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Abstract In this paper, we discuss a generalized measurement-based adaptive scheduling frame-

work for dynamic resource allocation in flexible heterogeneous networks, in order to ensure

efficient service level performance under inherently variable traffic conditions. We formulate

our generalized optimization model based on the notion of a “profit center” with an arbitrary

number of service classes, nonlinear revenue and cost functions and general performance con-

straints. Subsequently, and under the assumption of a linear pricing model and average queue

delay requirements, we develop a fast, low complexity algorithm for online dynamic resource

allocation, and examine its properties. Finally, the proposed scheme is validated through an

extensive simulation study.

Keywords Resource allocation . On line scheduling . Profit center

1. Introduction

Emerging networks are very large-scale, distributed systems, highly diverse in structure and topol-

ogy, and exhibiting complex workload characteristics. Examples include distributed computing

(and more general “grids”), fused ad hoc wired and wireless networks, broadband residential
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access systems, and 4th generation cellular networks that work in conjunction with their wired

counterparts.

The value derived from and the efficient operation of such networks will hinge upon their

instant availability and their agility to deliver a wide range of information-based and computing

services, under varying conditions, and at the required level of quality. Such requirements ask

for a flexible networking infrastructure regarding its monitoring and control aspects. Such non-

homogeneous networks operating in a randomly changing environment should be characterized

by their configurable capabilities in terms of network environment awareness and adaptive
controllability.

Furthermore, bandwidth and delay-sensitive applications such as voice over IP, video-

conferencing, online gaming, and interactive television, have made imperative the development

of scheduling algorithms that provide differentiated service guarantees to multiple classes of

traffic, and that accomplish this in a practical, implementable and efficient manner.

These emerging trends imply that static bandwidth reservation protocols accompanied by over-

provisioning of access bandwidth and network links could lead to significant under-utilization of

available resources. For such settings, a dynamic allocation of bandwidth (or network resources

in general) that closely tracks the prevailing traffic characteristics and resource requirements can

achieve significant savings, while at the same time satisfying service level guarantees. Imple-

mentation of such dynamic schemes requires efficient traffic monitoring and estimation policies

coupled with adaptive bandwidth allocation mechanisms.

In this paper, we investigate the problem of online scheduling for flexible networks and access

nodes. Specifically, we model a network node (e.g., access gateway) as a “profit center”, in which

the price for different classes of traffic is predefined and the service guarantee constraints are

also included in the general optimization model. This allows us to pose the resource allocation

problem as one of profit maximization, subject to satisfying the service guarantee constraints

imposed by the user classes.

Optimal resource allocation problems subject to service guarantee constraints have been inves-

tigated in various contexts in [9,8,12,16,4]. Specifically, Shin et al. proposed adaptive weighted-

packet scheduling for premium service in Diff-Serv [16], in which weight are updated by the

estimation of average queue size from exponential weighted moving average. On the other hand,

Chandra et al. proposed the minimization of the “discontent” caused by delays, and used nu-

merical methods to obtain the optimal solution [4]. However, the simultaneous consideration

of a resource allocation scheme that utilizes online measurements and is based on a general-

ized pricing mechanism has not been studied in the literature before. Also, given the dynamic

nature of service guarantee constraints, our profit-oriented optimization and its analytical in-

vestigation provide deeper insights and help shed light into the fundamental workings of such

mechanisms.

The main methodological contributions of this paper are: First, we introduce a measurement-

based adaptive scheduling framework for adaptive bandwidth allocation in flexible network

nodes; Second, we formulate a generalized profit center optimization model for a flexible

node that takes into consideration a pricing model for the various classes of users, as well

as service guarantee constraints, such as packet loss rates and queueing delays; Third, given a

generalized service model [13], we consider a linear pricing model subject to average queue-

ing delay constraints and study the properties of the optimal solution obtained from a fast,

low complexity algorithm. Fourth, the analysis of the allocation scheme is considered in both

the over- (system capacity exceeds demand) and under-provisioned cases. Finally, the pro-

posed scheme is validated through an extensive simulation study that considers several traffic

scenarios.
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Fig. 1 General proposed framework to deliver service guarantees for flexible multi-class networks.

2. Modeling framework

Our proposed modeling framework is illustrated in Fig. 1 for a single network element (switch or

router). Suppose m deterministic delay-bound classes and n flexible delay-bound classes share

the link capacity, C. Note that due to the extreme rigidity of the deterministic delay-bound classes,

such service level requirements can only be guaranteed by the appropriate traffic shaping and

admission control schemes ([6,9,11]), together with a certain amount of reserved bandwidth, Cr .

Hence, these classes are excluded from our proposed Measurement Based Optimal Resource

Allocation (MBORA) system.

A MBORA system is responsible of optimally allocating the excess bandwidth, C ′ = C −
Cr , shared by the n flexible delay-bound classes. The proper allocation between the reserved

bandwidth and the excess bandwidth can be achieved by a generic scheduler, such as Hierarchical

Packet Fair Queueing mechanism proposed by Bennett and Zhang [2].

Next, we focus on the main components and related coordinations of a MBORA system

shown in Fig. 2. Its main components are: a traffic measurement module that provides an accurate

estimation of the future traffic load of the different classes under consideration over a pre-specified

time interval (window), a decision module that determines how bandwidth is distributed among

the various classes of traffic based on the information acquired from traffic measurement module
and a scheduling module that deals with the packet forwarding mechanism.

The coordination of these three components is as follows: when a job/customer of class i
arrives at the scheduler, it is assigned to the corresponding queue, waiting to receive service

R
E
L

D
U

H

n
Νr

Class N

Class 2

Class 1

E

1λ

φ*
2

φ*

1

2λ

C
S

φ
N

*

λ

1r
2r

MEASUREMENT DECISION

Fig. 2 Illustration of the adaptive
framework under consideration and
its components.

Springer



292 P. Xu, G. Michailidis, et al.

from the scheduling module. At the same time, the measurement module updates the arrival

rate statistics of the corresponding traffic class, and provides an estimate of the arrival rate.

It should be noted that the measurement module performs the above operation over a pre-

specified time interval (W window). Finally, the decision module allocates the service rate

(bandwidth) to the queues using information about the estimated arrival rate and the queue

length processes. In this paper, we focus on the problem that the decision module solves at

every decision time instant (at the end of a W-duration window). Regarding the scheduling mod-

ule, it updates the weights for the different classes of the generalized scheduler (WRR or WFQ),

in order to accommodate the service rates determined by the decision module.

3. Generalized profit center model for resource allocation

3.1. Formulation

In this section, we formulate the bandwidth allocation problem associated with the decision

module, that corresponds to a profit optimization problem solved by the network element. Hence,

we take a social point of view [15], in allocating the available resources.

The provider’s long-term profit consists of a revenue component based on usage charge,∑
Ri (φi ), and a cost component related to the delay congestion,

∑
C ′

i (φi ), for all the classes,

where φi is the proportion of the excess bandwidth allocated to class i. The objective is to

maximize the usage charge while minimizing the delay penalty cost incurred by the conges-

tion. Thus, our generalized profit center model can be formulated as the following optimization

problem:

max
φ

∑
i

Ui (φi ) =
∑

i

Ri (φi ) −
∑

i

C ′
i (φi ) (1)

s.t.

N∑
i=1

φi ≤ 1, 0 ≤ φi ≤ 1

Pi
loss(φi ) ≤ Pi

loss

Di (φi ) ≤ di

where Pi
loss(φi ) and Di (φi ) are class i loss rate and expected delay and Pi

loss, di are the pre-

determined desired loss rate and loss probability, respectively. The first two sets of constraints

correspond to the feasibility ones. It can be seen that the formulation of the profit center model de-

pends on the characteristics of the pricing models adopted and on the nature of service guarantees

and other constraints.

3.2. Discussion of pricing models and service guarantee constraints

The pricing model can have a linear or a non-linear functional form, which affects the sensitivity

of the bandwidth allocated with respect to price changes. In the linear case, the cost component
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is given by C ′
i (φi ) = bi Di , whereas an example of a nonlinear pricing function is C ′

i (φi ) =
b(eDi −di )

i Di . In the latter case, the penalty cost increases exponentially when the desired delay

cannot be met, compared with the linear pricing model.

Similarly, the type of service level requirements used has a significant impact on the amount of

allocated bandwidth. Notice that the quality of service constraints can have either a deterministic

form – e.g., average queue delay, D̄i (φ) < di – or a stochastic one – e.g., P{Di (φ) > di } ≤ εi

[14,19]. It can also be seen that the constraints we allow in our formulation could correspond to

any statistic of interest of the delay (or loss) distribution, such as the mean, the median or any

other quantile of interest.

4. MBORA algorithm based on linear pricing and average queue delay guarantees

In this section, we investigate the optimal solution for the profit center under a linear pricing

model and service requirement constraints expressed in terms of average queue delays.

Furthermore, we assume that the applications under of the generalized framework can be

grouped according to their utility functions into the following four classes: hard real-time,
delay-adaptive, rate-adaptive and elastic, given the generalized service model proposed by

Shenker [13]. This generalized service model gives a well-formed abstraction of service model for

Internet, so that our proposed framework under this generalized service model can be imple-

mented under various differentiated network schemes, such as IntServ or DiffServ. Due to the

deterministic delay-bound requirement of the hard real-time class, this class is not treated dif-

ferently within the context of the MBORA system. Mapping classes accordingly into Fig. 1, we

study the scenario with m = 1 and n = 3. Some remarks about solving the general problem of

n classes, with the methodology developed in subsequent sections, are given in Section 4.3.

Under these assumptions, the provider’s profit problem in this scenario is given by

max
φ

{∑
Ri −

∑
C ′

i

}
= max

φ

{
3∑

i=1

piφi C
′ −

2∑
i=1

bi q̄i

φi C ′

}
. (2)

subject to

∑3
i=1 φi ≤ 1, φi ≤ 1

φi ≥ max{ ri
C ′ ,

q̄i

C ′di
}, i = 1, 2, φ3 ≥ r3

C ′

where q̄i is the average queue length, pi is the price per unit of the utilization of the

system’s resources for class i and bi is the cost per unit of time incurred by class i,
and with φ = (φ1, φ2, φ3). Since the higher priority class requests a better service level than

the lower priority classes, it should be charged with a higher price, while at the same time the

provider has to reimburse the users at a higher rate for constraint violations; therefore, pi > p j

and bi > b j for i < j . Note also that the delay cost for the elastic class is not considered, since

the corresponding users are deemed insensitive to delays.

The quantity ri that appears in the constraints is an estimated generalized traffic rate for class

i. It could be selected as the mean rate, peak rate, or effective bandwidth (of one of many possible

definitions), depending on the different service level requirements for different classes and how
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conservatively the capacity is allocated among them for the shared-link system. The effective

bandwidth is defined by Kelly as the bandwidth required to satisfy service constraints via large

deviation theory [5]; that is a value between the mean rate and the peak rate. It is an efficient

measure to allocate bandwidth in order to make their loss probability under a given bound [7].

For those classes without strict service level constraints, like our “elastic” class, the mean rate is

adequate for bandwidth allocation purposes, whereas the effective bandwidth rate might be too

generous.

The average queue length plays an important role in the above formulation and is derived

from the fluid model given in [10]. Notice that the instantaneous queue length process at time t
for class i can be obtained through the formula

qi (t) = max
[
q0

i + (ri − φi C
′)t, 0

]
(3)

where q0
i is the initial queue length of the class i and t denotes the length of the time interval. In

our proposed scheme, the share of system resources (bandwidth) allocated to the various classes

would be dynamically assigned over an adaptive window W. Thus, the average queue length of

class i during an adaptive window W is given by

q̄t = 1

W

∫ τi

0

qi (t)dt = τi

W

[
q0

i + τi

2

(
ri − φd

C

)]
(4)

where [0, τi ] is the time interval during which the queue length process remains positive during

an adaptive window W and τi is determined by τi = min{t0
i , W } with t0

i being the time it takes

to empty the queue. In turn, t0
i could be obtained by t0

i = q0
i /(φi C ′ − ri ), given the initial queue

length q0
i . It can be seen that the average queue length depends on τi and therefore we distinguish

the following cases: t0
i < W and t0

i > W .

In the first case, the service constraint leads to the relationship

φi >
q0

i

WC ′ + ri

C ′ = φ1
i . (5)

On the other hand, the average queue length q̄i for this case can be written as:

q̄i = [q0
i ]2

2W
× 1

φi C ′ − ri

Then, the delay component of the service constraint leads to the relationship

φi ≥ ri

2C ′ +
√( ri

2C ′
)2

+
(

q0
i

C ′

)2

× 1

2di W
= ϕ2

i . (6)

Hence, equations 5 and 6, imply that φi ≥ max{ϕ1
i , ϕ

2
i }, while the constraint φi ≤ 1 has to be

satisfied.

In the second case, we analogously obtain

φi ≤ q0
i

WC
+ ri

C
= ϕ1

i (7)
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In addition,

q̄i = q0
i + W

2
(ri − φi C)

which in turn gives that

φi ≥
q0

i
WC + ri

2C
1
2

+ di
W

= ϕd
i (8)

However, in some cases ϕd
i may be greater than ϕ1

i , which creates a conflict between the con-

straints. In such a case we must at least have φi ≥ ri
C , whereas if ϕd

i is no greater than ϕ1
i , then

the lower bound of φi should be given by the maximum of ri
C and ϕd

i .

Hence, an analogous reasoning leads to the following constraint ϕ3
i ≤ φi ≤ ϕ1

i , where

ϕ3
i

{
ri
C ′ if ϕd

i > ϕ1
i

max
[ ri

C , ϕd
i

]
if ϕd

i ≤ ϕ1
i

.

4.1. Optimal allocation of resources

We start by considering two cases, specifically, whether the estimated aggregate traffic rate over

all classes exceeds the excess bandwidth, C ′, or not. In Section 4.2, a fast algorithm is presented

that solves the problem at hand. We examine next the two cases in detail:

4.1.1. The over-provisioned case

If E
∑

ri < C ′, that means that the excess bandwidth of the network element is enough to

accommodate all the incoming jobs from the various classes during the next adaptive window,

W. Equation 2 shows that the problem under consideration is a nonlinear optimization one with

inequality constraints, that can be solved by Kuhn-Tucker conditions.

However, we explore the structure of the problem to identify the solution in a faster

and more economical fashion, which in addition provides insight into the nature of the

allocation scheme. Some algebra reduces the problem to one involving only two de-

cision variables, namely φ1 and φ2, with the optimal solution satisfying the feasibil-

ity constraint φ1 + φ2 = 1 − r3

C ′ . Notice that since the elastic class is not delayed con-

strained, it suffices to provide it with the minimally required bandwidth that satisfies

the feasibility constraint; hence, φ3 = r3

C ′ . Moreover, the relationship between the duration

of the measurement window W and the duration of emptying the queue leads to four

separate cases for the optimization problem at hand that can be examined individually. We

elaborate next on how one of the cases is obtained. The remaining three can be obtained follow-

ing an analogous reasoning and similar calculations. The detailed mathematical derivations of

the remaining three cases are provided in [18].

Suppose that both decision variables (i.e., φ1 and φ2) satisfy φi ≥ max{ϕ1
i , ϕ

2
i }. The optimiza-

tion problem can then be written as:

max
φ1,φ2

f (φ1, φ2) = p1φ1C ′ + p2φ2C ′ − h1(φ1, φ2),
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where

h1(φ1, φ2) = − b1 × [
q0

1

]2

2W (φ1C ′ − r1)φ1C ′ − b2 × [
q0

2

]2

2W (φ2C ′ − r2)φ2C ′

subject to the constraints

�2
i=1φi = 1 − r3

C ′

φ1 ≥ max{ϕ1
1 , ϕ

2
1}, φ2 ≥ max{ϕ1

2 , ϕ
2
2}.

The remaining three cases are determined by the following three sets of constraints and charac-

terized by different functional forms of the h j (φ1, φ2), j = 2, 3, 4 cost function. In the second

case the sets of constraints is given by:
∑2

i=1 φi = 1 − r3

C ′ , φ1 ≥ max{ϕ1
1 , ϕ

2
1} and ϕ3

2 ≤ φ2 ≤ ϕ1
2 ,

in the third case by
∑2

i=1 φi = 1 − r3

C ′ , ϕ
3
1 ≤ ϕ1 ≤ ϕ1

1 and φ2 ≤ max{ϕ1
2 , ϕ

2
2} and finally in the

fourth case by
∑2

i=1 φi = 1 − r3

C ′ , ϕ
3
1 ≤ φ1 ≤ ϕ1

1 and ϕ3
2 ≤ φ2 ≤ ϕ1

2 .

4.1.2. The under-provisioned case

If E
∑

ri > C ′, the excess bandwidth of the link is not enough to satisfy all classes for the

next adaptive window. Also, our constrained optimization problem is not feasible due to the

conflicts between the feasibility constraints and the service guarantees. In this case, a re-

laxation rule for the constraints is proposed and incorporated in the bandwidth allocation

scheme.

The relaxation rule operates in two stages: at small scales, where relaxation of the constraints

within a class occurs and at large scale, where relaxation between classes takes place.

For the relaxation within a class, the relationship between the constraints for the i-th class is

as follows:

max
{
ϕ1

i , ϕ
2
i

} ≥ min
{
ϕ1

i , ϕ
2
i

} ≥ ϕ3
i ≥ ri

C ′ .

Our proposal is to relax the constraints recursively in the above descending order, that also

reflects the degrading of QoS guarantees inside a class through our discussion for these constraints

before. Therefore, the system can provide the best QoS service for each class in the small scale.

Regarding the relaxation of the constraints among the classes, our rule implies that the constraints

of the higher class should not be relaxed until all of the constraints of the lower classes in the

above order are relaxed. In this way, the higher classes of traffic can be guaranteed with the best

service that the system can provide.

Finally, in order to avoid starvation of a particular class (that would happen for the best

effort class, if for example,
∑2

i=1 ri ≥ C ′), the network provider can implement pre-specified

thresholds to discipline the allocation for each class, as studied in our previous work [17]. In

such instances, the service requirements of the delay-adaptive class should be satisfied at the

expense of the remaining two classes, provided that it does not exceed a pre-specified threshold

θ1. Furthermore, the service level requirement of the rate adaptive class should also be satisfied,

provided that it does not exceed a different pre-specified threshold θ2.
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4.2. Calculating the optimal solution

In this section, we briefly outline how the four cases of the optimization problem under con-

sideration can be solved in over-provisioned scenario. For the objective function corresponding

to the four possible cases, it can be shown that the Hessian matrix of second partial deriva-

tives is negative definite. For example, for the objective function in case 1 the Hessian is given

by

H=
⎛⎝ b1[q0

1 C ′]2[ 1

(φ1C ′−ri )3
− 1

(φ1C ′ )3 ]

−ri W 0

0
b2[q2

1 C ′]2[ 1

(φ2C ′−r2)3
− 1

(φ2C ′ )3 ]

−r2W

⎞⎠
which, under the feasibility constraints, is negative definite (since all its eigenvalues are negative).

Therefore, it can be concluded that the objective function is jointly concave and hence possesses a

unique maximum (maybe at a boundary point), which can be obtained by solving for the classical

Kuhn-Tucker conditions.

However, by further exploring the structure of the problem at hand we can obtain the op-

timal solution in a more inexpensive and easy to implement manner. We illustrate the main

steps of the proposed approach on the problem defined in case 1. The other optimization prob-

lems (cases 2–4) can be solved in an analogous manner (the details can be found in [17]). By

solving the feasibility constraint φ1 + φ2 = 1 − r3

C ′ for φ2 and substituting that value in the

objective function we find a new objective function of a single variable given by

g(φ1) = p1φ1C ′ + p2(C ′ − φ1C ′ − r3) − b1

[
10

1

]2

2W (φ1C ′ − r1)φ1C ′

− b2

[
q0

2

]2

2W (C ′ − φ1C ′ − r2 − r3)(C ′ − φ1C ′ − r3)

It can easily be obtained that g′′(φ1) < 0, which implies that g(φ1) is a concave function. The

derivation of the g′(φ1) helps us determine the optimal solution, as follows. First denote the lower

bound of the feasible region by BL and the upper bound by BU . The lower and upper bounds

are such that they satisfy the QoS constraints (see equations 5–6) for both φ1 and φ2 (see also

Fig. 3). If g′(BL ) > 0 and g′(BU ) > 0, then the optimal solution is given at the boundary by BU ,

whereas if g′(BL ) < 0 and g′(Bu) < 0, then the optimal solution is given at the other boundary

point BL . Finally, if g′(BL ) > 0 and g′(Bu) < 0, then the optimal solution lies in the interior of

the interval (BL , BU ) and must be found by numerical root finding methods, such as the bisection

method, or Newton’s method ([3]).

The globally optimal solution is then obtained by calculating first the optimal solution

φ∗
1 (k), k = 1, 2, 3, 4 for the 4 cases and then keeping the maximum amongst the four. Com-

bined with our under-provisioned solution, the algorithm for the optimal solution is given in

pseudo-code form next.

Algorithm 1. Obtaining the optimal solution

if
∑3

i=1 ri < C ′ then
Identify the N feasible cases by checking the

underlying feasibility constraints

while N > 0 do
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Obtain BL
i , BU

i for case i
if g′(Bi

L ) > 0 and g′(Bi
U ) ≥ 0 then

φi∗
1 = Bi

U
else if g′(Bi

L ) ≤ 0 and g′(Bi
U ) < 0 then

φi∗
1 = Bi

L
else

Use root finding method for solving g′(φ1) = 0

to obtain φi∗
1 .

end if
Obtain the maximum for case i, max f i∗(φi∗

1 , φi∗
2 )

N = N − 1

end while
max f ∗(φi∗

1 , φi∗
2 ) = maxi∈N f i∗(φi∗

1 , φi∗
2 )

else
if ( r1

C ′ + r2

C ′ ) < 1 then
Constraints relaxation in Section 4.1.2

else
The threshold (φ1, φ2) in [17]

end if
end if

Remark: The importance of the above algorithm is that a complicated high-dimensional con-

strained nonlinear optimization problem is reduced to one involving a one-dimensional con-

strained concave function that can be tackled directly through standard calculus methods.

4.3. Complexity analysis and feasible regions

In this subsection, we will analyze the complexity of our proposed algorithm and discuss the

feasible regions of the optimization problem.

Let us start with some insights about the feasible regions by examining the following plot.

Suppose that the intersection of the constraints from case 1 occurs inside the region determined

by the inequality φ1 + φ2 ≤ 1 − r3

C ′ (see Fig. 3); we can then conclude that case 1 is feasible.

It is also then easy to see that we do not have to consider the optimization problem given in

case 4, due to the incompatibility between the constraints of those two cases. To summarize, the

2

Case 1

Case 2

Case 4

Case 3

3
1–r

3
1–r

/C'

'/C

2

φ
2

1φ],max[ϕ1

1
ϕ

1

2

],max[ϕ1

2
ϕ

Fig. 3 Structure of the overall
optimization problem when
case 1 (solid line) is feasible.
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sufficient condition for case 1 is max [{ϕ1
1 , ϕ

2
1} + max{ϕ1

2 , ϕ
2
2} ≤ 1 − r3

C ′ . Analogous conclusions

can be obtained by examining similar plots corresponding to the other possible constraints.

Therefore, in our proposed algorithm, there are at most three feasible cases for the over-

provisioned scenario. In all, we can conclude that the number of feasible cases is determined by

the interaction among the constraints for all classes for the over-provisioned case.

Next, we will discuss the computation complexity of our proposed algorithm. Suppose we

extend our study to more generalized n classes. For the over-provisioned case, there would be 2′′

cases for the objective functions. Similarly, we can prove the joint concavity for all cases, and its

optimal solution can be obtained by Newton’s method. It is obvious that the number of loops in

our algorithm is relied on the number of feasible cases, that in turn can lead to the computation

complexity of the proposed algorithm to be O(2n) in the worst case. However, the relationship

between the service guarantee and the feasibility constraints reduces the number of cases to be

examined for locating the optimal value considerably. With respect to the under-provisioned

case, the computation complexity of our proposed algorithm is O(2n) because the relaxation

procedure has to go through at most n classes, inside of which is just simple ‘if-else’ decision.

However, it should be noticed that, in realistic circumstances, n is not a particularly large number

(usually no larger than 10) finite number no larger than 10, considering the limited number of the

aggregated traffic classes in networks. That makes the computation complexity of our proposed

algorithm trivial, favored for online implementation. Finally, the problem of determining the

feasible cases is a topic of current research.

4.4. Performance evaluation and comparisons

The model used in our experimental investigations is a processor sharing system with three input

queues that map to the delay-adaptive, the rate-adaptive and elastic class, respectively. The link

capacity is set at 1 Mb/s and the model parameters employed in the simulation are given in

Table 1.

For the adaptive algorithms proposed in this paper, the measurement window was set to 1

sec. An on-off input Fractal Modulated Poisson process (FMPP) model, proposed in [1], was

employed. Finally, for simplicity purposes, the packet size was fixed to 50 bytes and the Hurst

parameter of the traffic process to 0.75. Several other simulation scenarios were considered in

[17] that produced analogous results.

Given the link speed, the system capacity (stability) constraint is at 0.4 ms. That is, if the mean

packet inter-arrival time is larger than this value, the system is over-provisioned and relatively

few packet losses are expected to occur. On the other hand, for mean packet inter-arrival times

smaller than 0.4 ms, the system is unstable and highly backlogged queues together with frequent

packet losses are expected. The case where the mean time is exactly 0.4 corresponds to the critical

regime.

In the ensuing discussion, the classical WRR and WFQ with static allocated weights are

denoted by SWRR and SWFQ, respectively, whereas their dynamic counterparts are denoted by

Table 1 Parameters for Different Classes

Delay-Adaptive Rate-Adaptive Elastic Class

Initial Weight 2 2 1

Buffer Size (bytes) 500 5000 10000

p (cents/kbps) 5 1 –

b (cents/ms) 0.5 0.1 –
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Fig. 4 Comparison of scheduling algorithms on packet loss probability in (a) under-provisioned and (b) over-
provisioned cases; on average queue delay in (c) under-provisioned and (d) over-provisioned cases for the delay-
adaptive class.

DWRQ (Dynamic Weighted Round Robin) and DWFQ (Dynamic Weighted Fair Queue). For

the dynamic policies the weights are sequentially updated at the beginning of every W-window.

Finally, the profit based optimal policy presented in Section IV is denoted by DWFQ (Opti-

mized Dynamic Weighted Fair Queue policy). The performance metrics used in our study are

packet loss probabilities and average queue delays. In order to facilitate the presentation of the

results we separate the under- from the over-provisioned scenarios, due to the incorporation of

‘non-starvation’ thresholds in the proposed policies. In the plots that follow, the class average

loss probability and average delay together with 95% confidence intervals obtained from 50

replications are shown.

In the four panels of Fig. 4, the performance of all 5 algorithms under study for the delay-

adaptive class is shown. Specifically, Figs 4 (a) and (b) show that the adaptive versions of the

WRR and WFQ outperform with respect to losses their static counterparts, for both the under-

and over-provisioned scenarios. The ODWFQ exhibits the best performance in all cases, and in

particular for stable but heavily loaded systems (range between 0.42 and 0.44 ms). Finally, as

the system becomes more lightly loaded (0.48 ms and beyond) all policies become essentially

equally efficient. Regarding the average delay metric (Figs 4 (c) and (d)), the ODWFQ dominates

all other policies in the stable case and performs very well in the under-provisioned scenario.

From the remaining policies, we notice the strong performance of the DWFQ policy, and the

inferior performance of the DWRR policy. The latter finding is due to the inaccuracy involved

with the normalization of the weights.

In the panels of Fig. 5, the performance of the rate-adaptive class is examined. For this class

the ODWFQ policy clearly outperforms all its competitors, for both performance metrics in the

under- and over-provisioned cases. Among the remaining policies the DWFQ outperforms its

static counterpart in all cases. On the other hand, the pattern for the round robin policies is more

involved. For example, the DWRR clearly outperforms the SWRR policy for both performance
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Fig. 5 Comparison of scheduling algorithms on packet loss probability in (a) under-provisioned and (b) over-
provisioned cases; on average queue delay in (c) under-provisioned and (d) over-provisioned cases for the rate-
adaptive class.
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Fig. 6 Comparison of scheduling algorithms on packet loss probability in (a) under-provisioned and (b) over-
provisioned cases; on average queue delay in (c) under-provisioned and (d) over-provisioned cases for the elastic
class.
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metrics in the under-provisioned case and for the loss metric in the over-provisioned case;

however, the SWRR policy exhibits a better performance with respect to delay for the over-

provisioned case. Finally, it should be noted that as the incoming traffic’s rate decreases (the

mean interarrival time increases) and the system’s load becomes lighter, the performance of all

three policies become fairly similar.

In the panels of Fig. 6 the results for the elastic class are shown. For this class the ODWFQ

exhibits the worst performance for all cases and metrics, due to the fact that this class yields very

low profits and hence less bandwidth is allocated to it under this policy. For this class, the static

policies achieve the best performance in terms of loss and average queue delay for the elastic

class in both under-provisioned and over-provisioned cases, since the dynamic policies allocate

less bandwidth to this class, in order to meet the service requirements of the higher priority

classes.

In conclusion, we observe that the proposed ODWFQ policy exhibits the best and most robust

performance for both the over- and under-provisioned scenarios for the high paying traffic

classes.

5. Conclusions

Adaptive scheduling based on measurements of traffic and the system’s queueing state has

the potential of greatly improving the efficiency of resource allocation techniques in emerging

flexible networks. In our previous work on this topic, we have introduced a measurement-based

adaptive scheduler and validated its performance with extensive simulation results. In this paper,

we have formulated the generalized online setting of adaptive schedulers as a formal optimization

problem taking into account service constraints and the underlying pricing scenario. Based on

the simplest LP+AQD model, we then proceeded to study its solutions on a case-by-case basis,

thus obtaining fundamental insights regarding the implementation and use of such schemes.
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