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ABSTRACT

We give an example of a C 3−ε-smooth quasiregular mapping in 3-space with nonempty branch set. Moreover,
we show that the branch set of an arbitrary quasiregular mapping in n-space has Hausdorff dimension quantitatively
bounded away from n. By using the second result, we establish a new, qualitatively sharp relation between smoothness
and branching.

1. Introduction

In this paper, we prove three theorems about quasiregular mappings in space.
First we show, contrary to some expectations, that there exist continuously differ-
entiable quasiregular mappings in 3-space with nonempty branch set. Then we
show that the Hausdorff dimension of the branch set of a quasiregular mapping
in a domain in Rn is bounded away from n by a constant that only depends on
n and the dilatation of the mapping. Moreover, it turns out that these two prob-
lems are related, and we use the Hausdorff dimension estimate to provide a new
relation between the smoothness of the mapping and its branching; the example
shows that this relation is qualitatively sharp in dimension three. Precise formula-
tions of the results will be given momentarily. First we require some notation and
terminology.

Throughout this paper, G denotes a domain in Rn, n ≥ 2. A continuous and
nonconstant mapping f : G → Rn in the local Sobolev space W1,n

loc(G; Rn) is called
quasiregular, or K-quasiregular, K ≥ 1, if

| f ′(x)|n ≤ K J f (x)(1.1)

for almost every x ∈ G. Here f ′(x) is the formal differential matrix of f and J f (x)
its Jacobian determinant. According to a deep theorem of Reshetnyak [13], quasi-
regular mappings are sense-preserving, discrete, and open. In particular, every quasi-
regular mapping is locally invertible outside a closed set of topological dimension
at most n−2; the set where a quasiregular mapping f does not determine a local
homeomorphism is called the branch set, and denoted by Bf . We refer to the mono-
graphs [14], [15], [5] for the basic theory of quasiregular mappings.
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If n = 2 and K = 1 in the preceding inequality (1.1), we recover, by Weyl’s
lemma, the (nonconstant) holomorphic functions of one complex variable. In par-
ticular, quasiregular mappings in R2 can be smooth without being locally invertible.
In contrast, it has been known for some time that every quasiregular mapping
f : G → Rn that is C 3-smooth if n = 3, and C 2-smooth if n ≥ 4, must be lo-
cally invertible. This result follows from a sharp Sard-type theorem due to Morse
[4, 3.4.3], coupled with some basic properties of quasiregular mappings. See [15,
p. 12] for this argument.

It has been a well-known open problem whether the aforementioned relation
between smoothness and local invertibility, coming from the Morse-Sard theorem,
can be improved upon for quasiregular mappings (see, e.g., [19]). The expected
answer seemed to have been that the local invertibility follows from C 1-smoothness;
this was explicitly conjectured at least in [5, p. 419]. We resolve the conjecture in
the negative by constructing an example as in the ensuing theorem.

We say that a mapping g : G → Rm is C k-smooth, where k ∈ R, k ≥ 1, if g
is [k]-times continuously differentiable and if for every compact set F ⊆ G there
exists a constant C > 0 such that

|∂αg(x) − ∂αg( y)| ≤ C|x − y|k−[k],(1.2)

whenever x, y ∈ F and α is a multi-index with |α| ≤ [k].
1.1. Theorem. — For every ε > 0 and for every integer d ≥ 2 there exists a C 3−ε-

smooth quasiregular mapping f : R3 → R3 of degree d which has a branch set Bf homeomor-

phic to R.

In fact, the mapping f in Theorem 1.1 is quasiconformally conjugate to the
winding map (r, θ, z) �→ (r, d · θ, z) in cylindrical coordinates.

By the earlier discussion, the smoothness of a map as in Theorem 1.1 cannot
be improved to C 3. The following theorem implies a yet sharper result; namely,
that the dilatation K of maps as in Theorem 1.1 necessarily tends to infinity as
ε tends to zero.

1.2. Theorem. — Given n ≥ 3 and K ≥ 1, there exists δ = δ(n, K) > 0 such that

every C n/(n−2)−δ-smooth K-quasiregular mapping f : G → Rn is locally invertible.

Theorem 1.2 in turn will be obtained with the aid of a size estimate for
the branch set of a quasiregular mapping.

1.3. Theorem. — Given n ≥ 3 and K ≥ 1, there exists λ = λ(n, K) > 0 such that

the branch set of every K-quasiregular mapping f : G → Rn has Hausdorff dimension at most

n − λ.
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This theorem solves another well-known open problem in the theory of quasi-
regular mappings; see [15, p. 74]. Earlier, Sarvas [17] had shown that for a given
K-quasiregular mapping f : G → Rn, n ≥ 3, and a compact set F ⊆ G, the
Hausdorff dimension of Bf ∩ F has an upper bound which is strictly less than n,
and which depends only on n, K, and the maximal local index of f on F (see
Proposition 3.1 below). We prove Theorem 1.3 by using Sarvas’s result together
with estimates due to Rickman and Srebro [16] about the distribution of points
where the local index of a quasiregular mapping is high in comparison to n and
the dilatation K.

The conclusion of Theorem 1.3 is true for n = 2 as well, but this is ob-
vious from the fact that every quasiregular map in dimension two is topologi-
cally equivalent to a holomorphic function. On the other hand, the branch set of
a quasiregular map in dimensions n ≥ 3 can have Hausdorff dimension arbitrarily
close to n. We do not know a numerical estimate for the number λ = λ(n, K) in
Theorem 1.3 (cf. Remark 3.5).

We believe that Theorem 1.2 is sharp in all dimensions n ≥ 4, in the sense
that there exist C n/(n−2)−ε-smooth quasiregular mappings with nonempty branch set
in Rn for every n ≥ 4 and ε > 0.1

Our construction uses the fact that the dimension is equal to three in two
crucial respects. We will comment on this in Remark 2.1 below.

Finally, we point out that if one assumes that f is a C ∞-smooth quasiregular
mapping in a domain in Rn, n ≥ 3, then the local invertibility of f can be proved
without the use of the Morse-Sard theorem. See [1, pp. 302–303] or [5, pp. 419–
422]. But these arguments, in turn, rely on relatively deep analytic properties of
quasiregular mappings that are not needed in the proof in [15, p. 12].

We thank Pietro Poggi-Corradini and Seppo Rickman for listening to our
arguments and for helpful comments. Part of this research was done when the
authors were visiting the University of Jyväskylä in the spring of 2001. We gladly
acknowledge the hospitality of the people at the local Department of Mathematics.
We also thank the referees for their comments.

2. The example

In this section, we construct an example as promised in Theorem 1.1. In the
following we will denote by C various positive constants whose value may change
from line to line.

1 This assertion has recently been verified for n = 4 by Kaufman, Tyson, and Wu [6].
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2.1. Reduction. — Let 1/3 < α < 1/2. Suppose that there exists a quasicon-
formal self-homeomorphism g : R3 → R3 together with a constant C ≥ 1 such
that

|x − y|α ≤ C|g(x) − g( y)|,(2.1)

whenever x, y ∈ R ⊆ R3 with |x−y| ≤ 1. Then, by a result of Kiikka [7], there also
exists a quasiconformal self-homeomorphism ĝ : R3 → R3 which is a C ∞-smooth
diffeomorphism when restricted to R3 \R, and satisfies ĝ|R = g|R. Let h = ĝ−1 and
define Γ := g(R). Then h : R3 → R3 is quasiconformal, h|R3 \ Γ is C ∞-smooth,
and

|h(x) − h( y)| ≤ C|x − y|1/α,(2.2)

whenever x ∈ Γ and y ∈ Γ is near x, where C ≥ 1 is a constant independent of
the points x and y. From this information it is standard to deduce that

|h(x) − h( y)| ≤ C|x − y|3−ε, ε = 3 − 1/α,(2.3)

whenever x ∈ Γ and y ∈ R3 is near x, the constant C ≥ 1 being independent of the
points. It follows from the nature of the smoothening procedure in [7, Theorem 4]
that h satisfies

|∂βh(z)| ≤ C
dist(h(z), R)

dist(z,Γ)|β| ,(2.4)

whenever z ∈ R3 \ Γ and β is multiindex with |β| > 0. Here C > 0 is a constant
that depends on |β|, but not on z. Inequalities (2.3) and (2.4) imply that h is
C 3−ε-smooth in R3.

Next, let d ≥ 2 be an integer and let w : R3 → R3 be the winding map,
w(r, θ, z) = (r, d · θ, z) in cylindrical coordinates in R3. Then w is a quasiregular
mapping with the z-axis as its branch set [15, p. 13]. By postcomposing the pre-
ceding map h with a rotation, we can assume that the image of Γ under h is the
z-axis. Then

f = w ◦ h

is a quasiregular mapping. From (2.3) and from the properties of w it is easy to
see that, akin to (2.3), we have that

| f (x) − f ( y)| ≤ C|x − y|3−ε, ε = 3 − 1/α,(2.5)

whenever x ∈ Γ and y ∈ R3 is near x, and that f : R3 → R3 is a C 3−ε-smooth
quasiregular mapping of degree d with Bf = Γ.

We conclude that for the proof of Theorem 1.1 it suffices to construct
a quasiconformal mapping g : R3 → R3 as in (2.1).
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2.2. Notation. — We let Q k = [0, 1]k denote the closed unit cube in Rk , and
Bk the closed unit ball in Rk. For s > 0, we write Q k(s) and Bk(s) for the images
of Q k and Bk under the map x �→ sx, x ∈ Rk. The boundary of the square Q 2 is
denoted by S1

∞, and the boundary of B2 by S1. Similarly, Sk
∞(s) := ∂Q k+1(s) and

Sk(s) := ∂Bk+1(s). The standard basis of Rk is {ei : i = 1, ..., k}.
The interior of a set E is denoted by int(E), the topology being understood

from the context. A similarity is a map σ between subsets of Rk such that λσ

is an isometry for some positive number λ. Two sets are said to be similar if
there is a similarity between them. A homeomorphism ϕ between subsets of Rk is
bi-Lipschitz if there exists a constant L ≥ 1 such that

L−1|a − b| ≤ |ϕ(a) − ϕ(b)| ≤ L|a − b|
for every pair of points a and b in the domain. All subsets of Rk are assumed to
be equipped with the metric inherited from Rk.

2.3. Pipes and elbows. — We begin by describing five geometric surfaces, one
pipe, P, and four elbows, E1, ..., E4, in R3. All these surfaces are (bi-Lipschitz)
homeomorphic to the cylindrical surface

C = S1 × [0, 1] .
We define the pipe P to be the boundary of the unit cube Q 3 with the

interiors of the faces on {x1 = 1} and {x1 = 0} removed. To match the notation
to follow, we write P̂ for the filled-in pipe, which here simply means the unit cube;
thus P̂ = Q 3.

To describe the elbows, we first define the filled-in elbow Ê1 to be the union
of Q 3 and its translates Q 3 + e1 and Q 3 + e2. The corresponding elbow E1 is the
boundary of Ê1 with the interiors of the faces on {x1 = 2} and {x2 = 2} removed.
The other filled-in elbows Ê2, Ê3, and Ê4 are obtained similarly by considering
Q 3 + e3, Q 3 − e2, and Q 3 − e3, respectively, together with Q 3 and Q 3 + e1. To
obtain the corresponding elbows E2, E3, and E4, we consider the boundaries of
the filled-in elbows with pertinent face interiors removed. For example, E2 is equal
to the closure of the set

∂
(
Q 3 ∪ (

Q 3 + e1

) ∪ (
Q 3 + e3

)) \ ({x1 = 2} ∪ {x3 = 2}) .

Each of the filled-in objects P̂, Êi is (bi-Lipschitz) homeomorphic to the filled-in

cylinder

Ĉ = B2 × [0, 1],
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while each of the elbows Ei, as well as the pipe P, is (bi-Lipschitz) homeomorphic
to C. Moreover, each of these sets has natural symmetry. For the pipe P the
symmetry is determined by the plane {x1 = 1/2}, for the elbow E1 it is determined
by the plane {x1 = x2}, and so on. By reflecting on the symmetry planes, we obtain
isometric involutions on each of these pipes and elbows. Finally, on C and Ĉ, too,
we have a natural involution determined by the cross-section B2 × {1/2}.

The two boundary components of each of the surfaces P and Ei are iso-
metric to S1

∞. In the following, we abuse notation and call all these boundary
components S1

∞. Similarly, we use the same notation for the isometric images of
Q 2(s) and S1

∞(s). The specifics are clear from the context.
We understand that each boundary component S1

∞ comes with a natural
positive orientation and with four distinguished corner points. More precisely, we
mark the points

(1, 1, 1), (1, 0, 1), (1, 0, 0), (1, 1, 0)

in this order in the boundary component S1
∞ of P that is contained in {x1 = 1}.

By translating the points by e1, and by applying the fixed involutions, we have
four marked and ordered points in every boundary component S1

∞.

2.4. First maps. — Fix bi-Lipschitz maps

ϕP : C → P, ϕEi : C → Ei, i = 1, 2, 3, 4,(2.6)

respecting the given involutions, and such that, by using the complex notation for
the points on S1, the points

1,
√−1,−1,−√−1

(in this order) are mapped to the distinguished ordered corner points. We further
require that these bi-Lipschitz maps extend to bi-Lipschitz maps

ϕ̂P : ∂Ĉ → ∂P̂, ϕ̂Ei : ∂̂C → ∂Êi, i = 1, 2, 3, 4,(2.7)

respecting the involutions, and that the restrictions B2 → Q 2 to the “end pieces”
are in each case radial, and identical (modulo the obvious translations).

A further requirement for the maps ϕ̂P and ϕ̂Ei will be given below before
(2.9).

2.5. Subdivisions of cubes and broken line segments. — Fix an odd integer N 
 1,
and subdivide the filled-in pipe P̂ = Q 3 into N3 essentially disjoint congruent
subcubes; thus the side length of each of these subcubes is

l := 1/N.
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Because N is odd, the point (1, 1/2, 1/2) is the center of a face of a cube in the
subdivision, and similarly for (0, 1/2, 1/2). Between these two points, we choose
a polygonal arc Γ inside P̂ satisfying properties that are prescribed momentarily.
First of all, we require that Γ can be deformed to the line segment connecting
the points (1, 1/2, 1/2) and (0, 1/2, 1/2) through an isotopy of P̂ that keeps the
boundary ∂P̂ pointwise fixed. (Thus, Γ does not form a knot inside P̂.) The arc Γ

determines an order on the collection of the subcubes it meets; the cube that has
a face with center (1, 1/2, 1/2) is declared to be the first cube. We refer to this
order in the arguments to follow. Now we assume that Γ satisfies the following
eight properties with respect to the cubes in the subdivision:

(i) Γ visits at least 10−6N3 of the cubes in the subdivision,
(ii) Γ enters each cube in the subdivision at the center of a face,

(iii) the portion of Γ in each cube in the subdivision consists of either one
straight line segment or two straight line segments concatenated at the
center of the cube,

(iv) cubes in the subdivision meeting Γ only meet each other if they are
consecutive in the order determined by Γ (in which case they have
a common face),

(v) the portion of Γ in the first two and the last two cubes in the subdi-
vision is a straight line segment,

(vi) the only cubes in the subdivision that meet both Γ and the boundary
of P̂ are the first and the last cube,

(vii) Γ is symmetric with respect to the plane {x1 = 1/2}.
The union of the cubes in the subdivision that meet Γ is denoted by WP;

this set is homeomorphic to Q 3. We denote by SP the boundary of WP minus
the interiors of the two faces that meet ∂P̂. Then SP is homeomorphic to C. As
the last property of Γ we require:

(viii) SP can be expressed as a union of sets each similar either to the pipe
P or to an elbow Ei.

Let us call these sets the pipes and the elbows associated with SP. They are ordered
in a natural way along Γ. Note that the first and the last set in this union is
a pipe by condition (v). Only the consecutive pipes and elbows meet, and they
meet on a set similar to S1

∞ in such a way that the marked points correspond
to each other. This correspondence together with the pertinent portion of Γ also
determines which model of the four elbows is used as a successor for a given
elbow, or pipe, in the ordered collection SP. We denote by UP the surface that is
the boundary of the region int(P̂) \ WP in R3. Observe that UP is homeomorphic
to the 2-torus.
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Next we perform an analogous construction for each of the filled-in elbows.
Consider first Ê1. It consists of three closed essentially disjoint 3-cubes. Subdivide
Ê1 into 3N3 essentially disjoint congruent subcubes of side length l, and choose
a polygonal arc from (2, 1/2, 1/2) to (1/2, 2, 1/2) with properties as in (i)–(viii)
above with obvious notational alterations; the symmetry requirement is with respect
to the symmetry plane {x1 = x2}. We arrive at the collection of pipes and elbows

associated with the set SE1 , where SE1 is the boundary of a (topological) 3-ball WE1

(which is the union of the cubes that meet the constructed arc) minus the interior
of the two faces that meet ∂Ê1. Denote by UE1 the 2-surface that is the boundary
of the region int(Ê1) \ WE1 in R3. Then UE1 is homeomorphic to the 2-torus.

The same construction can be done for each of the elbows and we obtain
sets WEi , SEi , and UEi , for i = 1, 2, 3, 4. (Obviously, it suffices to do the construc-
tion once, for Ê1 say; the others are obtained by applying appropriate reflections.)
Each WEi is homeomorphic to Q 3, SEi is homeomorphic to C, and UEi is the
boundary of the region int(Êi) \ WEi in R3 and homeomorphic to the 2-torus.

Next, we stipulate that the total number of pipes and elbows that make up
the sets SP and SEi is, in each case, a fixed number M. This can be done if the
number N is large enough. We observe that

1
3

10−6N3 ≤ M ≤ N3(2.8)

by condition (i).
The preceding understood, we further stipulate that the (radial) maps ϕ̂P and

ϕ̂Ei in (2.7) map the 2-disk B2(l ′) concentric with B2 ⊆ ∂Ĉ to the square Q 2(l)
concentric with Q 2 ⊆ ∂P̂ or Q 2 ⊆ ∂Êi, as the case might be, where l = 1/N and

N−3 ≤ l ′ = 1
M

≤ 3 · 106N−3.(2.9)

Recall that these maps respect the presiding symmetry, so that the requirements
are well-defined.

2.6. Second maps. — Consider the topological 2-torus T0 that is the boundary
of the region int(Ĉ) \ (B2(l ′) × [0, 1]). We describe bi-Lipschitz maps

ψP : T0 → UP, ψEi : T0 → UEi ,(2.10)

consisting of gluings of similarity copies of the maps ϕP and ϕEi . We describe the
map ψP, the others being analogous. The inner part S1(l ′) × [0, 1] of the torus
T0 is the union of M cylinders, each similar to S1(l ′) × [0, l ′]. The cylinders are
naturally ordered; only the consecutive cylinders meet, and they meet on their
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end circles. Each cylinder can be mapped by a bi-Lipschitz map either to a pipe
or an elbow, associated with SP, and up to a similarity the map is one of the
maps in (2.6). The pipes and elbows associated with SP make up the inner part

of UP. The stipulations on the maps ϕP and ϕEi , especially the fact that they
respect the distinguished corner points, guarantee that they can be pieced together
to make a bi-Lipschitz map ψP from the inner part of T0 to the inner part of UP.
Moreover, by condition (vii) we can ascertain that ψP respects the given symmetry
on P. The map ψP can be extended as a radial map on the part T0 ∩ (B2×{0, 1}),
and to the rest of T0 again by the aid of the map ϕP. Completely analogously,
the maps ϕEi can be used to find maps ψEi from T0 to the topological 2-torus
UEi , i = 1, 2, 3, 4. We reiterate that the maps ψP and ψEi each respect the given
symmetries.

Denote by Ĉ0 the solid torus bounded by T0, and similarly let P̂0 and Ê0
i

denote the solid tori bounded by UP and UEi , respectively. Recall that Γ was
chosen unknotted inside P̂. We claim that each of the maps ψP and ψEi can be
extended as bi-Lipschitz maps

ΨP : Ĉ0 → P̂0, ΨEi : Ĉ0 → Ê0
i .(2.11)

To see this, we only need to ascertain that the maps ψP, ψEi map each of the
paths p×[0, 1], p ∈ S1(l ′), to a path with winding number zero on the topological
annulus formed by the pipes and the elbows associated with SP or SEi as the case
may be. But this is clearly the case because of the stipulated symmetry in each
of the maps ψP and ψEi , as remarked in the previous paragraph.

2.7. Final map. — We are now able to define the map g : R3 → R3 as in
(2.1). The map will be defined first in the cylinder A = B2 × [0, 1] ⊆ R3. The
image of this cylinder will be the closed cube Q 3.

To this end, consider first

A1 = A \ (int(B2(l ′)) × [0, 1]),

where l ′ is defined in (2.9), and B1 = P̂0. Now with the earlier notation, A1 = Ĉ0,
and we define g1 : A1 → B1 to be the map ΨP as in (2.11). Next, let

A2 = A \ (int(B2(l ′2)) × [0, 1]) .

The closure of the region A2 \ A1 is a union of solid tori, each similar to Ĉ0.
Using the maps in (2.7), the maps in (2.10), and ultimately the maps ΨP, ΨEi

in (2.11), it is clear how to define the extension g2 : A2 → B2 of g1, where B2 is
the union of the solid torus P̂0 and all the solid tori that are similarity images
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of P̂0 and Ê0
i corresponding to the pipes and elbows that are associated with SP.

By exploiting the self-similarity of the situation, it is obvious how to continue to
define the mapping g. At each stage we have a map g j : Aj → Bj , where

Aj = A \ (int(B2(l ′ j
)) × [0, 1]) .

extending g j−1. Each g j is quasiconformal with a fixed dilatation because in the
construction we only use finitely many bi-Lipschitz maps and their compositions
by similarities.

In conclusion, we obtain a quasiconformal map that is defined in A \ R.
Such a map extends by continuity to a quasiconformal map g of all of A by the
well-known removability theorem [20, Theorem 35.1, p. 118]. By construction, the
image of A under g is the unit cube Q 3. Note that on the ends {0, 1}×B2 of A,
g is a simple radial mapping, respecting the natural involutions on A and Q 3.
Consequently, by repeating the construction on translates of A, we get a quasi-
conformal map g : R × B2 → R × Q 2 which is equivariant under the translation
x �→ x+e1, x ∈ R3. It is clear from the construction that g can further be extended
to a quasiconformal self-homeomorphism g : R3 → R3.

2.8. Expansion check. — It remains to analyze the behavior of g on the real
axis. To this end, let x, y ∈ R ∩ A. By standard distortion theorems for quasicon-
formal maps [20, pp. 63–65], we may assume that |x − y| = l ′ j for some j ≥ 1. It
follows from the construction that |g(x)− g( y)| is comparable to l j . More precisely,
also by observing the inequalities in (2.8) and (2.9), we compute

|g(x) − g( y)| ≥ c j l j = c jN−j ≥ (3 · 106/N3) jα

≥ (1/M) jα ≥ l ′ jα = |x − y|α,
where c > 0 is independent of x and y, 1/3 < α < 1/2 is a given number, and N
is chosen large enough depending only on c and α.

The proof of Theorem 1.1 is thereby complete.

2.1. Remark. — (a) The construction in this section can be modified to obtain
a quasiregular map from the 3-sphere onto itself with properties as in Theorem 1.1
(the branch set will be homeomorphic to a circle in this case).

(b) The dimensional restriction n = 3 was used in two respects that we do
not know how to overcome in higher dimensions. First, it is easier to construct
quasiconformal mappings g with expanding behavior as in (2.1) on a line, than
on a codimension two plane in Rn, n ≥ 4, which is what an analogous higher
dimensional construction would require. Second, in dimension n = 3 we do not
have to take care of the smoothness of the map g as in (2.1) outside R, for this
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is provided by Kiikka [7] (who ultimately relies on deep works of Moise [11] and
Munkres [12]). Such general approximation is not available in dimensions n ≥ 5 by
results of Sullivan [18], and is an open problem in dimension n = 4 (cf. Donaldson
and Sullivan [3]).

However, there is no obvious obstruction to the existence of an example as
in Theorem 1.1 in all dimensions (within the limits imposed by Theorem 1.2).
It is even conceivable that such an example can be constructed along the lines
presented in this section; but in order to do so, the two difficulties explained in
the previous paragraph need to be overcome. Maps with expanding behavior on
hyperplanes were constructed by David and Toro in [2], and it is possible that
the techniques in their paper help here.

3. Proof of Theorem 1.3

In this section, we prove Theorem 1.3. Thus, let f : G → Rn, n ≥ 3, be a quasireg-
ular mapping. Keeping with the notation in [15] and [16], we denote by

KI = KI( f ) , KO = KO( f ) , and K = K( f )

the inner, outer, and maximal dilatations of f (see [15, p. 11] for the definitions). We
denote by B(x, r) the open ball in Rn with center x and radius r > 0. The closed
ball is B̄(x, r).

Next, we denote by i(x, f ) the local index of f at x ∈ G. It can be defined
by

i(x, f ) = lim
r→0

sup
y∈B( f (x),r)

#{ f −1( y) ∩ U(x, f , r)},

where U( f , x, r) denotes the x-component of f −1(B( f (x), r)) for r > 0 small
enough. The function x �→ i(x, f ) is upper semicontinuous. See [15, pp. 18–19]
for more information.

The following result was proved by Sarvas [17] (see also [9]).

3.1. Proposition. — If F ⊆ G is compact, then the Hausdorff dimension of Bf ∩ F
satisfies

dimH(Bf ∩ F) ≤ c = c(n, K, maxx∈F i(x, f )) < n.

We next formulate the main proposition of this section.

3.2. Proposition. — Let

κ := κ(n, K) = KI( f )(n + 1)n−1 + 2.(3.1)
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There exists α = α(n, K) > 0 such that the set

E = {x ∈ G : i(x, f ) ≥ κ}
is α-porous, i.e.,

lim inf
r→0

r−1 sup{ρ : B(z, ρ) ⊆ B(x, r) \ E} ≥ α(3.2)

for every x ∈ E.

It is well-known that α-porous sets in Rn have Hausdorff dimension bounded
away from n, with a bound depending only on n and α (see [10, p. 156]). Since
the set {x ∈ G : i(x, f ) < κ} ⊆ G is open by the upper semicontinuity of i(x, f ), it
follows from Propositions 3.1 and 3.2 that the Hausdorff dimension of

Bf = {x ∈ G : 2 ≤ i(x, f ) < κ} ∪ {x ∈ G : i(x, f ) ≥ κ}
does not exceed a number λ = λ(n, K) < n as asserted in Theorem 1.3. Therefore,
it suffices to prove Proposition 3.2.

This proposition is essentially contained in the proof of the main theorem
in [16] by Rickman and Srebro. We only need to keep a more careful track of
the dependence of the various parameters appearing in their proof. We begin by
quoting [16, Theorem 1.1]:

3.3. Proposition. — Fix x0 ∈ G, and write

µ =
(

i(x0, f )

KI

)1/(n−1)

.(3.3)

Then there exist t0 > 0 and p0 ∈ N such that the following holds: if

0 < t ≤ t0, 1 ≤ ν < µ, p0 ≤ p ≤ m ≤ pν,(3.4)

and if x1, ..., xm ∈ B̄(x0, t) are points such that |x0 − xm| = t and that |xj−1 − xj| ≤ t/p for

each j = 1, ..., m, then

min{i(x1, f ), ..., i(xm, f )} < i(x0, f ).

As formulated, in the above result the integer p0 depends (at least) on n, K,
and the local index i(x0, f ). We claim that p0 can be chosen to depend only on n
and K, provided both that the local index i(x0, f ) is sufficiently large and that we
only consider values 1 ≤ ν ≤ n + 1 in (3.4). We also make a little adjustment to
the condition |x0 − xm| = t. More precisely, we claim the following proposition:
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3.4. Proposition. — Let x0 ∈ G and assume that i(x0, f ) ≥ κ, where κ is given in

(3.1). Then there exists t0 > 0 and p0 = p0(n, K) ∈ N such that the following holds: if

0 < t ≤ t0, 1 ≤ ν ≤ n + 1, p0 ≤ p ≤ m ≤ pν,

and if x1, ..., xm ∈ B̄(x0, t) are points such that |x0 − xm| ≥ t/2 and that |xj−1 − xj | ≤ t/p
for each j = 1, ..., m, then

min{i(x1, f ), ..., i(xm, f )} < i(x0, f ).(3.5)

Proof. — We adhere to the notation and proof in [16, 3.1]. In particular,
we denote k = i(x0, f ) and assume x0 = 0 = f (x0). We select t0 > 0 as in the first
paragraph of the proof in [16, 3.1]. The choice of t0 is simply such that the ball
B(0, t0) is reasonably well inside a normal neighborhood of 0. In particular, we
have that i(x, f ) ≤ k for every x ∈ B(0, t0). We let µ be as in (3.3). (Note that
the latter notation is used but not explained in [16].)

Now fix numbers 0 < t ≤ t0, 1 ≤ ν ≤ n + 1, and p0 ≤ p ≤ m ≤ pν, and
assume that there are points x1, ..., xm ∈ B̄(0, t) with

|x0 − xm| ≥ t/2, |xj−1 − xj| ≤ t/p, i(xj, f ) = k,

for each j = 1, ..., m. We will show that upon choosing p0 large enough, but
depending only on n and K, these stipulations lead to a contradiction.

In [16, (3.3)], the authors derive the estimate

| f (xm)| ≤ ρ0C∗2µpν−µ,(3.6)

where C∗ ≥ 1 depends only on n and K, and ρ0 > 0 is a number depending on
f and x0. On the other hand, in [16], a lower estimate

an ≤ KOkωn−1

(
log(ρ0/s)

)1−n
(3.7)

for s = | f (xm)| is derived next, where ωn−1 and an are positive dimensional con-
stants. We note here that our an is slightly smaller than the one in [16] due to the
assumption |x0 − xm| ≥ t/2 in place of |x0 − xm| = t in [16]; the dimensional lower
bound in our case follows from standard Teichmüller estimates as cited in [16].

By combining (3.6) and (3.7), we can cancel ρ0 to obtain

e−bk1/(n−1) ≤ C∗2µpν−µ ≤ Mk1/(n−1)

pn+1−µ,(3.8)

where

b =
(

KO ωn−1

an

)1/(n−1)

, M = C∗2(KI)
1/(1−n)

,(3.9)
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both depending only on n and K. The choice k ≥ κ guarantees that

n + 1 − µ

k1/(n−1)
≤ n + 1

(KI(n + 1)(n−1) + 2)1/(n−1)
− K1/(1−n)

I = −c < 0,(3.10)

and hence (3.8) implies

pc ≤ eb M .(3.11)

In conclusion, by (3.9) and (3.10), we find that a judicious choice of p0, depending
only on n and K, would lead to a contradiction with (3.11). Therefore, (3.5) holds
and the proof of Proposition 3.4 is complete. ��

3.5. Remark. — An explicit estimate for the number p0 in Proposition 3.4 can
be derived from the above proof and from [15, III 4.5]. Consequently, this estimate
carries over to an explicit estimate for the porosity constant in Proposition 3.2. In
contrast, no such quantitative estimate is known for the constant in Proposition 3.1.
The proofs in [17] and [9] are indirect normal family arguments.

Proof of Proposition 3.2. — Let x0 ∈ G be a point such that i(x0, f ) = k ≥ κ,
and let t0 > 0 and p0 ∈ N be the numbers provided by Proposition 3.3. Fix
0 < t ≤ t0 and consider the n-cube Q t of side length

l = l(Q t) = 2t√
n

centered at x0. Then subdivide Q t dyadically into 2hn essentially disjoint cubes,
where h = h(n, K) is the smallest integer satisfying

2h ≥ max{4n+1, 4p0}.(3.12)

Then set p = 2h/4, and observe that

p0 ≤ p ≤ 2hn ≤ pn+1.

It therefore follows from Proposition 3.4 that if x1, ..., xm, m = 2hn, are distinct
points in Q t with |x0 − xm| ≥ t/2 and |xj−1 − xj | ≤ t/p for j = 1, ..., m, then for at
least one point xj we have that i(xj, f ) < k. This easily implies that there must be
at least one cube of side length

2−hl = 2−h 2t√
n

in the above dyadic subdivision of Q t such that i(x, f ) < k for every x in the
interior of the cube. To argue more precisely, suppose the contrary. Then we can
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find a sequence of points x1, ..., xm, one from the interior of each cube in the
subdivision, such that i(xj, f ) = k for j = 1, ..., m. Obviously, we can choose xm

such that |x0 − xm| ≥ t/2, and that consecutive points lie in adjacent cubes; the
latter implies that

|xj−1 − xj| ≤ 2
√

n2−hl = 4 · 2−ht = t/p,

and we have a contradiction with the preceding remarks.
The proof of Proposition 3.2, and thereby that of Theorem 1.3, is complete.

��

3.6. Remark. — The proof of Theorem 1.3, especially the proofs of Proposi-
tions 3.4 and 3.2, imply that the set E = {x ∈ G : i(x, f ) ≥ κ} is porous along any
smooth d-dimensional surface, 1 ≤ d ≤ n in Rn. By choosing d = n − 1 and using
[8, Theorem 3.1], we obtain that the Hausdorff dimension of Bf on every hyper-
surface is quantitatively bounded away from n − 1. This result merits a separate
formulation.

3.7. Theorem. — Given n ≥ 3 and K ≥ 1, there exists λ′ = λ′(n, K) > 0 such that

for every K-quasiregular mapping f : G → Rn and for every smooth hypersurface H in Rn,

the Hausdorff dimension of Bf ∩ H is at most (n − 1) − λ′.

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. Recall that G is a domain in Rn,
n ≥ 2.

The following lemma surely appears somewhere in the literature, but rather
than searching for a reference, we provide the straightforward proof.

4.1. Lemma. — Suppose that u : G → R is a C k+α-smooth function, where k ∈ {1, 2}
and 0 < α < 1. Let Nu := {x ∈ G : ∇u(x) = 0}. Then for every compact set F ⊆ G there

exists a constant C > 0 such that

|u(x) − u( y)| ≤ C|x − y|k+α,(4.1)

whenever x, y ∈ F ∩ Nu.

Proof. — Fix δ > 0 small enough so that the open δ-neighborhood Fδ of
F has compact closure in G. It is enough to establish (4.1) under the additional
assumption that |x − y| ≤ δ. Thus, let x, y ∈ F ∩ Nu with |x − y| ≤ δ be given, and
define xt := x + t( y − x) for t ∈ [0, 1]. Then xt ∈ Fδ for all t ∈ [0, 1].
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Assume first that k = 1. Then u is C 1+α-smooth, and hence there exists
a constant C > 0 such that

|∇u(a) − ∇u(b)| ≤ C|a − b|α,
whenever a, b ∈ Fδ. Therefore,

|∇u(xt)| = |∇u(xt) − ∇u(x)| ≤ C|x − y|α
for each t, and we conclude that

|u(x) − u( y)| =
∣∣
∣∣

∫ 1

0
∇u(xt) · ( y − x) dt

∣∣
∣∣ ≤ C|x − y|1+α .

Now assume that k = 2. We let H = D(∇u) be the Hessian matrix of u.
Since u is C 2+α-smooth, there exists a constant C > 0 such that

|H(a) − H(b)| ≤ C|a − b|α,
whenever a, b ∈ Fδ. Thus, the equation

∫ 1

0
H(xt)( y − x) dt = ∇u( y) − ∇u(x) = 0 ,

implies that

|H(x)( y − x)| =
∣∣
∣∣

∫ 1

0

(
H(xt) − H(x)

)
( y − x) dt

∣∣
∣∣

≤ |x − y|
∫ 1

0
|H(xt) − H(x)| dt

≤ C|x − y|1+α.

Next, define h(t) = u(xt) − u(x) for t ∈ [0, 1]. Then

h(0) = 0 , h′(0) = ∇u(x) · ( y − x) = 0 ,

and

h′′(t) = H(xt)( y − x) · ( y − x)

for each t. The preceding understood, we apply Taylor’s theorem with Lagrange
remainder to find θ ∈ (0, 1) such that

|u( y) − u(x)| = |h(1)| = |h′′(θ)/2|
≤ |H(xθ) − H(x)|| y − x|2 + |H(x)( y − x) · ( y − x)|
≤ C|x − y|2+α.

The lemma follows. ��
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4.2. Corollary. — Suppose that f : G → Rn is a C k+α-smooth quasiregular mapping,

where k ∈ {1, 2} and 0 < α < 1. Then for every compact set F ⊆ G there exists a constant

C > 0 such that

| f (x) − f ( y)| ≤ C|x − y|k+α,(4.2)

whenever x, y ∈ F ∩ Bf .

Proof. — Since f = ( f1, ..., fn) is at least C 1-smooth, it follows from the
definition in (1.1) that ∇fi(x) = 0 for every x ∈ Bf and for every i = 1, ..., n. By
applying Lemma 4.1 to each of the coordinate functions fi, we obtain (4.2) as
required. ��

Proof of Theorem 1.2. — Let n ≥ 3 and K ≥ 1, and suppose that f : G → Rn

is K-quasiregular and C n/(n−2)−δ-smooth. We assume that 0 < δ < 1 if n = 3, and
that 0 < δ < 2/(n − 2) if n ≥ 4. Then f is C 2+α-smooth if n = 3, where α = 1 − δ,
and f is C 1+α-smooth if n ≥ 4, where α = 2/(n − 2) − δ.

Assuming now that Bf �= ∅, Corollary 4.2 applies, and for every compact
subset F ⊆ G there exists a constant C > 0 such that

| f (x) − f ( y)| ≤ C|x − y|n/(n−2)−δ,(4.3)

whenever x, y ∈ F ∩ Bf . Together with Theorem 1.3, inequality (4.3) gives the
Hausdorff dimension estimate

dimH( f (Bf )) ≤ dimH(Bf )

n/(n − 2) − δ
≤ n − λ

n/(n − 2) − δ
,

where λ = λ(n, K) > 0. In particular, if δ = δ(n, K) > 0 is small enough, then

dimH( f (Bf )) < n − 2 .

But this contradicts the fact that the image of the nonempty branch set of every
discrete and open mapping has Hausdorff dimension at least n−2 (see [15, III.5.3]).
The proof of Theorem 1.2 is thereby complete. ��
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