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Abstract. Examination of mutant and knockout pheno-
types with altered phosphate/pyrophosphate distribution
has demonstrated that cementum, the mineralized tissue
that sheathes the tooth root, is very sensitive to local levels
of phosphate and pyrophosphate. The aim of this study
was to examine the potential regulation of cementoblast
cell behavior by inorganic phosphate (Pi). Immortalized
murine cementoblasts were treated with Pi in vitro, and
effects on gene expression (by quantitative real-time re-
verse-transcriptase polymerase chain reaction [RT-PCR])
and cell proliferation (by hemacytometer count) were
observed. Dose-response (0.1–10 mM) and time-course
(1–48 hours) assays were performed, as well as studies
including the Na-Pi uptake inhibitor phosphonoformic
acid. Real-time RT-PCR indicated regulation by phos-
phate of several genes associated with differentiation/
mineralization. A dose of 5 mM Pi upregulated genes
including the SIBLING family genes osteopontin (Opn,
>300% of control) and dentin matrix protein-1 (Dmp-1,
>3,000%of control). Another SIBLING familymember,
bone sialoprotein (Bsp), was downregulated, as were
osteocalcin (Ocn) and type I collagen (Col1). Time-course
experiments indicated that these genes responded within
6–24 hours. Time-course experiments also indicated rapid
regulation (by 6 hours) of genes concerned with phos-
phate/pyrophosphate homeostasis, including the mouse
progressive ankylosis gene (Ank), plasma cell membrane
glycoprotein-1 (Pc-1), tissue nonspecific alkaline phos-
phatase (Tnap), and the Pit1 Na-Pi cotransporter. Phos-
phate effects on cementoblasts were further shown to be
uptake-dependent and proliferation-independent. These
data suggest regulation by phosphate of multiple genes in
cementoblasts in vitro. During formation, phosphate and
pyrophosphate may be important regulators of ce-
mentoblast functions including maturation and regula-
tion of matrix mineralization.
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Cementum is a mineralized tissue, similar in composition
and properties to bone, that is synthesized by cemento-
blasts during tooth root formation and plays an essential
role in anchoring the tooth to the surrounding alveolar
bone. Examination of cementum development in ank/
ank mutant mice revealed cementoblasts to be excep-
tionally sensitive to extracellular inorganic pyrophos-
phate (ePPi) [1]. The mouse progressive ankylosis protein
(ANK) is a multipass transmembrane protein shown to
regulate PPi transport from the cell interior to the
extracellular milieu [2]. The ank/ank nonsense mutation
therefore results in increased intracellular pyrophos-
phate (iPPi) and decreased ePPi as well as disruption in
the overall ratio of available inorganic phosphate (Pi)
and PPi. Mice carrying ank/ank have been used as a
model for studying arthritis, and they present a pheno-
type including ectopic calcifications on articular surfaces
and in synovial fluids, joint space narrowing, and os-
teophyte formation leading to fusion, joint immobility,
and a characteristic flat-footed gait [2–4]. Upon studying
the dentition, we found that ank/ank mutant mice also
exhibited a >10-fold increase in cementum thickness,
while maintaining apparently normal dimensions in the
adjacent periodontal ligament (PDL) space, dentin, and
alveolar bone. Another mouse model for PPi imbalance
is the tiptoe walking (ttw or Enpp)/)) mutant mouse
carrying a mutation in the Pc-1 gene that, like ank/ank,
results in decreased ePPi [1]. The ttw PC-1 mutant mouse
exhibits hypermineralization abnormalities including
ossification of the vertebral column and joints [5–7].
Interestingly, a tooth phenotype similar to that in ank/
ank was also observed in PC-1 mutant mice. While ANK
and PC-1 regulate accumulation of ePPi, tissue nonspe-
cific alkaline phosphatase (TNAP) catalyzes PPi break-
down to Pi. TNAP deficiency in humans and mice results
in a condition of hypophosphatasia, marked by skeletal
hypomineralization, skeletal abnormalities, and often a
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rickets-like condition [8–11]. TNAP deficiency also cau-
ses a dental phenotype distinguished by defective acel-
lular cementum formation or no cementum at all, with
the consequence of premature tooth loss [12, 13]. Clearly,
cementum formation is contingent on careful regulation
of PPi and Pi in the vicinity of the tooth root.

The aim of this study was to examine the role of Pi

and PPi in regulating genes associated with cementoblast
activity and function. Though mechanisms of Pi/PPi

regulation for particular genes are being investigated
[14, 15], much remains to be explored, including the
effects of phosphate on a broader range of genes and,
more specifically, genes controlling behavior of cells
within the tooth region. This is particularly of interest in
light of the observation that in ank/ank mutant mice the
cementum thickness dramatically increases, while sur-
rounding alveolar bone and dentin tissues are appar-
ently unchanged [1], suggesting different regulatory
influences for cementum and adjacent mineralized tis-
sues in response to this PPi imbalance.

Materials and Methods

Cell Culture

Immortalized murine cementoblasts (OCCM-30) were main-
tained in Dulbecco�s modified Eagle medium (DMEM) sup-
plemented with 10% (v/v) fetal bovine serum (FBS) and
penicillin, streptomycin, and L-glutamine (100 units/mL,
100 lg/mL, and 2 mM, respectively; all tissue culture reagents
from Invitrogen/GIBCO BRL, Carlsbad, CA). Cells were
incubated at 37�C in an atmosphere of 5% CO2. Isolation and
characterization of OCCM-30 cementoblasts have been pre-
viously described [16] and were approved by the University
Committee on Use and Care of Animals (University of Mi-
chigan, Ann Arbor, MI) and in compliance with state and
federal laws.

Cell Proliferation Experiments

OCCM-30 cells were plated in 35 mm dishes at a concentration
of 2 · 103/cm2 in DMEM with 10% FBS. One day after
seeding, baseline cell counts were taken and media were
changed to DMEM with 5% FBS and treatment added.
Phosphate was added at concentrations of 3, 5, and 7 mM, and
media were changed every 2–3 days during the course of the

experiment. Cell counts were taken by hemacytometer at days
1, 3, and 6 after initial treatment.

Gene Expression Experiments

OCCM-30 cells were plated in 60 mm dishes at a concentration
of 2.6 · 104 cells/cm2 and maintained in DMEM with 10%
FBS. Upon reaching confluence, media were changed to
DMEM with 5% FBS and experimental treatments were ad-
ded. Total RNA was isolated by Trizol reagent (Invitrogen/
GIBCO BRL) 48 hours after initial addition of Pi. Phosphate
was added to media at doses of 0.1–10.0 mM. Doses were
based on our own observations as well as concentrations used
by other researchers exploring the osteoblast response to Pi

[17, 18]. A stock solution of 100 mM Pi was made in DMEM at
a pH of 7.4 and filter-sterilized.

For time-course experiments, cells were seeded and grown
to confluence as described above. Following treatment with
5 mM Pi, RNA was isolated at 1, 6, 24, and 48 hours. To
determine the requirement of Pi entry into cells for cellular
effects, media were supplemented with 3 mM phosphonofor-
mic acid (PFA, or foscarnet) in addition to 5 mM Pi treatment
for 24 hours. Total RNA was then harvested and analyzed as
described above.

Real-time Reverse-Transcriptase Polymerase Chain Reaction

For real-time reverse-transcriptase polymerase chain reaction
(RT-PCR) analysis, RNA was DNAse-treated (DNA-freeTM;
Ambion, Austin, TX) and cDNA was synthesized from 1.0 lg
total RNA with a cDNA synthesis kit for RT-PCR (either
First-Strand AMV or Transcriptor kit; Roche Diagnostic,
Indianapolis, IN). Two microliters of the resulting cDNA
product were used per 20 lL reaction in the Lightcycler system
(Roche Diagnostics, Mannheim, Germany). PCRs were carried
out with the DNA Master SYBR Green I kit (Roche Diag-
nostic, Indianapolis, IN), with a total volume of 20 lL. Primers
were designed by Lightcycler probe design software (Roche,
Germany). A Basic Local Alignment Search Tool (BLAST)
search of GenBank was performed on the primer sequences to
ensure specificity, and melting curve analysis of products was
additionally performed to ensure specificity. Expression was
analyzed for genes including bone sialoprotein (Bsp), osteo-
pontin (Opn), dentin matrix protein-1 (DMP-1), osteocalcin
(Ocn), type I collagen (Col1), progressive ankylosis (Ank),
plasma cell membrane glycoprotein-1 (Pc-1), tnap, and Pit1
type III sodium-dependent phosphate cotransporter (Pit1),
with glyceraldehyde-3-phosphate dehydrogenase (Gapdh)
serving as a housekeeping/reference gene for normalization.
The amplification profile used on the Lightcycler was 95/0,
55/7, and 72/20 (temperature [�C]/time [seconds]) and 35-40
cycles. Primer sequences are listed in Table 1. All primers were
used at a concentration of 0.5 lM (except DMP-1, used at
0.25 lM to optimize PCR conditions) in 3 mM MgCl2.

Table 1. Real-time PCR primer sequences

Gene Accession Forward (5¢ to 3¢) Reverse (5¢ to 3¢)

Bsp L20232 GAGACGGCGATAGTTCC AGTGCCGCTAACTCAA
Opn AF515708 TTTACAGCCTGCACCC CTAGCAGTGACGGTCT
Dmp-1 NM 016779 GCGCGGATAAGGATGA GTCCCCGTGGCTACTC
Ocn L24431 TGAACAGACTCCGGCG GATACCGTAGATGCGTTTG
Col1 NM 007743 CACCCCAGCCGCAAAGAGT CGGGCAGAAAGCACAGCACT
Ank AF274752 GAACTATCTGCCGCAC AGGCGAGTAAACGCAA
Pc-1 AF339910 CGCCACCGAGACTAAA AGGAATCATAGCGTCCG
Tnap AF285233 GGGGACATGCAGTATGAGTT GGCCTGGTAGTTGTTGTGAG
Pit1 AF172628 ACCTGACCCCAATCAC CCATGATAGCGGCACT
Gapdh M32599 ACCACAGTCCATGCCATCAC TCCACCACCCTGTTGCTGTA
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Relative quantification of PCR products was achieved by
using LightCycler Relative Quantification Software, version
1.0 (Roche Diagnostics, Germany) to compare amplification
of the target gene of interest to that of Gapdh as a reference
gene, with calibrator normalization and amplification effi-
ciency correction.

Statistical Analysis

Data from proliferation, dose-response, and PFA experiments
were analyzed by analysis of variance (ANOVA) to determine
differences among treatments, with further pairwise compari-
sonsmade by the Student-Newman-Keuls (SNK) test.P £ 0.05
was used to indicate significance. Sigmastat 3.1 (Systat Soft-
ware, Inc., Point Richmond, CA) was used for ANOVA sta-
tistical testing.

For analysis of the time-course experiment, PCR data from
four independent experiments were transformed by calculating
the log of the ratio of treated vs. untreated samples for a given
time point. The transformation was performed in order to
control for variation in passage-to-passage levels of basal
expression in cells. Statistical significance of the Pi treatment
effect was assessed by applying a t-test to the log-transformed
ratios (Pi/No treatment) for each gene at each time point. P £
0.05 was used to indicate significance. Excel (Microsoft, Red-
mond, WA) was used for statistical analysis of time-course
experiments.

Results

Effect of Phosphate on OCCM-30 Cementoblast Proliferation

The effect of Pi on cell proliferation was assessed to
determine if changes in proliferation could be associated
with the regulation of gene expression. OCCM-30 cells
were treated with 3, 5, or 7 mM Pi (or untreated control)
in DMEM plus 5% FBS, and cells were counted by
hemacytometer on days 0, 1, 3, and 6, where day 0 was
the first day of treatment. Until day 3, all treatments
resulted in equivalent cell numbers. However, by day 6,

cells receiving the highest dose of Pi (7 mM) exhibited
decreased proliferation, while the 5 mM Pi-treated and
untreated plates yielded the same numbers of cells. Cell
numbers with the lowest dose of 3 mM Pi were slightly
higher at day 6 (Fig. 1).

Effect of Phosphate on OCCM-30 Cementoblast Gene
Expression: Dose Response

Pi treatment affected expression of genes associated with
cementoblast differentiation and with mineral regulation
(Bsp, Opn, Dmp-1, Ocn, and Col1). These genes were
regulated in a dose-response fashion by Pi treatments in
the range of 0.1–10 mM over the course of 48 hours. A
dose of 5 mM Pi was observed to be generally very
effective at eliciting a cell response, while there were
concerns that doses of 7 and 10 mM may have created
stressful conditions for cells (see proliferation experi-
ment results, Fig. 1). The highest two doses were not
used in subsequent time-course experiments. Among the
small integrin-binding ligand, N-linked glycoprotein
(SIBLING) family genes, considerable increases were
observed in Opn (>300% of control) and Dmp-1
(>3,000% of control) with 5 mM Pi, while Bsp expres-
sion was downregulated by about 25%. To the authors�
knowledge, this is the first report of in vitro expression of
Dmp-1 by cementoblasts. SIBLING member dentin
sialophosphoprotein (Dspp) expression was also ob-
served in cementoblasts, with indications of a similar
upregulation of Dspp by Pi; however, overall Dspp
expression was extremely low in these cells, and results
were somewhat variable (data not shown). Other genes
important in matrix synthesis and regulation of miner-
alization were downregulated, with Ocn substantially
declining by about 85% and Col1 being affected with a
decrease of about 50% (Fig. 2).

Effect of Phosphate on OCCM-30 Cementoblast Gene
Expression: Time Course

Having established that several genes associated with
cementoblast differentiation/mineralization were regu-
lated by Pi, the next step was to determine the time
required to realize these regulatory effects. A dose of
5 mM Pi was chosen for these experiments because this
dose delivered a robust response for the genes of interest
but did not seem be associated with the potentially
stressful conditions of higher Pi doses. Time-course
experiments indicated that these genes responded rela-
tively quickly to phosphate regulation, within 6–24
hours (Fig. 3). Patterns of expression varied from gene
to gene, as has been previously described for OCCM-30
cells (and osteoblasts), with variations in expression over
time in untreated samples as well.

Time-course experiments also indicated rapid regula-
tion (by 6 hours) of genes concerned with Pi/PPi handling
and homeostasis, including the mouse Ank gene, Pc-1,

Fig. 1. Effect of phosphate on OCCM-30 cementoblast pro-
liferation. Cementoblasts (OCCM-30) were plated in DMEM
(10% FBS) and 1 day after seeding (day 0) switched to 5% FBS
DMEM with or without 3, 5, or 7 mM Pi. Total cell number
per plate was determined by hemacytometer on days 0, 1, 3,
and 6; and average cell numbers per plate are represented on
the graph ± standard error. *P < 0.05, treated vs. untreated
control. Results from six experiments. h NT, no treatment, e
3mM Pi, n 5mM Pi, · 7mM Pi.
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Tnap, and Pit1 (Fig. 3). Strong upregulation was ob-
served in Ank (300% of control), PC-1 (700% of control),
and Pit1 (200% of control), while Tnap expression
greatly decreased (ultimately by 85%). OCCM-30 ce-
mentoblasts are differentiated cells that do not require
ascorbic acid (AA) for induction of differentiation/min-
eralization genes, as do some precursor cells such as the
murine osteoprogenitor cells MC3T3-E1 [19]. Nonethe-
less, experiments with added AA (50 lg/mL) were per-
formed; and while some basal gene expression was higher
with AA (as has been previously observed), response to
Pi for all genes analyzed followed the same trend with or
without AA (data not shown).

Effect of Phosphate Transport Inhibition on OCCM-30
Cementoblast Gene Expression

In order to determine whether the observed effects on
gene expression were Pi-specific, entry of Pi into cells
was blocked by treatment with the competitive inhibitor

of Na-Pi transport PFA, also called foscarnet. With
addition of 3 mM PFA concurrent with Pi exposure for
24 hours, gene regulation by Pi was substantially
diminished (Opn and Dmp-1 shown here), indicating
that Pi uptake is indeed necessary to realize these tran-
scriptional changes. While induction of gene expression
by Pi was not completely abolished, there was a con-
siderable dampening of response by blocking Pi uptake.
PFA addition did not affect basal cell expression, as
indicated by unaltered Gapdh levels between PFA-trea-
ted and untreated samples (data not shown) (Fig. 4).

Discussion

Our results support cell regulatory properties of Pi, as
reported by other groups using other cell types. We now
report additional effects of Pi on cementoblast cell
behavior and indicate that the changes in genes associ-
ated with the mature cementoblast may be unique to this

Fig. 2. Effect of phosphate on
OCCM-30 cementoblast gene
expression: dose response.
Confluent cementoblasts
(OCCM-30) were cultured in
DMEM (5% FBS) plus Pi at
doses of 0.1–10 mM for 48
hours. Total RNA was
extracted and used to
synthesize cDNA, and
quantitative real-time PCR
was used to check expression
of differentiation- and
mineralization-related genes,
including Bsp, Opn, Dmp-1,
Ocn, and Col1. Results were
normalized to GAPDH as a
reference gene and calibrator
sample. Results are presented
as percent of untreated
control (NT) on the y axis,
with standard error indicated
by error bars. *P < 0.05,
treated vs. untreated control.
Results from three
experiments.
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cell phenotype. Opn, Dmp-1, Ank, Pc-1, and Pit1
mRNA levels were increased, while Bsp, Ocn, Col1, and
TnapmRNA levels were decreased (Figs. 2 and 3). Most
of these genes responded within 6 hours, suggesting a
relatively rapid response to Pi treatment (Fig. 3).
Importantly, it was shown that Pi must enter the cell to
cause the observed changes in gene expression (Fig. 4).
No effects of 3 or 5 mM Pi on proliferation were ob-
served, though 7 mM Pi at day 6 notably decreased
proliferative potential (Fig. 1).

Phosphate Regulates Differentiation/Mineralization Genes

The genes regulated by Pi in cementoblasts could be split
into at least two ‘‘functional’’ groups: (1) positive/nega-
tive regulators of differentiation/mineralization, and (2)
phosphate/pyrophosphate homeostasis genes. In the first
group, notably, several members of the SIBLING family
were regulated by Pi in cementoblasts, includingOpn and

Dmp-1 (both increased) and Bsp (decreased) (Figs. 2 and
3A). The SIBLING family is comprised of genes
encoding extracellular matrix proteins from mineralized
tissues that are located on human chromosome 4 (mouse
chromosome 5) and have in common the presence of an
arginine-glycine-aspartate (RGD) integrin binding do-
main, exon organizational features, and similarity in
posttranslational modifications, including glycosylation
and phosphorylation [20–22]. In addition to functioning
as extracellular matrix proteins involved in the regula-
tion of hydroxyapatite mineral initiation and growth,
SIBLING members have been implicated in cell attach-
ment, local activation of matrix metalloproteinases,
extracellular matrix maturation, wound healing, and
protection of cells from alternative complement pathway
lysis, among other functions [23–25].

SIBLING family transcripts Bsp, Opn, and Dmp-1
were shown to be regulated by Pi in these studies. Dspp
expression was also detected in OCCM-30 cemento-

Fig. 3. Effect of phosphate on
OCCM-30 cementoblast gene
expression: time course.
Cementoblasts (OCCM-30)
were plated and cultured as
described in the dose-response
experiments (above), with a Pi

dose of 5 mM. Total RNA
was extracted at 1, 6, 24, and
48 hours and used to
synthesize cDNA;
quantitative real-time PCR
was used to check gene
expression. Treated samples
are indicated by Pi and
untreated controls by NT.
Expression levels analyzed
included genes for
differentiation and
mineralization and Pi/PPi

homeostasis. Results are
presented as percent of
untreated control, where
control is NT at 1 hour, with
standard error indicated by
error bars. *P < 0.05
difference of log-transformed
Pi-treated vs. NT control data
from same time point. Results
from four experiments.
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blasts, and there was some evidence of Pi regulation of
this SIBLING member; however, expression was ex-
tremely low, leading to variable results (data not
shown). OPN, in its phosphorylated form, is a potent
inhibitor of hydroxyapatite crystal growth [26]; con-
versely, many studies support roles for BSP and DMP-1
as nucleators/promoters of mineral formation [27, 28].
There is evidence that DSPP cleavage products DSP and
DPP, as well as DMP-1, are important in controlling
dentin formation as they are expressed during dentino-
genesis [29] and DMP-1-deficient mice exhibit reduced
and hypomineralized dentin [30, 31]. Currently, a role
for these genes/proteins in cementogenesis has not been
established. Thus, future studies into the roles of DSP,
DPP, and DMP-1 in cementogenesis should be consid-
ered. A recent study by Takano et al. [32] showed a
potential effect of DSP on cellular cementum formation
in rats and guinea pigs, and we now report in vitro ce-
mentoblast expression of SIBLING members Dmp-1
and Dspp. The modulation of SIBLING expression,
while striking, seems in sum to be a mixed signal with
regard to differentiation and mineralization.

Phosphate Regulates Pi/PPi Homeostasis Genes

Phosphate homeostasis genes in OCCM-30 cemento-
blasts were shown to respond to Pi regulation. Ank and
Pc-1, which increase PPi in the extracellular environ-
ment through different processes, are both strongly up-
regulated in response to increased Pi (Fig. 3). Tnap, one
of the primary enzymes in mineralized tissues for liber-

ation of Pi from PPi, was convincingly downregulated
(Fig. 3), possibly part of a negative feedback mecha-
nism. Terkeltaub�s group [33] observed that Pc-1
expression was decreased in Tnap)/) mice and showed in
MC3T3-E1 and calvarial osteoblasts that increased
TNAP enzyme activity significantly increased PC-1
function; here, we show that the mechanism was likely
via Pi, by observing the same reciprocal relationship
between Tnap and Pc-1 on the mRNA level. Addition-
ally, we show that Ank is regulated by Pi in a manner
comparable to Pc-1. Similarly, in ank/ank and ttw/ttw
mutant mice, in which mutated ANK and PC-1 proteins
decrease ePPi, OPN is also reported to be substantially
decreased [34]. TNAP function is normal in these ani-
mals, so decreased ePPi may also mean decreased Pi

(because through the action of TNAP, PPi becomes a
pool available for creation of Pi) and, subsequently, low
OPN expression.

In addition to changes in Ank, Pc-1, and Tnap, the
type III sodium-dependent phosphate transporter Pit1
was upregulated by addition of Pi (Fig. 3B). Pit1 is
highly expressed in MC3T3-E1 preosteoblast cells, and
its expression increased during differentiation, suggest-
ing a role in osteoblast calcification of the extracellular
matrix [35]. Additionally, we here show Pit1 expression
in cementoblasts and further demonstrate upregulation
in response to Pi, likely facilitating Pi uptake to the cell
interior, where regulation of other genes may be the
result. When Pi uptake into cells is blocked, as with
inclusion of the Pi transport inhibitor foscarnet, gene
regulation by Pi is substantially diminished (Fig. 4).

Fig. 3. Continued.
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Regulation of Pi/PPi by Cementoblasts

The sum result of the changes in ANK, PC-1, and
TNAP would be increased ePPi, perhaps an attempt to
compensate for the Pi excess and return the Pi/PPi ratio
back to the balance of homeostasis. We hypothesize that
in addition to absolute levels of Pi and PPi available in
the extracellular pool, the relative ratio of Pi/PPi may be
important. When exposed to excess Pi, the cellular re-
sponse is to compensate with greater ePPi through in-
creased PC-1 and ANK and decreased TNAP. The cell
may also compensate through modulating Pi levels, such
as by increased Pi uptake via Pit1. After one mechanism
compensates, levels of Pi and PPi may approach normal

over time, and gene expression may again relax to a
constitutive level. In this way, the tightly regulated and
dynamic antagonism of Pi vs. PPi continues. Indeed,
Millan�s group [7] showed that by crossing Tnap
knockout (Akp2) and Pc-1 knockout (Enpp1) mice,
in vitro and in vivo mineralizing capabilities of osteo-
blasts were returned to normal and ePPi levels in the
double knockout were comparable to wild type, possibly
with the facilitation of ANK or other factors. The
cementum from these animals is currently under exam-
ination. The importance of the Pi/PPi ratio in both
mineralized tissue and pathological calcifications is ex-
plored in depth in a series of well-conceived experiments
by Murshed et al. [36], highlighting the working rela-

Fig. 5. Model for the regulation of
cementoblast cell behavior by Pi. Pi and
calcium (Ca) are the building blocks for
hydroxyapatite (HA) mineral in the body
and released during mineral tissue turnover.
ePPi is a potent inhibitor of HA formation.
Several proteins regulate the local
concentrations of Pi and PPi, including the
Pit1 Na-Pi cotransporter TNAP that
catalyzes conversion of PPi to Pi, the
progressive ankylosis protein that regulates
PPi transfer from the intracellular space
(iPPi) to the extracellular (ePPi) milieu, and
PC-1 plasma cell membrane glycoprotein
that catalyzes PPi production from
triphosphates (PPP). Here, we show that Pi

addition can regulate genes involved in Pi/PPi

homeostasis (Pit1, TnapP, Ank, Pc-1) and
those known to be important in the
maturation and mineralizing functions of
cementoblasts and other mineralizing cells
(Bsp, Opn, Dmp-1, Ocn, Col1).

Fig. 4. Effect of phosphate transport inhibition on OCCM-30
cementoblast gene expression. Cementoblasts (OCCM-30)
were plated as described in the dose-response experiment
(above). Prior to addition of Pi treatment (0.1–10 mM) at time
0 hours, cells were pretreated for 30 min with 3 mM PFA, also
known as foscarnet, an inhibitor of Na-Pi transport into the
cell. Pi doses and PFA remained in the culture media until total

RNA was isolated 24 hours after treatment and used to syn-
thesize cDNA and perform quantitative real-time PCR. Shown
here are effects of PFA treatment on expression of the SIB-
LING family genes Opn and Dmp-1 vs. untreated controls
(NT). Results are presented as percent of untreated control on
the y axis, with standard error indicated by error bars. Results
from three experiments.
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tionships between ANK, PC-1, and TNAP, as well as
other proteins involved in Pi metabolism and regulation
of mineralization.

Role of Cementoblasts

The reaction by cementoblasts to excess Pi is to decrease
transcripts for the differentiation genes Bsp and Ocn
while increasing the hydroxyapatite inhibitor Opn and
potentially increasing ePPi via Ank, Pc-1, and Tnap
regulation. In total, these results may be an indication
that mature cementoblasts, once their role in cementum
formation has been fulfilled, promote periodontal
homeostasis by self-regulating their mineralization
capacity, even when conditions (such as high Pi) favor
hydroxyapatite formation. A similar response has been
evoked by treating this same cementoblast cell line with
the differentiation factor BMP-2, causing these mature
cells to downregulate Bsp and Ocn and reduce in vitro
mineral nodule formation [37]. Additionally, when
treated with a bisphosphonate (specifically, etidronate),
which alters proliferation, differentiation, and gene
expression in osteoblasts [38, 39], these cementoblasts
responded with downregulation of Cbfa1 and Ocn and
upregulation of Opn, further indicating a responsive but
reactive metabolism relative to nearby osteoblasts [40].

These results with cementoblasts in vitro alone do not
explain in vivo observations of a hypercementosis phe-
notype in ank/ank and ttw/ttw mutant mice. ePPi is de-
creased as a result of both of these mutations, so the
ratio of Pi/PPi may increase, favoring hydroxyapatite
formation rather than suppression. When treated with Pi

in vitro, cementoblasts responded by regulating tran-
scripts in a way that would decrease or deemphasize
mineralization and increase ePPi. Cementoblast behav-
ior in vivo is probably more complex than previously
thought, reflecting interactions with other cells and sig-
naling molecules during development.

Phosphate as a Signaling Molecule

Phosphate present in the extracellular milieu of miner-
alizing cells (cementoblasts, osteoblasts, odontoblasts,
etc.) may serve as a signal for a shift in cell function/
differentiation, in addition to acting as one of the
building blocks for hydroxyapatite mineral. Studies by
several groups have begun to explore the mechanisms of
Pi and PPi regulation of cell gene expression (for a
thorough review of PPi pathophysiology, see [41]). Pi

was first shown to be a direct inducer of Opn expression
in MC3T3-E1 preosteoblast cells [42] and hypothesized
to act as a signal to cue these precursor cells to undergo
cellular changes necessary for differentiation and matrix
mineralization [14, 18, 43]. The OCCM-30 cemento-
blasts used in the present study, however, are more
differentiated cells and not necessarily primed to re-

spond in the same way to molecular signals from an
earlier developmental stage. In fact, these mature cells
have been shown to downregulate differentiation- and
mineralization-associated gene transcripts such as Bsp
and Ocn when exposed to prodifferentiation signals such
as BMP-2 [37], while the putative precursor dental fol-
licle cell can be induced to differentiate to a mineralizing
phenotype by BMP-2 [44]. Therefore, if mature ce-
mentoblasts respond to a Pi signal, it may not be a shift
toward differentiation and need not be interpreted as
such.

Pi has additionally been shown to be an apoptogen
for chondrocytes and osteoblasts in the 1–10 mM range,
possibly a signal for the clearing of terminally differen-
tiated cells, with osteoblasts showing relatively less
sensitivity to Pi treatment than tibial chondrocytes
[17, 45]. This histological clearing would accomplish the
removal of cells that had served their purpose (e.g.,
chondrocytes in the tibial growth plate) or that needed
to be removed for tissue remodeling (osteoblasts or os-
teocytes during bone turnover). While cementoblasts
have been found to be phenotypically very similar to
osteoblasts [46, 47] and cementum is similar to both
bone and dentin in composition (all are carbonated
hydroxyapatite), cementum is not known to undergo
significant remodeling during its lifetime. In fact,
cementum seems to be extremely resistant to resorption
by osteo-/odontoclasts, as evidenced by the relative
rarity of cementum resorption and its resistance to
resorption even when adjacent alveolar bone is being
actively resorbed, as in conditions of advanced peri-
odontal disease. Cementoblasts may play a protective
role against root resorption, and we have shown a high
production of osteo-protegerin (Opg) in cementoblasts
in vitro, suggesting that this role may include active
production of antiresorptive factors [48, 49]. Therefore,
cementoblasts may not respond to such cues for apop-
tosis and may be less sensitive (than chondrocytes and
osteoblasts) or not sensitive to Pi as an apoptosis signal.
Other possible roles for Pi include those proposed by
George�s group [50] and Shapiro�s group [51, 52], which
further implicate a potential role for Ca2+ ions in con-
junction with Pi-mediated signaling events, a facet that
we did not examine here.

Phosphate and the Cementoblast

What emerges is a portrait of the cementoblast as a
sophisticated cell operating in a complex environment
and Pi as a multitasking ion operating in mineralized
tissue formation (Fig. 5). Along with calcium, Pi is a
necessary building block for hydroxyapatite formation
that is released during mineral tissue turnover. While
ePPi is a potent inhibitor of hydroxyapatite formation, it
is also present as a pool for Pi creation via the action of
enzymes such as TNAP. In this way, several proteins
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regulate local concentrations of Pi and PPi, increasing,
decreasing, and transporting Pi and PPi. Here, we show
that Pi regulates genes involved in Pi/PPi homeostasis
and those known to be important in the maturation and
mineralizing functions of cementoblasts and other
mineralizing cells, such as SIBLING family genes.
During formation, Pi may be an important regulator of
cementoblast function, including areas of maturation
and regulation of matrix mineralization. In addition to
elucidating factors important to cementum develop-
ment, there is potential for these findings to be extended
to the creation of favorable conditions for cementum
regeneration.
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