+d2=d,n1+n2=n

Hk(M0,n1+1(P
r, d1) ×Pr M0,n2+1(P

r, d2)).

Now, we can apply Lemma 7 and Remark 5 in [4] so that the claim follows easily
by induction on n from assumption (4), since if di = 0 then ni ≥ 2 (see [6, § 6.1]).

�	

4. Stable maps of degree 2

In this section we apply the results proved in Section 2 to calculate cohomology
groups of M0,n(P

r, 2) for small values of r.

Proposition 5. For every n ≥ 0:

i) H1(M0,n(P
r, 2)) = 0, 2 ≤ r ≤ 4;

ii) H3(M0,n(P
r, 2)) = 0, 2 ≤ r ≤ 3.

Proof. By the assumptions on r we have k ≤ 3(r + 1) + n − 4 − N; so we can
apply Theorem 4, because (3) holds by [4, Proposition 8], and (4) holds by (1) and
Theorem 1. This proves i) and ii). �	
Corollary 6. There is a complete description with generators and relations of
H2(M0,n(P

r, 2)), 2 ≤ r ≤ 4, n ≥ 0.

Proof. By Proposition 5, if d ≤ 4, then H1(M0,n(P
r, 2)) = 0. Hence the arguments

used to prove Proposition 14 in [4] apply verbatim so to yield

H2(M0,n(P
r, 2)) ∼= A3(r+1)+n−5(M0,n(P

r, d)) ⊗Q.

The thesis follows from this isomorphism, since generators and relations of
A(r+1)(d+1)+n−5(M0,n(P

r, d)) ⊗ Q are given in [12] for any n ≥ 0, r ≥ 2, and
d ≥ 0. �	
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Theorem 7. For every n ≥ 0, if k is odd then Hk(M0,n(P
2, 2)) = 0.

Proof. If k ≤ n + 4, then the thesis directly follows from Theorem 4, since all its
hypotheses are satisfied by (1), Theorem 1, and Theorem 10 in [4].

If k ≥ n + 6, we reduce to the previous case, since dimCM0,n(P
2, 2) = n + 5

and we can apply the Poincaré duality.
Now we are left with the case k = n + 5 = dimCM0,n(P

2, 2). If n = 0, just
recall (see [6, § 0.4]), the natural identification,

M0,0(P
2, 2) ∼= P5.

If, instead, n ≥ 1 we can invoke Proposition 3 and Remark 5 in [4] to obtain
the fibration

π : M0,n(P
2, 2) −→ P

2,

with fiber F and the Leray spectral sequence abutting at E2. Hence

Hn+3(M0,n(P
2, 2)) = Hn+3(F) ⊕ Hn+1(F) ⊕ Hn−1(F) (5)

Hn+5(M0,n(P
2, 2)) = Hn+5(F) ⊕ Hn+3(F) ⊕ Hn+1(F) (6)

Hn+7(M0,n(P
2, 2)) = Hn+7(F) ⊕ Hn+5(F) ⊕ Hn+3(F). (7)

On the other hand, by the previous cases, we have:

Hn+7(M0,n(P
2, 2)) = Hn+3(M0,n(P

2, 2)) = 0.

Hence, from (5) and (7) we deduce that Hn+5(F) = Hn+3(F) = Hn+1(F) = 0.
Now the thesis follows from (6). �	
Proposition 8. If both k and n are odd, then Hk(M0,n(P

3, 2)) = 0.

Proof. If k ≤ n + 4, then the thesis directly follows from Theorem 4, since all its
hypotheses are satisfied by (1), Theorem 1, and Theorem 10 in [4].

If k ≥ n +12, we reduce to the previous case, since dimCM0,n(P
3, 2) = n +8,

so we can apply the Poincaré duality.
Suppose now n + 4 < k < n + 12. By our assumption on n, we have n ≥ 1.

Thus, we can invoke Proposition 3, and Remark 5 in [4] to obtain the fibration

π : M0,n(P
3, 2) −→ P

3,

with fiber Z and the Leray spectral sequence abutting at E2. Hence

Hn+4(M0,n(P
3, 2)) = Hn+4(Z) ⊕ Hn+2(Z) ⊕ Hn(Z) ⊕ Hn−2(Z) (8)

Hn+6(M0,n(P
3, 2)) = Hn+6(Z) ⊕ Hn+4(Z) ⊕ Hn+2(Z) ⊕ Hn(Z) (9)

Hn+8(M0,n(P
3, 2)) = Hn+8(Z) ⊕ Hn+6(Z) ⊕ Hn+4(Z) ⊕ Hn+2(Z) (10)

Hn+10(M0,n(P
3, 2)) = Hn+10(Z) ⊕ Hn+8(Z) ⊕ Hn+6(Z) ⊕ Hn+4(Z) (11)

Hn+12(M0,n(P
3, 2)) = Hn+12(Z) ⊕ Hn+10(Z) ⊕ Hn+8(Z) ⊕ Hn+6(Z). (12)

On the other hand, by the previous cases, we have:

Hn+12(M0,n(P
3, 2)) = Hn+4(M0,n(P

3, 2)) = 0.

Hence, from (8) and (12) we deduce that Hn+10(Z) = Hn+8(Z) = Hn+6(Z) =
Hn+4(Z) = Hn+2(Z) = Hn(Z) = 0. Now the thesis follows from (9), (10),
and (11). �	
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