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We compare EM, SEM, and MCMC algorithms to estimate the parameters of the Gaussian mixture
model. We focus on problems in estimation arising from the likelihood function having a sharp ridge or
saddle points. We use both synthetic and empirical data with those features. The comparison includes
Bayesian approaches with different prior specifications and various procedures to deal with label
switching. Although the solutions provided by these stochastic algorithms are more often degenerate,
we conclude that SEM and MCMC may display faster convergence and improve the ability to locate

the global maximum of the likelihood function.
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1. Introduction: Algorithms, model, data

The EM (Expectation-Maximization) algorithm, proposed by
Dempster, Laird and Rubin (1977), has become popular to ob-
tain maximum likelihood estimates (MLE), in particular for fi-
nite mixture distributions (McLachlan and Peel 2000). However,
it suffers from slow convergence and may converge to local
maxima or saddle points. Stochastic EM (SEM) and Markov
chain Monte Carlo (MCMC) estimation procedures are viable
alternatives, but may pose problems of label switching. This
paper compares EM, SEM, and MCMC algorithms. Although
some comparisons of these approaches are available (e.g., Sahu
and Roberts (1999) compare EM and MCMC and Celeux ef al.
(1996) compare EM and SEM), our study examines the behavior
of all of them simultaneously for likelihood surfaces having a
sharp ridge or saddle point. We use synthetic and empirical data
where the likelihood has this particular shape. The comparison
includes Bayesian approaches with different prior specifications
and different procedures to deal with label switching.

The Gaussian mixture model is formulated as follows. Let
y = (b,...,yn) denote a sample of size n. Each data
point is assumed to be a realization of the random vari-
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able Y with k-component mixture probability density function
(p.df) fi; )= le‘:l 7; fj(yi;6;), where the mixing pro-
portions 7; are nonnegative and sum to one, 8; =(u;, ajz)
denotes the parameters of the conditional univariate Gaussian
distribution of component ;j defined by f;(yi;0;), and ¢ =
{my, ..., 1,01, ..., 0;}. In this paper, we focus on the case
where k is fixed. Note that 7 = 1 — le‘;i ;. The log-likelihood
function is £(¢;y) = Y i, log f(yi; ). The likelihood of the
finite mixture model is invariant under permutations of the &
components. This is not a problem for a deterministic algorithm
such as the EM, but it complicates the inference from sampling
procedures such as MCMC, because the labels of components
may be randomly switched during the iterative process.

Two datasets, one synthetic and one empirical, are used to
illustrate that the shape of the log-likelihood surface of the fi-
nite mixture presents specific problems to the estimation pro-
cedures. For both datasets the log-likelihood function displays
ridges or saddle points. The first dataset—a synthetic dataset
with n = 150—is generated from a Gaussian mixture of three
components (k = 3) defined by m = (1/3, 1/3, 1/3), p = (2,
—1, 0), and o? = (0.3, 0.4, 15.0). The second dataset is the
GDP per capita (PPP USS$) in 1998 from 174 countries (UNDP,
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Fig. 1. Histograms and Gaussian kernel density estimates of the synthetic and empirical data

2000). Figure 1 presents the histograms and Gaussian kernel
density estimates. From Fig. 1, we observe a strongly skewed
distribution for the GDP data. As in the literature on income
distribution, we log-transformed this dataset. Visual inspection
of Fig. 1 suggests a two-component Gaussian mixture model
(k = 2) for the transformed data.

Section 2 briefly introduces the algorithms. For the MCMC
approach, different specifications of the priors and label-
switching strategies are provided. Section 3 presents results for
the synthetic and empirical datasets. Concluding remarks are
made in Section 4.

2. The EM, SEM, and MCMC algorithms

2.1. Introduction

The algorithms that we investigate are based on data augmenta-
tion, i.e., the observed data (y) is expanded to a new space (y, z),
which includes the missing data (z) (Dempster, Laird and Rubin
1977, Tanner and Wong 1987). The missing datum (z;;) indi-
cates whether component j generated observation i. The EM
algorithm cycles between computing the expectation of z and
maximization to obtain the MLE of ¢ (). The SEM algorithm
cycles between imputing z by drawing from its predictive dis-
tribution, and maximization to obtain ¢. The MCMC approach
(or, its special case that involves data augmentation, the Gibbs
sampler) iterates between simulating from the conditional dis-
tributions of z and ¢. In the case of finite mixtures of Gaussian

distributions, each of the algorithms takes a simple form with
closed form solutions for the steps and/or draws from standard
distributions.

22. EM

The EM algorithm iterates between the E-step, in which the
expectation E(Z™ |y, ™) is computed, and the M-step, in
which the complete data log-likelihood £("*V;y, 2" +D) is
maximized to obtain a revised estimate "*!. For a descrip-
tion of the EM algorithm for estimating finite mixture models,
see, e.g., Dempster, Laird and Rubin (1977), McLachlan and
Peel (2000). Since £(@"*V;y) > L(e™;y), m = 0,1,...,
under suitable regularity conditions, ¢ converges to a sta-
tionary point of £(¢;y) (see Dempster, Laird and Rubin 1977,
Wu 1983, McLachlan and Krishnan 1997). However, the EM
algorithm has been observed to converge extremely slowly, be-
cause its convergence rate, governed by the fraction of miss-
ing information, is linear. In addition, it may converge to a lo-
cal maximum or saddle point—although that problem can be
handled by randomly perturbing the solution away from the
saddle point. Therefore, the criterion of convergence of the
EM algorithm is of particular interest. We are interested in
three definitions of numerical convergence based on the log-
likelihood function (Fletcher 1980, McLachlan and Peel 2000):
1. the absolute difference [£(@"*V;y) — L("™;y)| < &; 2.
the relative difference [£(™*D;y)/€(e™;y) — 1| < &; and
3. the Aitken’s absolute difference (McLachlan and Peel 2000)
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1€4(@ "t y) — €4(™;y)| < &, where
KA(QO('"H);Y) — g((p(m);y)

[E((P(erl); y) _ €(<P(m); y)] [e ((,D(m); y) _ e((P(mfl); y)]

[£(e™;y) = £(p™ D5 y)] = [(emtDsy) — £(e™sy)]
for some small value of the tolerance &. For example, Wedel
and DeSarbo (1995) use the absolute criterion and Vlassis and
Likas (2002) use the relative criterion, where typically ¢ is set
to values in the range of 107*-107¢. In addition we investigate
the influence of starting values. Two strategies are compared:
starting with random centers (RC) based on McLachlan and
Peel (2000, p. 55), or with a random partition of the data (RP),
in which starting values for the posterior probabilities (o;;) are
drawn from the uniform distribution, scaled to sum to one.

2.3. SEM

The Stochastic EM (SEM) algorithm (Celeux and Diebolt 1985,
Diebolt and Ip 1996) incorporates a stochastic step (S-step)
which simulates a realization z™ of the missing data from its
predictive density p(z | y, ¢"™) based on the current estimate
@™, which is then updated by maximizing the log-likelihood
function of the complete data set X1 = (y, zZ*+V). For com-
putational details see, e.g., Diebolt and Ip (1996). Convergence
is assessed from plots of the log-likelihood against the iterates
(see, e.g., Celeux, Chauveau and Diebolt 1996).

24. MCMC

In the Gibbs sampler, one iteratively generates the parameters
and the missing data from p(¢ |y, z) and p(z | y, ) (Tanner
and Wong 1987, Gelfand and Smith 1990, Diebolt and Robert
1994). For the parameters of mixtures of Gaussian distributions,
full conditional distributions can usually be derived analytically.
For a discussion of convergence criteria, see, e.g., Cowles and
Carlin (1996). We will inspect plots of the draws of the parame-
ters against the iterates to assess convergence (see, e.g., Stephens
2000).

2.4.1. Prior specification

We analyze the influence of the priors on the performance of
the MCMC algorithm in estimating finite mixtures using three
different settings: an independent prior, a conjugate prior, and a
hierarchical prior.

Independent priors: Means and variances are assumed
a priori independent, as was done by Escobar and West (1995):

p() = pm [ puyp(c?)
J

with 7w ~ DS, 8, ...,8), uj ~N(E, k"), and 012 ~ IG(a, B),
where D is the Dirichlet distribution, A/ is the Gaussian distri-
bution, ZG is the inverse gamma distribution, and 8, &, «, «,

and B are constants. This prior is referred to in the sequel as
IPRIOR.

Conjugate priors: Diebolt and Robert (1994) and Robert
(1996) suggest a conjugate prior of the form:

p(@) = pm ] p(n; o) p(c?)
J

withm ~D(8, 8, ..., 8), 1, |aj? ~N(E, ajz/)»), Gf ~IG(a, B),
and §, &€, A, «, and B are constants. This prior is referred to in
the sequel as CPRIOR.

Hierarchical prior: A third option is the hierarchical structure
of p(p) proposed by Richardson and Green (1997), where the
vector ¢ is augmented with the hyperparameter (8):

p(@) = p@)pB) | [ p(e)p(o] | B)
J

withw ~D(8,8,...,8), u; ~N(E k1), 07| B~IG(a, B), B
~ I'(g, h), where I'(a, b) denotes the gamma distribution with
mean ab and variance ab?, B is a hyperparameter, and 8, £, «,
o, g, and & are constants. This prior is referred to as HPRIOR.

2.4.2. The label-switching problem

Because the likelihood is invariant under permutation of the &
components, if there is no prior information that distinguishes
these components, the posterior distribution will have k! sym-
metric modes. During the MCMC sampling process a permu-
tation of the components may occur, resulting in multimodal
marginal distributions of the parameters. If this label switch-
ing happens, summary statistics of the marginal distributions
will not give accurate estimates (see, e.g., Stephens 1997a). We
present and compare different procedures available in the liter-
ature to deal with this problem. We refer to the strategy where
none of these procedures is applied as NONE.

Identifiability conmstraints: One approach to minimize the
label-switching effect is based on imposing identifiability con-
straints on the parameters (see, e.g., Dielbolt and Robert 1994,
Roeder and Wasserman 1997, Richardson and Green 1997). In
the context of univariate Gaussian mixture models such con-
straints can be one of the following: 7| < 7, < -+ < my,
Ui < My < -0 < U, OTOF < 0F < o+ < akz. These three
strategies are referred to as C1, C2, and C3, respectively. How-
ever, it has been shown (see, e.g., Stephens 1997a, Celeux, Hurn
and Robert 2000) that these constraints may distort the posterior
distribution of parameters.

Celeux method: Celeux (1998) suggests post-processing the
simulated MCMC chain by minimizing a function of the pa-
rameters (see also Celeux, Hurn and Robert 2000). Let <p§'”)

be the simulated value of the parameter ¢; at iteration m, with
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s =1,...,8, and S the number of parameters across all com-
ponents of the mixture {r;, i, af, j =1,...,k}. Let goﬁm),
m = 1,...,m* be the set of initial values used to initialize a

K -means-type algorithm. The initial reference center is defined
as ¢i = @, = L S @™ For the mth draw, compute the
distance from ¢! ™™ foreachu = 1, ..., k! centers using the
normalized squared distance; then, permute labels according to
the initial order. This strategy is referred to as CELEUX. For

more computational details, see Celeux (1998).

Stephens method: Stephens (1997b, 2000) suggests rela-
belling based on the minimization of a function of the posterior
probabilities o = 7™ £;(yi: 05—y " S O]
It has the advantage of being normalization free, but demanding
much computer memory. Therefore, Stephens (2000) proposed
an on-line version of his algorithm. Let v,,(¢") define a per-
mutation of the parameters at stage m and let Q"1 = (ql.(;'l_l))
be the current estimate of «;;. The algorithm is initialized with a

small number of runs, say m*: Q© = (-1 """ af}”)). Then, at
mthiteration, choose v, to minimize the Kullback-Leibler diver-
gence between the posterior probabilities o;;{v,, (¢™)} and the
estimate of the posterior probabilities Q" ~1, and subsequently
compute Q. This strategy of dealing with the label switching
is referred to as STEPHENS. For computational details, we refer

to Stephens (2000).

CHR method: Celeux, Hurn and Robert proposed to handle
the label-switching problem by computing the Bayes estima-
tor defined by ¢* = argming, E,yL(¢, @), where L(p, @) de-
fines a loss function for which the label switching is immaterial
(Celeux, Hurn and Robert 2000). We use a global loss function
based on a symmetrized Kullback-Leibler distance (see Celeux,
Hurn and Robert 2000; Hurn, Justel and Robert 2003) defined by
Lp, @) = [/ (y:p)log 705 + f(v; ) log 7555} dy. This
loss function possesses attractive properties such as f)eing invari-
ant under reparameterization (Hurn, Justel and Robert 2003).
The estimation is based on the two-step approach of Rue (1995).
The first step approximates Ejy L (¢, ¢) using MCMC ergodic
means for a given @; the second step computes ¢ by minimizing

Table 1. EM, SEM, and MCMC results for the synthetic data*

Dias and Wedel

the expected loss. The minimization problem for ¢ is addressed
using simulated annealing (Rue 1995, Frigessi and Rue 1997).
This strategy is referred to as CHR. For computational details,
we refer to Celeux, Hurn and Robert (2000).

3. Results

3.1. Synthetic data

We ran the EM algorithm 1000 times with a three-component so-
lution until iteration m = 1000. Figure 2 plots the log-likelihood
against the EM iterations. For clarity, only the first 100 runs are
shown (RC starting values). From the figure we infer that the
log-likelihood has a complex shape. The EM algorithm did not
reach the maximum for 24.3% (53.9% for RP starting values)
within 250 iterations and in 3.5% (7.9% for RP) of the solu-
tions even after 1000 iterations (absolute convergence criterion
with ¢ = 107°). The parameter estimates from the best EM so-
lution, corresponding to a log-likelihood value of —328.65, are
presented in Table 1, along with those for all other procedures
being compared.

To better understand the behavior of the EM algorithm, we
provide a representation of the log-likelihood surface. Since the
parameter space is eight-dimensional, in Fig. 3 we plot the log-
likelihood surface £(¢;y) in the neighborhood of the EM so-
Iution against w; and w,, keeping the other parameters con-
stant. Note that the log-likelihood is close to symmetric, since
#| = fip, 6 =~ 63 and it is invariant under permutations of the
component labels. The shape of the log-likelihood explains the
behavior of the EM algorithm. Surrounding the maximum there
are various saddle regions, and irrespective the starting values
are, the EM algorithm almost always visits a saddle region from
which it is difficult to escape.

Given the shape of the likelihood, the impact of the stopping
rules on the convergence of the EM algorithm is of interest. For
each run for each criterion three states are possible: true conver-
gence, i.e., the stopping rule holds and the difference between the
log-likelihood at that iteration and the “true” maximum value of
the log-likelihood (across all runs) is less than ¢ = 0.01; false
convergence, i.¢.,the stopping rule holds, but the difference with

Proportions Means Variances
1 2 3 1 2 3 1 2 3

EM 0.353 (0.06) 0.330(0.06) 0.317(—)  2.084(0.10) —0.884 (0.11) —0.110(0.61) 0.333 (0.11) 0.399 (0.16) 15.332 (5.69)
SEM 0.353 (0.05) 0.327(0.06) 0.320(—)  2.087(0.10) —0.872(0.12) —0.138 (0.60) 0.334 (0.11) 0.404 (0.20) 15.191 (5.37)
MCMC (NONE)

IPRIOR 0.346 (0.05) 0.325(0.06) 0.329 (0.08) 2.091 (0.10) —0.875(0.13) —0.107 (0.62) 0.340 (0.08) 0.433 (0.12) 16.006 (3.78)

CPRIOR 0.342 (0.05) 0.321 (0.06) 0.338 (0.08) 2.095(0.10) —0.874 (0.12) —0.097 (0.60) 0.328 (0.08) 0.413 (0.12) 15.291 (3.42)

HPRIOR 0.343 (0.05) 0.319(0.05) 0.338(0.07) 2.091(0.11) —0.878 (0.13) —0.101 (0.59) 0.368 (0.08) 0.447 (0.12) 14.357 (3.02)

*Asymptotic standard errors for the EM and SEM estimates and posterior standard errors for the MCMC estimates, no label-switching strategy

applied.
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Fig. 4. Convergence of the EM algorithm for the synthetic dataset, based on absolute, relative and Aitken criteria

the “true” maximum value of the log-likelihood (across all runs)
is larger than ¢; no convergence, i.e., the stopping criterion does
not hold at that iteration. In our analyses, & varies from 1072 to
107°. Figure 4 presents the results for the absolute, relative, and
Aitken’s absolute criteria with random centers (RC) as starting
values. For m = 1000 and ¢ > 1079, all runs converged, but not
always to the maximum value of the likelihood. Reducing the
tolerance from ¢ = 1072 to ¢ = 10~° reduces the proportion of
false solutions, increases the proportion of correct solutions, and
increases the proportion of non-converged solutions. The rela-
tive criterion and the Aitken’s absolute criterion underperform
the absolute criterion in this dataset, but the results are dependent
on the log-likelihood values. These results demand for caution
when choosing a stopping criterion for the EM algorithm. De-

pending on the stopping rule and tolerance level one may only
locate a local optimum or saddle point of the log-likelihood, and
falsely report that as the maximum. We do find that using ran-
dom centers (RC) for each convergence criterion decreases the
proportion of false solutions (for a given number of iterations).

The SEM algorithm was run 1000 times. For 100 runs, the
iteration process until m = 250 is presented in Fig. 2. We report
results for runs with randomly chosen centers (RC) as initial
values. In this case, 175 solutions (94 for RP) outperform the
best EM solution in terms of the log-likelihood value. However,
all these solutions with log-likelihood above —325.00 are not
identified. If at some iteration no (or just one) observations are
assigned to one of the components, the algorithm breaks down
and some of the parameters become non-identified (we call this
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Table 2. Results for MCMC different label-switching strategies (IPRIOR) for the synthetic data

Proportions Means Variances
1 2 3 1 2 3 1 2 3
NONE 0.346 0.325 0.329 2.091 —0.875 —0.107 0.340 0.433 16.006
Cl 0.398 0.332 0.270 0.576 0.499 0.034 4.950 3.610 8.220
C2 0.346 0.321 0.333 2.091 —0.915 —0.068 0.359 2.424 13.996
C3 0.335 0.336 0.329 1.340 —0.124 —0.107 0.320 0.453 16.006
CELEUX 0.346 0.325 0.329 2.091 —0.875 —0.107 0.340 0.433 16.006
STEPHENS 0.345 0.326 0.329 2.091 —0.875 —0.103 0.341 0.431 15.961
CHR 0.347 0.327 0.326 2.089 —0.875 —0.087 0.344 0.439 15.266

a degenerate solution). For the remaining 825 runs (RP: 906),
93.1% (RP: 97.8%) are in the neighborhood of the MLE in no
more than 250 iterations, which clearly shows superior conver-
gence performance as compared to the EM algorithm. Thus,
the SEM is faster and displays better convergence properties,
but is less stable than EM, since a proportion of the solutions
is degenerate. The RP strategy increases the proportion of de-
generate solutions, i.e., solutions that have component means
that are closer, while some of the components may be empty.
The best SEM solution has a maximum log-likelihood value of
—328.67. The estimates are given in Table 1. The best SEM es-
timates and their standard errors are quite close to those of the
best EM solution.

The MCMC algorithm' was run 1000 times. Because MCMC
estimates are function of the prior (IPRIOR, CPRIOR, and
HPRIOR) and label-switching strategies (NONE, C1, C2, C3,
CELEUX, STEPHENS, and CHR), we investigate all combina-
tions of priors and label-switching strategies, but present only
the main results. The iteration process for 100 runs until iteration
250 using independent prior (IPRIOR) and no further process-
ing of the draws (NONE) is presented in Fig. 2. From 1000 runs,
65 yielded degenerate solutions. For the remaining 935 runs,
934 (99.9%) runs reach the neighborhood of the MLE in no
more than 250 iterations, which is clearly better than the EM
and SEM algorithms. In terms of the proportion of degenerate
solutions, MCMC appears more stable than SEM, but less stable
than EM. Inspection of the iteration histories shows that the hier-
archical prior (HPRIOR) with the constants chosen as suggested
by Richardson and Green (1997) tends to suffer less from that
instability than the other prior specifications. The reason may be
that here the prior 8 is no longer set to a fixed number, but is
a draw from its conditional distribution that takes the variances
into account. This influences the posterior especially whenever
the likelihood information on a component is poor as occurs
when most observations have close to zero posterior probability
for that component.

The MCMC chains were run with 25000 iterations, with a
burn-in of 5000. The chains converged to the posterior distri-
bution well before m = 5000. The parameter estimates (for
NONE) are provided in Table 1. First, the effect of the prior
specification is negligible, all three priors yielding very simi-

lar posterior means and standard deviations. These are close to
the estimates and asymptotic standard errors of EM and SEM,
which is to be expected since they converge asymptotically (see,
e.g., Gelman et al. 1995). However, there are important ef-
fects of the label-switching strategies on the parameter estimates
(Table 2). The identifiability constraints negatively affect param-
eter recovery, in particular when the component sizes or vari-
ances are constrained (strategies C1 and C3, respectively). Here,
the posterior means of the 1 ; are far off and their posterior stan-
dard deviations are large, while in some cases the same holds
for the oj?, when the p; are subject to identifiability constraints
(strategy C2).

To shed further light on parameter recovery, the empiri-
cal cumulative distribution function is compared with the pre-
dicted cumulative distribution function obtained with each of
these estimation procedures. Let £F(x) and F(x) represent the
empirical and predictive cumulative distribution functions, re-
spectively. We compute the maximum (vertical) distance be-
tween the two distributions, the Kolmogorov-Smirnov statistic
D) = max |F(x) — ﬁ(x)l, and the area between the two dis-
tributions Dy = [ |F(x) — F(x)| dx. For perfect fit, we have
D; = D, = 0. The results are presented in Table 3, where we
present next to EM and SEM, those of MCMC with different
label-switching strategies, but for the IPRIOR only, since those
are best overall (although the differences between prior spec-
ifications are small). We observe that EM, SEM, and MCMC
provide similar results. For all the priors the absence of any
label-switching procedure (NONE) outperforms procedures in
which identifiability constraints are imposed (C1, C2, and C3)
for this dataset. Across different prior specifications, Stephens
and CHR relabelling procedures are the most effective.

3.2. Empirical data

For the empirical dataset, we ran the EM algorithm 1000 times
with m = 2000, for two components. Figure 2 presents the iter-
ation process for the first 100 runs. In the empirical dataset the
log-likelihood also presents a problematic shape, which can be
inferred from the convergence of the algorithm. For some runs
convergence to the maximum is fast, but in 695 cases (272 for
RP) the algorithm did not converge after 250 iterations, and in
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Table 3. Distances between c.d.f’s for synthetic and empirical data

Dias and Wedel

MCMC (IPRIOR)
EM SEM NONE Cl C2 C3 CELEUX STEPHENS CHR
Synthetic data
D, 0.033 0.033 0.033 0.087 0.093 0.180 0.033 0.033 0.033
D, 0.010 0.010 0.009 0.034 0.024 0.084 0.009 0.009 0.009
Empirical data
D, 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046
D, 0.015 0.016 0.015 0.015 0.015 0.015 0.015 0.015 0.015

67 cases (8 for RP) after 2000 iterations (absolute criterion with
& = 107%). In this example, the use of RP starting values provides
better EM performance. For this dataset too we observed that the
EM algorithm was less stable. To obtain 1000 non-degenerate
runs, we had to run the algorithm 1142 times, because in 142
runs the algorithm reached the boundary of the likelihood sur-
face (note that the variance of the second component is close to
zero), which did not happen with RP starting values. Figure 3
presents the log-likelihood against values of w; and u,, fixing
the other parameters at their MLE’s, which reveals that a ridge in
the likelihood causes these convergence problems. The best EM
solution, corresponding to the log-likelihood value of —249.45,
is presented in Table 4. For each of the three stopping rules, both
starting values strategies, and ¢ = 1072 and ¢ = 10~ almost
none of the runs stopped at the maximum of the log-likelihood
surface. For ¢ > 10~7 almost all runs converged, but not al-
ways to the maximum of the likelihood (as identified across
all runs). Reducing the tolerance from ¢ = 1072 to ¢ = 10~°
reduces the proportion of false solutions, increases the propor-
tion of correct solutions, and increases the proportion of non-
convergence. The relative criterion and the Aitken’s absolute
criterion do worse than the absolute criterion in this dataset too.
These results confirm those for the synthetic data: the reported
EM solution strongly depends on the initial values, the strategy
to generate them, the stopping rule, and its tolerance level, while
problems of local maxima are exacerbated by incorrect choice
of that rule and its tolerance.

Table 4. EM, SEM, and MCMC (NONE) results for the empirical data*

As before, we run the SEM algorithm 1000 times. Figure 2
presents 100 runs up to m = 250. With this empirical dataset, we
obtain 70 non-identified solutions (RP: 69), with a log-likelihood
value above —249.45. For the remaining 930 runs, 73.2% (RP:
72.5%) reach the neighborhood of the MLE in no more than
250 iterations. Thus, on the empirical data too SEM is faster
and displays better convergence properties, but is again more
instable than EM. The best (identified) SEM solution has a log-
likelihood value of —249.46. The SEM estimates are given in
Table 4. The estimates and their asymptotic standard errors are
very close to those of EM.

The MCMC algorithm® was run 1000 times using indepen-
dent prior (IPRIOR) and no further processing of the draws
(NONE). Figure 2 gives the log-likelihood against the iterations
up to m = 250. From 1000 runs, 65 were degenerate. From the
remaining 935 runs, 707 (75.6%) reach the neighborhood of the
MLE in no more than 250 iterations, so that MCMC outperforms
EM too, and outperforms SEM slightly in terms of convergence
properties. Although MCMC is faster than the EM algorithm, it
is less stable.

Then, the MCMC chain was run for 25000 iterations, from
which the first 5000 were excluded. Convergence is fast,
well before iteration m = 5000. Although we investigate
all combinations of priors and label-switching strategies, we
present the estimates obtained with different prior specifications
(IPRIOR, CPRIOR, and HPRIOR) without a label-switching
strategy (NONE) in Table 4. It seems that MCMC gives

Proportions Means Variances
1 2 1 2 1 2
EM 0.899 (0.03) 0.101 (—) 8.148 (0.08) 10.027 (0.02) 1.002 (0.16) 0.006 (0.004)
SEM 0.897 (0.03) 0.103 (—) 8.142 (0.08) 10.027 (0.02) 0.994 (0.16) 0.007 (0.004)
MCMC (NONE)
IPRIOR 0.871 (0.04) 0.129 (0.04) 8.099 (0.10) 9.992 (0.05) 0.957 (0.11) 0.023 (0.02)
CPRIOR 0.879 (0.04) 0.121 (0.04) 8.116 (0.10) 10.004 (0.05) 0.969 (0.11) 0.017 (0.01)
HPRIOR 0.834 (0.04) 0.166 (0.04) 8.028 (0.10) 9.931 (0.08) 0.851 (0.10) 0.062 (0.04)

*Asymptotic standard errors for the EM and SEM estimates and posterior standard errors for the MCMC estimates, no label-switching strategy

applied.
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Table 5. Results for MCMC different label-switching strategies
(IPRIOR) for the empirical data

Proportions Means Variances
1 2 1 2 1 2
NONE 0.871  0.129 8.099 9.992 0957 0.023
Cl 0.871  0.129 8.099 9.992 0957 0.023
C2 0.871  0.129 8.099 9.992 0957 0.023
C3 0.871  0.129 8.099 9.992 0957 0.023
CELEUX 0.871  0.129 8.099 9.992 0957 0.023
STEPHENS 0.874 0.126 8.107 9.994 0965 0.021
CHR 0.883 0.117 8.115 10.002 0977 0.019

larger estimates of the size of the smallest component. There are
some small differences between different prior specifications
(which are the same across label switching strategies). The pos-
terior means of the u ; for the conjugate prior are closest to the
MLE?s, those for the independent prior and hierarchical prior
seem to be slightly biased downwards. Relative to the MLE, the
posterior means of the cr]? are lower for all prior specifications,
but, somewhat less so for the conjugate prior. The posterior stan-
dard deviations are somewhat larger than the asymptotic SE’ in
most cases. The results for different label-switching strategies
are virtually the same, which is caused by the fact that the com-
ponents are well separated and label switching did not occur
(Table 5).> The D; and D, statistics show that all priors yield
very similar predictive c.d.f.’s. The procedures to prevent label-
switching have no influence on the result (Table 3).

4. Conclusion

The mixture log-likelihood presents well known problems to pa-
rameter estimation with iterative procedures such as EM, SEM,
and MCMC. These include slow convergence, degenerate so-
lutions, label switching, and convergence to local optima. We
have investigated such problems in detail for a synthetic and an
empirical dataset, where the log-likelihoods present particularly
problematic shapes, involving ridges and/or saddle points.

We find that EM converges slowly and often fails to converge
to the global maximum of the likelihood surface. EM conver-
gence is very dependent upon the type of starting values, stop-
ping rule used, and its tolerance level, which is due to flat regions
on the log-likelihood surface from which it can only escape by
chance and/or if the tolerance level is sufficiently low.

SEM was shown to be an attractive alternative to explor-
ing those complex likelihood surfaces, since it exhibits much
faster and more reliable convergence. The simulation step en-
ables this algorithm to escape from saddle points in the like-
lihood. However, SEM tends to be less stable, a proportion
of the solutions being degenerate due to allocation of sin-
gle observations to a mixture component. Although SEM can
be affected by label switching, this did not occur in our two
examples.

MCMC convergence properties appear superior to EM and
somewhat better than SEM. Thus, we add to the theoretical re-
sults of Sahu and Roberts (1999), who derive that the approx-
imate rates of convergence of these algorithms are the same.
However, they also show that under some conditions conver-
gence of MCMC is faster than that of EM, and our examples
illustrate that this may be the case especially in mixture mod-
els where the likelihood surface displays ridges and/or saddle
points. MCMC does suffer from degenerate solutions, but less
so than SEM. In both synthetic and empirical data applications,
in spite of the complex shape of the likelihood, label switching
did not present much of a problem. Label switching strategies
that impose identifiability constraints on the parameters were in
fact found to deteriorate the solutions, while those based on clus-
tering techniques (Celeux 1998, Stephens 2000) and minimiza-
tion of loss functions (Celeux, Hurn and Robert 2000) perform
well. The effect of different prior specifications on convergence
and parameter recovery was small. This may be caused by the
fact that all specifications involve proper non-informative priors
(Sahu and Roberts 1999).

Thus, although problems have been reported in estimating
mixture models with MCMC methods, our results reveal that
problems of label switching may not be severe, especially if there
are properly addressed, for which Stephens’ method (Stephens
2000) and CHR’s method are preferred. Our results corroborate
the conclusion by Celeux, Hurn and Robert (2000) that simpler
methods such as Celeux’s method (clustering) are a good ap-
proximation to (and less time-consuming than) the more elegant
approach based on loss functions. We conclude that MCMC is
preferable over EM and SEM in recovering the parameters of
mixture models, in particular if the shape of the likelihood sur-
face is problematic, exhibiting ridges, flat regions and/or saddle
points as was the case in both our synthetic and empirical data.
However, one should also take into account the cost of imple-
menting these algorithms. The relative merits then become less
pronounced, especially whenever one has to handle the label-
switching problem.

Our paper focused on mixtures of univariate Gaussian distri-
butions. For high dimensional data (e.g., mixture of multivariate
Gaussian distributions), the advantages of MCMC algorithms
for problematic likelihoods remain to be investigated. Future
research could extend our findings to mixtures for high dimen-
sional data, other MCMC algorithms beyond the Gibbs sampler
that may ensure adequate mixing, mixtures of other distribu-
tions, and more complex mixture models, such as mixtures of
regressions.
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Notes

1. For IPRIOR and CPRIOR, we set « = B8 = 0.001. For CPRIOR, we set
L = 0.001. For HPRIOR values are based on a partially empirical Bayes
approach (Richardson and Green 1997): & corresponds to the midpoint of the
observed data range, R corresponds to the length of the observed interval,
Kk =R72a=2, g=02h= IOOg/aRZ, and § = 1. From the values
chosen for & and «, a prior for u results which is fairly flat over the observed
range of data. The choice of « = 2 with a relatively flat hyperprior on the
hyperparameter 8 expresses the belief that the o2 are similar (Richardson

and Green 1997). The Dirichlet distribution with § = 1 gives a uniform prior
over the space Zf‘:] 7; = 1. These values define proper but vague priors.

2. We have: k =2, & =2.1463, k = 0.0543 and 7 = 0.5427.

3. We thank anonymous reviewers for pointing out that this may indicate lack
of convergence of the MCMC sampler; formally it has converged only if it
has visited all the k! modes in the posterior distribution, but that may in this
case be of no importance for statistical inference.
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