
Real-Time Systems, 7:3, 247-273 (1994)
Q 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Runtime Monitoring of Timing Constraints in
Distributed Real-Time Systems*

FARNAM ,IAHANIAN farnam@eecs.umich.edu

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, M148109

RAGUNATHAN RAJKUMAR rr@sei.cmu.edu

Software Engineering Institute, Carnegie-Mellon University, Pittsburgh, PA 15213

SITARAM C. V. RAJU** sitaram@cs.washington.edu

Department of Computer Science and Engineering, University of Washington, Seattle WA 98195

Abstract . Embedded real-time systems often operate under strict timing and dependability constraints. To
ensure responsiveness, these systems must be able to provide the expected services in a timely manner even in
the presence of faults. In this paper, we describe a run-time environment for monitoring of timing constraints in
distributed real-time systems. In particular, we focus on the problem of detecting violations of timing assertions
in an environment in which the real-time tasks run on multiple processors, and timing constraints can be either
inter-processor or intra-processor constraints. Constraint violations are detected at the earliest possible time by
deriving and checking intermediate constraints from the user-specified constraints. If the violations must be
detected as early as possible, then the problem of minimizing the number of messages to be exchanged between
the processors becomes intractable. We characterize a sub-class of timing constraints that occur commonly in
distributed real-time systems and whose message requirements can be minimized. We also take into account the
drift among the various processor clocks when detecting a violation of a timing assertion. Finally, we describe a
prototype implementation of a distributed rim-time monitor.

1. Introduction

With ever-increasing reliance on digital computers in embedded real-time systems for di-
verse applications such as avionics, distributed process control, air-traMc control, and
patient life-support monitoring, the need for dependable systems that deliver services in
a timely manner has become crucial. Embedded real-time systems are in essence respon-
sive: they often interact with the environment by "reacting to stimuli of external events and
producing results, within specified timing constraints" (Kopetz and Verissimo 1993). To
guarantee this responsiveness, the system must be able to provide the expected service even
in the presence of faults. This paper addresses the problem of detecting timing failures in
distributed real-time systems. This work is motivated by the observation that the unpre-
dictability of the physical environment and the inability to satisfy design assumptions during
transient overload can cause unexpected conditions or violations of system constraints at

* This work was done while the first two authors were at the IBM T.J. Watson Research Center.
** Supported in part by the Office of Naval Research under grant number N00014-89-J-1040 and by National
Science Foundation under grant number CCR-9200858.

21

248 F. JAHANIAN, R. RAJKUMAR, AND S.C.V. RAJU

run-time. It is highly desirable that under these error conditions, total system failure does
not occur and critical system functions of the system are still performed. Hence, design as-
sumptions and important system constraints must be monitored at run-time, and a violation
must be detected and appropriate action taken in a timely fashion.

In an earlier work (Chodrow, Jahanian and Donner 1991), we have presented a general
framework for formal specification and monitoring of run-time constraints in time-critical
systems. We also described a single-processor implementation of a monitoring subsystem
for an IBM RSI6000 workstation running the AIXv.3 operating system 1. In this paper, we
consider the problem of run-time monitoring in a distributed real-time system. Monitoring a
timing constraint becomes more complicated in a distributed system due to the occurrences
of events on multiple processors. This has several implications. First, detecting a violation
as early as possible may require partial evaluation of a timing constraint as time progresses.
Secondly, extra messages may have to be exchanged to propagate the occurrence of an event
on a processor to others. Finally, in the absence of perfectly synchronized processor clocks
or a global system clock, the meaning of a timing assertion on distributed events must be
defined precisely.

Our run-time monitor for distributed real-time systems is based on the event model pro-
posed in (Jahanian and Goyal 1990). Our prototype is an extension of the uniprocessor
implementation reported in (Chodrow, Jahanian and Donner 1991). In this model, a sys-
tem computation is viewed as a sequence of event occurrences. The design assumptions and
system properties that must be maintained are expressed as invariant relationships between
various events, which are monitored during run-time. If a violation of an invariant is de-
tected, the system is notified so that suitable recovery options can be taken. The invariants
are specified using a notation based on Real-Time Logic (RTL), and timing constraints are
allowed to span processors. Our run-time monitoring facility monitors and detects vio-
lations in a distributed fashion. This distribution prevents any single monitoring process
from becoming a bottleneck. In addition, monitoring of events on the processors where they
occur allows violations to be detected as early as possible. Our monitor consists of a set of
cooperating monitor processes (daemons), one on each processor. Application tasks on a
processor inform the local monitor daemon of events as they occur. The monitor daemon on
a processor checks for a violation as local events happen; it also sends the information about
certain event occurrences that are needed by remote monitors to other processors. A clock
synchronization algorithm ensures that event occurrence times on different processors can
be meaningfully compared.

1.1. Related Work

Despite extensive work on monitoring and debugging facilities for parallel and distributed
systems, run-time monitoring of real-time systems has received little attention with a few
exceptions. Special hardware support for collecting run-time data in real-time applica-
tions has been considered in a number of recent papers (Haban and Wybranietz 1990),
(Tsai, Fang and Chen 1990). These approaches introduce specialized co-processors for the
collection and analysis of run-time information. The use of special-purpose hardware al-
lows non-intrusive monitoring of a system by recording the run-time information in a large

22

R U N T I M E M O N I T O R I N G OF TIMING C O N S T R A I N T S 249

repository, often for post analysis. A related work (Haban and Shin 1989) studies the use of
monitoring information to aid in scheduling tasks. The underutitization of a CPU due to the
use of scheduling methods based on the worst-case execution times of tasks is addressed by
the use of a hardware real-time monitor which measures the task execution times and delays
due to resource sharing. The monitored information is fed back to the operating system for
achieving an adaptive behavior. A work closer to our approach is a system for collection and
analysis of distributed/parallel (real-time) programs (Kilpatrick, Schwan and Ogle 1990).
The work is based on an earlier system for exploring the use of an extended E-R model
for specification and access to monitoring information at run-time (Snodgrass t988). The
assumption is that the relational model is an appropriate formalism for structuring the in-
formation generated by a distributed system. A real-time monitor developed for the ARTS
distributed operating system is presented in (Tokuda, Koreta and Mercer 1989). The pro-
posed monitor requires certain support from the kernel, such as notification of the state
changes of a process, including waking-up, being scheduled. In particular, the ARTS ker-
nel records certain events that are seen by the operating system as the state of a process
changes, e.g., waking-up from a blocked state, being scheduled. These events are sent
periodically by the local host to a remote host for displaying the execution history. The
invasiveness of the monitoring facility is included in the schedulability analysis. Monitor-
ing and detecting violations of certain predefined timing constraints have been proposed in
real-time languages, such as FLEX (Kenny and Lin 1991).

Detecting a violation of a timing assertion in a distributed system is also related to
the problem of detecting stable (global) properties of a system. Many snapshot algo-
rithms for establishing a global consistent system state have been proposed in the past
(e.g. (Chandy and Lamport 1985), (Koo and Toueg 1987)). A more recent work proposed
a method for detecting locally stable properties by constructing substates of a system
(Marzullo and Sabel 1992). The goal of the snapshot algorithms is to preserve causal-
ity when constructing a global system state. In our case, i fa history of event occurrences is
maintained, then detecting a violation of a timing assertion can be viewed as detecting a sta-
ble property. Of course, a primary motivation for our work is to detect a violation as early as
possible. Furthermore, causality between event occurrences is captured by a static constraint
graph in our model. Recent work on evaluating nonstable global predicates for distributed
computations also relate to our work, but to a lesser extent (Garg and Waldecker 1992),
(Marzulto and Neiger 1991). Reference (Marzullo and Neiger 199t) looks at several tech-
niques for limiting the exponential number of states that must be considered to evaluate a
property over computations. Reference (Garg and Waldecker 1992) considers an alterna-
tive approach by restricting the global predicate to one that can be efficiently detected, such
as the conjunction and disjunction of local predicates. A good article on monitoring dis-
tributed computations for asynchronous systems appears in (Babaoglu and Marzullo 1993).

The rest of this paper is organized as follows. Section 2 describes an aircraft tracking
system and discusses issues in detecting a violation of a timing assertion. Section 3 presents
our event-based computation model, and discusses specification of timing assertions. Sec-
tion 4 presents a solution to the problem of minimizing extra messages to propagate event
occurrences to other processors, and discusses the effect of synchronized clocks on detect-
ing a violation. Section 5 describes a prototype implementation of a monitor for a network

23

250 F. JAHANIAN, R. RAJKUMAR, AND S.C.V. RAJU

of RSt6000s running AIXv.3 operating system. Finally, Section 6 presents our concluding
remarks.

2. Motivation and Research Issues

In a distributed real-time system, there can be timing constraints imposed on events across
multiple processors. These interprocessor timing constraints are among the hardest to
enforce as well as to verify. This section motivates the problem by describing an aircraft
tracking system with end-to-end requirements.

2.1. Aircraft Tracking System

The structure of an aircraft tracking system is shown in Figure 1. A radar signal is received
by a radar controller, which is a special-purpose processor. The signal is fed into a general-
purpose processor that does calibration and tracking. Next, the signal is sent to a host
interface that does some preprocessing and sends the signal to a console processor 2, which
performs some filtering and number-crunching in parallel. Finally, the signal is sent to a
special-purpose display processor that displays the appropriate tracking information on the
monitor. There is a 2 seconds end-to-end deadline from the time an event is received by the
radar controller to the time it is displayed by the display processor. In addition, there is an
intermediate 0.5 second deadline on the display commands step on the display processor
from the preprocessing step on the host interface processor.

2.2. Issues in Monitoring of Distributed Constraints

A monitoring facility can prove very useful in checking interprocessor timing constraints
such as those of the aircraft tracking system. A recovery task can be invoked ifa violation of
timing constraints is detected. Several issues need to be addressed by a distributed monitor
that checks interprocessor timing constraints.

• Time of detection of violations: Detecting violations as early as possible is a desirable
property because it can allow the system to take corrective action before the violation
actually happens.

• Number of messages: Since events happen on different processors and timing con-
straints can span processors, some form of interprocessor communication is needed to
propagate this information. In a distributed environment, event occurrences must be
communicated using messages. Minimizing the number of extra messages is crucial
for reducing overhead.

• Clocks and Timer Granularity: When an event occurs there must be a way of record-
ing the occurrence time of the event. The granularity of timestamping determines the
minimum observable spacing between two consecutive events on a processor. Times-
tamping is typically done by reading the clock on the local processor. A distributed

24

RUNTIME MONITORING OF TIMING CONSTRAINTS 251

2 seconds deadline
, ~ .

Radar C&T Host Common Display
Controller Processor Interface Console Processor

0.5 seconds deadline

filtering

prepro~ m E @ ~ ~
~ commands
number

crunching

Figure 1. An Aircraft Tracking System

system must also deal with the fact that the clocks on different processors are not per-
fectly synchronized. The processor clocks, however, can be kept synchronized within a
known maximum bound on the deviation between them. Clock synchronization allows
controlled comparison of timestamps from different clocks. In particular, one must take
into consideration the deviation between clocks when evaluating a timing assertion at
run-time.

Resource management: Another fundamental aspect of a distributed monitor involves
the need to quantify the timing intrusiveness of the monitoring activities on the timing
behavior of the real-time application. A discussion of our approach to scheduling the
monitoring activities is beyond the scope of this paper and interested readers are re-
ferred to (Jahanian and Rajkumar 1991). This approach allows the run-time monitoring
processes to be scheduled as time-constrained activities and therefore can be part of the
schedulability test for the system.

3. Timing Constraints in Real-Time Systems

We express the timing constraints in a notation (Chodrow, Jahanian and Donner 1991)
based on Real-Time Logic (RTL). A detailed description of the computation model and
the specification language is beyond the scope of this paper. In this section, we present
an informal overview of the computational model and then discuss the representation of a

25

252 I< JAHANIAN, R. RAJKUMAR, AND S.C.V. RAJU

timing assertion as a directed constraint graph. Finally, we introduce the conditions under
which a timing assertion can be violated.

3.1. Specification of Timing Assertions

An application consists of a set of cooperating tasks, perhaps running on multiple proces-
sors. The monitoring subsystem views a computation of the system as a partially-ordered
sequence of event occurrences. Informally, events represent things that happen in a system.
For example, an event may denote the start/completion of a program segment, reading a new
sensor value into a program variable or receiving a message from another task. An event
occurrence defines a point in time at which a particular instance of the event happens in a
computation. Thus, a safe O, property or a timing constraint can be expressed as an assertion
about the relationship between event occurrences in a computation. For example, suppose
event E denotes the invocation of a task T and another event E' denotes the completion of
the task, and task T is executed periodically. Each invocation of the task corresponds to an
occurrence of the event E. Similarly, whena particular invocation of task T completes, it
corresponds to an occurrence of event E . A timing constraint, such as a deadline, specifies
the relationship between the occurrences of event E and E'. A deadline of lOOms on the
execution of task T requires that the corresponding occurrences of E and E' should be within
lOOms.

To detect timing constraints, it may be necessary to record multiple occurrences of an
event. For example, to check a constraint on the interval between two successive instances
of an event, the past two instances of the event must be stored. The occurrences of an event
are stored in a circular queue called its event history, which maintains the last n occurrence
times of the event. The value of n depends on the assertion.

In our model, a timing requirements on a system is viewed as an assertion on the events
that can occur in the system. We need to provide a notation for specifying complex con-
straints that are to be monitored at run-time. The notation must be expressive enough to
capture a variety of complex constraints that may be imposeA on a system. For exam-
ple, a timing constraint may specify an end-to-end deadline on a set of actions that must
be executed upon receiving a new sensor value or a safety assertion may require a specific
precedence must hold among the actions while the system is in a certain mode. As described
in (Jahanian and Goyal 1990), we use a notation based on RTL for specifying timing asser-
tions. We provide two functions for accessing the event histories: the occurrence function
@(e, i), which returns the time of the ith occurrence of event e, and @val(v, i), which
returns the value of the ith assignment to a variable v. A positive occurrence index is
absolute with respect to the beginning of the computation sequence. For example, @(e, 5)
refers to the 5th occurrence of event e. When the index i is negative, it refers to the ith most
recent occurrence of the event in a computation. For example, @(e, - 1) denotes the time
of the most recent occurrence of e. An occurrence index of 0 is undefined. We present two
examples to illustrate how the notation can be used.

26

RUNTIME MONITORING OF TIMING CONSTRAINTS 253

Example: Consider two events el and e2 which must always occur in pairs and within 5
time-units of each other. The following formula specifies such a constraint.

Vi @(el, i) < @(e2, i) + 5 V @(e2, i) < @(el, i) + 5 (1)

Example: The value of the occurrence indices in a timing constraint need not be a variable
or a positive integer. It can be relative to the current index in a computation. Consider
an event whose successive occurrences must be separated by at least 5 time-units. The
following RTL formula specifies such a constraint.

@(response,-2) < @(response,-1) - 5

If this constraint is checked whenever a response event occurs, then it is equivalent to

Vi > 1 @(response, i - 1) < @(response, i) - 5

If a violation occurs, the system will be notified by the monitoring facility. The checking
of a timing constraint may require multiple instances of an event occurrence to be stored.
Each of these occurrences is referred to by an occurrence index.

3.2. Graph Representation of Timing Constraints

I f a timing assertion is in a disjunctive normal form as in Equation 1, each conjunct can be
represented as a directed, weighted graph, called a constraint graph. Each constraint graph
represents a conjunction of predicates, and each edge in the graph is a predicate of the form:

@(e,i) <_ @ (f , j) ± C

such that i, j are integer variables/constants 3 and C is an integer constant.
Intuitively, a predicate in a conjunct represents either a delay or a deadline constraint

on a pair of events. The vertices of the constraint graph correspond to unique occurrence
functions; the weighted edges denote the constraints between event pairs. For example, the
following delay constraint:

@(response,-2) < @(response,-1) - 5

is represented by an edge with weight -5 as shown in Figure 2. A predicate of the
form @(response, 1) _< C where C is an absolute time value is translated to an edge

0 ~ @(response 1) where 0 is a special "zero vertex" designed to take care of con-
stants. Similarly, a predicate of the form C < @(response, 1) is represented by an edge

@(response, 1) Z_~ O.
As an example of a deadline constraint, consider the following assertion:

Vi @(aek, i) < @(send, i) + 12

27

254 F. JAHANIAN, R. RAJKUMAR, AND S.C.V. RAJU

Figure 2, Delay constraint

Figure 3. Deadline constraint

10

Figure 4. Intermediate deadline from el to e3

This constraint specifies that an aek event must occur within ~.2 time-units of its corre-
sponding send event, and is represented by an edge with positive weight 12 as shown in
Figure 3.

A path between two vertices u and v in the graph is a sequence of edges from u to v. The
length of a path is the sum of the weights of all edges along the path. In the rest of the
paper, without loss of generality, we do not associate any occurrence indices to events. This
is possible because a specific constraint graph is instantiated for a set of event occurrence
indices before checking for a violation.

3.3. Implicit Constraints

In addition to the explicit delay or deadline edges in a constraint graph, we can derive certain
implicit constraints often as an intermediate deadline or delay. In fact, it is possible that an
implicit constraint is violated before an explicit deadline or delay becomes unsatisfiable at
run-time.

For example, consider the simple constraint graph in Figure 4. It consists of two explicit
timing constraints: a deadline edge and a delay edge. Events el, e2 and e3 occur on

28

RUNTIME MONITORING OF TIMING CONSTRAINTS 255

processors 1, 2 and 3, respectively. There is an explicit deadline from el to e2. In addition,
since there is a path from el to e3 of length 6, there is an implicit, intermediate deadline
of 6 from el to e3. If the intermediate deadline is not met, then either the explicit deadline
or the delay constraint from e3 to e2 will eventually be violated. If the violation of the
implicit constraint between el to e3 is detected, the system can be notified before any of the
two user-specified constraints are violated. As a result, corrective action can potentially be
taken even before the application-level constraint is violated.

3. 4. Checking Constraint Graphs

The constraint graphs must be checked for potential violations at certain discrete points in
time. We establish these discrete points of time in this section.

When an event occurs that may affect the satisfiability of a timing assertion, a satisfiability
checker is invoked to check for violations. The checker instantiates the vertices of the
graph from event histories. For example, the vertex @(response, -1) will be replaced by the
occurrence time of the most recent response event. The vertex @(send, i) will be replaced
by the occurrence time of the current activation of send event. Vertices that have been
instantiated are merged with the 0 vertex as follows: Every edge with weight w incoming
to a vertex, to which a time value t has been assigned, is replaced with an edge with weight
w-t incident on the 0 vertex. Conversely, every edge with weight w outgoing from a vertex,
to which time t has been assigned, is replaced with an edge of weight w+t outgoing from
the 0 vertex. Vertices that have not yet occurred are not instantiated. Instead, an edge from
the uninstantiated vertex to the 0 vertex, of weight equal to -current_time is added. This is
an assertion that the event has not happened since system startup. The actual algorithm for
checking violations will be discussed in Section 4.2.

Event occurrences in real-time systems can happen in different orders. For example, two
occurrences each of events A and B can occur as (among other possibilities)

A1B1A~B2

o r as,

A1A2BIB2

If there is a deadline constraint from the i th occurrence of A to the i th o c c u r r e n c e of B then
the timing constraint is from A1 to t31 and from A2 to B2. Hence when the constraint graph
is instantiated, the same occurrence index must be used for all vertices in the constraint
graph.

We state a lemma that establishes the conditions under which a timing assertion (constraint
graph) may be violated.

LEMMA 1 In a constraint graph, the earliest time a constraint can be violated is as follows:

I. A delay constraint will be violated, if for a path of negative length - T (T >_ O) from
vertex en to vertex O, the event corresponding to vertex en happens before time T.

29

256 F. JAHANIAN, R. RAJKUMAR, AND S.C.V. RAJU

2. A deadline constraint will be violated if the minimum length T (T > O) of all shortest
paths from vertex 0 to all other vertices is to a vertex em and the event corresponding
to vertex em does not happen at or before T.

Proof: The proof of Lemma 1 appears in the appendix.

Lemma 1 states that delay violations need only be tested whenever an event occurs, and
deadline violations need not be tested before some timeout value. Hence, a constraint graph
must be checked for violations after the occurrence of any event in the graph. The event
occurrence is instantiated in the graph with its occurrence time and the graph is checked
for violations. If the graph is not violated, the length of the minimum of the shortest paths
from vertex 0 to all uninstantiated Vertices is computed. If this length P is not infinity then
a timer that expires at time P is set. The graph is again checked for violations when the
timer expires or when an event happens, whichever is earlier.

4. A Monitor for Distributed Real-Time Systems

In this section, we focus on our approach to deal with the issues that arise in monitoring
distributed real-time systems such as the aircraft tracking system of Figure 1.

We assume that interprocessor communication is reliable. This assumption is valid when-
ever a reliable communication mechanism based on acknowledgments is used. We also
assume that there is no migration of application tasks among processors. This assumption
can be relaxed if as part of a mode change, the constraints to be monitored and the new
communication patterns are also re-established. In this section, we also assume that if there
is a delay constraint between a pair of events on distinct processors, the communication
latency between the two processors is less than the delay constraint.

In the preceeding section, we established the conditions under which a timing assertion
may be violated. We now focus on two other key problems: minimization of messages given
that violations must be detected as early as possible, and the effect of clock synchronization
in evaluating a constraint at run-time.

4.1. Minimization of Messages

Messages must be passed across processor boundaries to check interprocessor timing con-
straints. In this subsection, we address the issue of minimizing these message-passing
requirements. We assume that each monitor process knows every constraint graph that con-
tains one or more events happening on its local processor. Whenever a local event occurs,
a monitor process must decide whether the event must be communicated to other monitors.
We also assume in this subsection that there is a single clock in the system. This assumption
will be relaxed in the next subsection.

We shall use the following terminology. There is a correspondence between an event en,
the processor n on which the event happens and the monitor on processor n. Hence, we

30

RUNTIME MONITORING OF TIMING CONSTRAINTS 257

will use the phrase e~'s monitor to mean the monitor local to the processor on which ei
Occurs .

Given a constraint graph G and a vertex e~, the list of monitors to whom the occurrence of
ei must be communicated can be determined as follows. Run the shortest-path algorithm on
the graph G such that the shortest path from any vertex to every other vertex is obtained. We
refer to this resulting graph as the shortest path graph This transformation of the constraint
graph adds edges that represent implicit constraints. Messages with event occurrence times
may also need to be sent over these additional edges. The shortest path graph captures
both explicit and implicit constraints. Since implicit constraints are derived from explicit
constraints, the violation of an implicit constraint implies the (potentially future) violation
of an explicit constraint. To detect violations as early as possible, implicit constraints need
to be considered.

Whenever an event ei occurs, its occurrence needs to be communicated (directly or
indirectly) to the monitor of any vertex ej, if in the shortest path graph, there exists a path
with positive weight from ei to ej or a path with negative weight from ej to ei. This
procedure is illustrated in Figure 5(a), which shows a constraint graph G. The shortest-path
graph derived for one vertex el is shown in Figure 5(b). From this graph, whenever event
el occurs, it must be communicated (directly or indirectly) to the monitors of events e2
through e6.

In practice, instead of running the shortest-path algorithm w.r.t, one node, the algorithm
would be run on the entire graph such that the shortest path from any node to every other
node is obtained.

1. Delay violations. If there is a vertex ej such that there exists a path from ej to ei of
negative length, then there is a precedence constraint between ei and e 5. The occurrence
time of e~ must be sent to ej's monitor, so that when ej happens the monitor can check
if the delay constraint has been violated. Hence the occurrence time of e~ must be sent
to all such monitors. Thus, in Figure 4, e3's occurrence time needs to be sent to e2's
monitor.

2. Deadline violations. If there is a vertex ej such that there exists an edge with positive
weight from ei to ej, then the occurrence time of e~ must be sent to ej's monitor, so
that the monitor can check if ej happens within the deadline. There may be events
ek that precede e 9, but not ei. Such events will have earlier deadlines and represent
intermediate points at which eventual violations of delays/deadlines can be detected.
Hence messages must also be sent to all such ek's monitors. For example, in Figure
4, e l ' s occurrence time needs to be sent to e2's monitor and to e3's monitor. The
requirement of earliest violation detection can be relaxed, to reduce the number of
messages. In this case, the occurrence time needs to be sent only to all e j ' s monitors
such that there exists an edge with positive weight from ei to ej.

Using the shortest path graph to determine the recipient monitors of an event occurrence
can be very pessimistic. It is often possible that some of the messages can be eliminated as
they are either redundant or two (or more) messages can be combined into a single message.
For example in Figure 5(b), e l ' s occurrence needs to be communicated to e4's monitor and
to e5's monitor. Also, e4's occurrence time needs to be communicated to e5's monitor.

31

258 F. JAHANIAN, R. RAJKUMAR, AND S.C.V. RAJU

_4

(a)

3

3

-4 -6

(b)

Figure 5. Determining the recipients of event el(a) The application-level constraint graph. (b) The shortest path
constraint graph for el.

However, the weight of the edge from vertex el to vertex e5 is the same as the length of
the path ele4es. As a result, the message from el 's monitor to es's monitor, containing the
occurrence time of el, can be eliminated.

Again in Figure 5(b), ei 's occurrence time needs to be sent to the monitors of e2 and e3.
In addition, e2's occurrence time needs to be sent to e3's monitor. There is also an ordering
of events, el (first), e2 (second) and e3 (last) such that if these events happen in any other
order, a constraint would be violated. As a result, the message from e2's monitor to ea's
monitor can also carry the occurrence time of el. Thus, the message from el 's monitor to
e3's monitor can be eliminated.

Naturally, it is desirable that the maximum number of messages are either removed or
combined. However, the problem of minimizing the number of messages for arbitrary
constraint graphs is intractable. We show next that removing the maximum number of
redundant messages is NP-complete for constraint graphs whose edges have positive weights
only. The formal statement of the problem called irredundant deadline graph (IDG) problem
is as follows:
Instance: Given a constraint graph G with positive weights for all edges, and a positive
integer K < number of edges in G.

32

RUNTIME MONITORING OF TIMING CONSTRAINTS 259

Question: Is there a subset G' c_ G where the number of edges in G' is < K such that,
for every ordered pair of vertices, u, v E G, the shortest path from u to v in graph G' is of
length d, if and only if the shortest path from u to v in G is also of length d ?

THEOREM 1 Irredundant deadline graph (IDG) is NP-complete.

Proof: By transformation from the minimum equivalent digraph problem (MED) (Garey
and Johnson 1979). The formal statement of the MED problem is as follows:
Instance: Directed graph G -- (V, A), positive integer K < IAI.
Question." Is there a subset A' C_ A with IA'[_< K such that, for every ordered pair of
vertices u, v E V, the graph G' = (V, A') contains a directed path from u to v if and only
if G does ?

A nondeterministic algorithm can guess a set of I K'[edges, compute the all pairs shortest
paths for G and G' and check them for equality. Hence IDG is in NP.

We can transform an arbitrary instance of MED, M = (V, A), into an instance of IDG
t . , .

G' = (V, A), by assigning a weight of 0 to every edge of M. This can be done in polynomial
time. Clearly, the irredundant deadline graph for G' will have a path between any ordered
pair of vertices u, v if and only if M has a path between u, v. Hence the answer to IDG is
yes if and only if the answer to the corresponding MED is yes. Hence IDG is NP-complete.

[]

Given that the problem of minimizing the number of messages is intractable, we next
consider sub-classes of constraint graphs that are likely to occur in real-time systems, and
whose message requirements can be easily minimized.

Definition: An event ei is said to precede event ej in a constraint graph, if there exists a path
from vertex ej to vertex ei that consists of delay edges (i.e., edges with negative weights)
only.

Given this definition, we use the terms "delay edges" and "precedenqe edges" interchange-
ably.

4.1.1. Precedence-Preserving Graphs

The delay edges impose precedence or partial ordering on the set of event occurrences in a
constraint graph. Intuitively, the delay edges may represent the computation time of a task
or causality between a pair of events. For example, if there is a delay from event el to e2 (a
negative edge from e2 to el), event el must occur before (precede) e2. Otherwise, the delay
constraint is violated. In real-time systems, it is common to have an event that triggers a
task execution, which in turn generates other events. For example, in the aircraft tracking
system described in Section 2, the computation in each module triggers the computation
in the next module on completion. An incoming track signal is processed by different
modules in pipelined fashion. As a result, every data item that crosses module/processor
boundaries has delay or precedence constraints, and deadline constraints tend to be end-to-
end deadlines.

33

260 F, JAHANIAN, R. RAJKUMAR, AND S.C.V. RAJU

d >0 0 ~

Figure 6. The Constraint Graph for the Tracking System of Figure 1

In general, precedence relations are natural in real-time systems where data streams are
processed in pipeline stages. Consider a distributed audio/video system that processes its
data in pipelined stages from one node to another node via gateways and communication
networks. More specifically, the audio/video signal is digitized and compressed at a sender
node and transmitted to a receiver node where it is uncompressed and displayed. The
audio/video data must be received/displayed at the receiver node at a precise rate. Hence,
there are precedence constraints between the various stages. If the data corresponds to
live interaction such as video conferencing, latency requirements will force an end-to-end
deadline as well.

Precedence relations among events also exhibit desirable properties from the communica-
tion requirements viewpoint. For example, if event el precedes event e2, then e2's monitor
must receive the occurrence time of el before e2 occurs. Otherwise a violation has taken
place. Hence, e2's monitor always has the potential to send the occurrence time of el and
e2 in a single message to a third monitor. These combinations can save messages. We
present a sub-class of constraint graphs called precedence-preserving graphs where send-
ing messages only along the delay edges is sufficient to detect all violations at the earliest
possible time.

Definition: A precedence-preserving graph is a constraint graph that satisfies the following
condition: If there is a shortest path from vertex ei to vertex ej of positive length, then the
source vertices of deadline edges on the path precede ej.

Recall the aircraft tracking system described in Section 2.1. The corresponding constraint
graph, shown in Figure 6, is a precedence-preserving graph. The 2 seconds deadline edge
is between the RC and DP/ec vertices, where the former precedes the latter. Also, the 0.5
seconds deadline is between the HI/pp and DP/ee vertices, which also have a precedence
ordering. As a result, in this graph, messages need be sent only along the delay edges.
For example, the node RC will send its event only to node CT. If the shortest path graph
were used, there exists a positive path from RC to every other node so that RC would have
to send 5 messages. The precedence-preserving graph thus results in substantial savings
of messages without compromising the time at which a violation wilt be detected. We
now prove this property of precedence-preserving graphs. The theorem is based on the

34

R U N T I M E M O N I T O R I N G OF TIMING C O N S T R A I N T S 261

d

Figure 7. Case where en precedes em

assumption that the message communication time between any two processors is less than
the delay constraints between events on the two processors. We also assume that a message
carries the time of occurrence of the local event and its predecessor events.

THEOREM 2 In a precedence-preserving graph, i f messages are being sent only along the
precedence edges, then all violations will be detected at the earliest possible time.

Proof: The proof consists of showing that messages along precedence edges carry the
required information of event occurrences to a vertex before delay or deadline violations
can occur.
Delay violation: Consider a vertex en in a precedence-preserving graph. A delay constraint
to another vertex ed can be of 2 types:

1. there is a negative edge from ea to e,~.

2. there is a path containing negative edges only from ea to en.

In the first case the occurrence time of en is sent to ca. Delay violations can be detected
according to Lemma 1. In the second case there are 2 possibilities:

.

.

The immediate predecessor of ed in the constraint graph has already occurred. Hence
ea will have information about the occurrence time of the immediate predecessor and
its predecessors. Hence, constraint violations, if any, can be detected by Lemma I.

The immediate predecessor of ed, say ei, has not happened. This implies that the delay
constraint to e~ has been violated. Hence the occurrence time of e~ and its predecessors
is irrelevant.

Deadline violation:

LEMMA 2 I f there is a deadline from vertex en to vertex e,~, then either e~ precedes e~
or there exists a vertex ek that precedes both en and e~.

Proof of L e m m a 2: Consider the path from en to era. Let the path be en, ei, ei+l, ei+2
• .. ei+p, era. If the edge from e~ to e~ is positive, then from the definition of precedence-
preserving graphs, e~ must precede era. If the edge from en to ei is negative, then consider
the first positive edge in the path (there must be such an edge as sum of weights on the

35

262 F. JAHANIAN, R. R A J K U M A R , AND S.C.V. R A J U

t

- r+ t

Figure 8. Case where e k precedes en and em

path is positive). Say the positive edge is from ei+a to ei+a+l. Now, from the definition of
precedence oriented graphs, ei+a precedes era. Also since there is a sequence of negative
edges from en to ei+a, e i+a precedes en. Thus, ei+a is the vertex ek. •

Consider the constraint graph of Figure 7 where en precedes era. Let ep be the immediate
predecessor of era. Let - p (p > 0) be the weight of edge from em to ep. Hence there is a
deadline d - p on ep. Since,

d - p < d

the deadline on ep is shorter than the deadline on era. Hence the occurrence time of en
needs to be communicated to ep first. When ep occurs, the occurrence time of ep and
its predecessors events will be communicated to en. By extending this argument to ep'S
immediate predecessor and so on, it can be seen that messages need to be sent along
precedence edges only.

Now consider the constraint graph of Figure 8 where a vertex ek precedes en and era.
Consider the deadline from en to em.

deadline = @(en) - r + t

The deadline from ek to em is

~(ek) + t

Assume,

@(en) - r + t < @(ek) + t

then,

< @(¢k) +

36

R U N T I M E M O N I T O R I N G OF TIMING C O N S T R A I N T S 263

But this means that the delay constraint from ek to en is violated and it will be detected
by en. In the absence of violation, the deadline on em is not shortened. Hence, messages
along the precedence edges will suffice. []

If a constraint graph is not a precedence-preserving graph, its message requirements
cannot be (easily) minimized but they can still be reduced. An edge E from vertex ei to
vertex e 9 can be deleted from a shortest-path constraint graph Gs, if the weight on the edge
is greater than or equal to the shortest path from ei to ej in the graph Gs - E. If an edge can
be removed, then the corresponding message along the edge need not be transmitted. As a
result, given an arbitrary constraint graph G, the messages that need to be communicated
can be determined as follows:

1. Run the shortest-path algorithm on G to obtain its shortest-path constraint graph Gs.
Let G' = G,.

2. Pick an edge E in G' from vertex ei to vertex ej such that the following condition is
satisfied. If the edge has a positive (negative) weight, the out-degree (in-degree) of ei
and the in-degree (out-degree) of ej must be greater than I. If there is no such edge,
the procedure ends.

3. Find the length of the shortest path p from vertex ei to vertex ej in G' - E.

4. If p < weight on E, delete E from G' .

5. Go to Step 2.

The final graph G' determines what messages must be transmitted when an event corre-
sponding to a vertex occurs. Messages must be sent from a vertex ei to a vertex ej if there
is a positive edge from ei to ej or a negative edge from ej to ei.

4.2. Effect o f Approximately Synchronized Clocks

The occurrence time of an event corresponds to the local time at its time of occurrence
on the processor where the event occurs. In a distributed system, the clocks on different
processors are not identical and deviate from one another. As a result, the checking of
constraint graphs must take these clock deviations into account.

If the deviation between various clocks is not bounded by a known value, it is dif-
ficult (perhaps impossible) to enforce in a meaningful way a timing constraint whose
events span multiple processors. We therefore use a clock synchronization algorithm to
bound the deviations among the various processor clocks (Arvind 1989), (Cristian 1989),
(Lundelius and Lynch 1984). As discussed in a subsequent section, we implemented ap-
proximately synchronized clocks based on the probabitistic algorithm described in
(Cristian 1989). A clock process on each processor synchronizes with the clock process on
a master processor (master clock) by exchanging messages.

Let e be the maximum deviation among the clocks. We now state a theorem that gives the
necessary and sufficient condition for violations in a constraint graph in which a constraint

37

264 F. JAHANIAN, R. RAJKUMAR, AND S.C.V. RAJU

spans events on more than one processor. The intuition behind the theorem is as follows: If
there is a constraint of length P between events on two different processors, the constraint
length should be changed to P - e within the system. For example, if event e2 must happen
within 10 time-units after event el, the bounded clock deviation requires that e2 actually
happen within l 0-e after el. Otherwise, a violation may have occurred.

THEOREM 3 Given a cycle spanning more than one processor in a constraint graph, there
exists a set of clock deviations for which a constraint is violated, if and only if the length of
the cycle is less than e.

Proof: Since there is a cycle spanning more than one processor, there must exist two
adjacent vertices ei and ej in the cycle that are on two different processors.
I f part . Let there be a cycle of length < e. We consider delay and deadline constraints
between e~ and ej, and show that in either case the constraint is violated. The occurrence
time of any event is the time of its occurrence according to its local clock. Also, the local
clock of an event refers to the clock of the processor on which the event happens.

1. Delay constraint of P (0 < P) between ei and ej, i.e. ej must occur any time at or
after P time-units after the occurrence of ei. This means that

~(e~) + P < ~(ej)

Let the local clock of ej be e ahead of the local clock of ei. A violation takes place if
ej occurs on ej's processor any time before P + e after ei 's occurrence. Hence, the
constraint between the events must be adjusted as

@(ei) + (P + ~) <_ @(ej) (2)

Since there is a cycle, there has to be a path from ei to ej. Let the length of this path
be Q. That is, ej must occur any time at or before Q time-units after the occurrence of
e~. This means that

~(ej) _< Q + ~(ed (3)

For Equations (2) and (3) to be satisfied, we must have

Q - P ___ e (4)

.

This contradicts our assumption that the cycle length is less than e, i.e. Q - P < e.

Deadline constraint of P (0 < P) between ei and ej, i.e. ej must occur any time at or
before P time-units after the occurrence of ei. This means that

~(ej) ___ e (ed + P (5)

38

R U N T I M E M O N I T O R I N G OF TIMING C O N S T R A I N T S 265

Let the local clock of ej be e behind the local clock of ei. A violation takes place if ej
occurs any time after P - e after e~. Hence, the constraint between the two events must
be adjusted as

@(ej) _< + (P - c) (6)

Since there is a cycle, there has to be a path from ej to ei of length - Q . This means
that,

@(e~) + Q <_ @(ej) (7)

For Equations (6) and (7) to be satisfied, we must have

P - Q _>e (8)

This contradicts our assumption that the cycle length is less than e, i.e. P - Q < e.

Only if part. Let a constraint between vertices ei and ej be violated. The constraint can
either be a delay or a deadline constraint. We consider the 2 cases separately and show that
in either case there will be a cycle of length < e in the constraint graph.

I. Delay constraint of P (0 < P) between ei and ej. Since this has been violated, the
separation between ei and ej is less than P, i.e.,

@(ej) - @(el) < P

Since the local clock of ej can be ahead of the local clock of ei by a maximum of e, the
constraint can be violated if

or,

.

This implies that there is a path from ei to ej of length Q, where Q < P + e. Thus
there is a cycle of length

= Q - P < P + e - P < e

Deadline constraint of P (0 < P) between ei and ej. Since this has been violated, the
distance between ei and ej is greater than E i.e.,

> + e

39

266 F. JAHANIAN, R. RAJKUMAR, AND S.C.V. RAJU

Since the local clock of ej can be behind the local clock of ej by a maximum of c, the
constraint can be violated if

~ (e j) > ~ (e i) + P -

This constraint implies that there is a path from ej to ei of length - Q , where Q > P - e.
Thus there is a cycle of length

= P - Q < P - (P - ~) < ~ •

Theorem 3 implies that if processor clocks are synchronized to within e, we only need
to find cycles of length less than e in a constraint graph to detect a violation. The Floyd-
Warshall all-pairs shortest-path algorithm (Tarjan 1983) can be used to find the length of the
shortest cycles from all vertices in the constraint graph. The complexity of the algorithm
is O(n3), where n is the number of vertices in the graph. Since constraint graphs typically
contain a relatively small number of nodes, the algorithm's complexity typically does not
constitute a bottleneck.

5. A Distributed Run-Time Monitor Prototype

We have implemented a prototype of the distributed monitoring run-time system on a
network of IBM RS/6000 workstations connected to a token-ring. The workstations run
AIXv.3, a Unix variant that supports the assignment of static priorities to real-time processes,
which can immediately preempt other user processes. Real-Time processes in AIXv.3 have
higher priority than all other user processes, and the scheduler allows a higher priority
real-time process to preempt a lower priority real-time process immediately. Furthermore,
a fine-precision timer facility is supported, and the hardware clock registers in the RS/6000
can be read directly by a user process, which makes it possible to differentiate local events
that occur 1 #s apart.

The various components of the distributed monitor and their communication links are
shown in Figure 9. The clock synchronization layer synchronizes the workstation clocks to
within 4 ms. The run-time system for the distributed monitor uses the synchronized clocks
for timestamping events, and performs several functions. It keeps track of the history of
known events, transmits events of interest to other processors, and checks for constraint
violations. The application-level processes run on top of this run-time system and are
notified when a constraint violation occurs. All communication between components on
the same processor, such as event history access and the reading of the synchronized clock,
is via shared memory. Message-passing is used only for inter-processor communication.
The monitor system, the clock synchronization layer and an X window system based user-
interface consist of around 8000 lines of C code. We next describe in detail the principal
layers that comprise our testbed.

We implemented the probabilistic clock synchronization algorithm described in (Cris-
tian 1989). Every processor runs a clock-slave process that synchronizes its local clock

40

RUNTIME MONITORING OF TIMING CONSTRAINTS 267

violation() event() event violation() I event()
~ messa/ges ("~

, monitorl ~ - ~ / / ~ ~

get_logica~ime0 get_lo~icaltime0

lclockprocess 1 ~ / ~ - ~ c l ° c k p r ° c e s s 2 ~

processorl processor2

Figure 9. The Layered Interfaces of the Distributed Run-time Monitor

event ~ t ~ history

monitor network t

Figure 10. Application Process Interface to its Local Monitor

with the clock on a master processor by periodically exchanging messages with the clock-
master process. Based on our conservative choice of clock synchronization parameters,
we calculated the clock deviation of three RS/6000's on a single token ring. The maxi-
mum master-to-slave deviation for three RS/6000's on the same token-ring is 2 ms. The
maximum slave to slave deviation was twice the master to slave deviation, i.e., 4ms.

The run-time system for the distributed monitor consists of a set of cooperating monitor
processes, one on each processor. Each monitor process maintains the set (or subset) of
constraints being monitored, registers events of local application tasks, checks for constraint
violations and transmits events of interest to other monitors (including violations).

Application tasks inform the local monitor of an event occurrence by putting the event into
a queue in shared memory (Figure 10). A separate queue is maintained for each application
task. The monitor keeps the events in an event history that is local to the monitor.

41

268 F. JAHANIAN, R. RAJKUMAR, AND S.C.V. RAJU

If the occurrence time of an event has to be sent to a remote monitor, the monitor puts the
event and its local occurrence time into a message and sends it to other monitor processes.
Similarly, the monitor receives events from other monitors. If a message arrives from a
remote monitor or a timeout occurs, a monitor runs the satisfiability checker using Theorem
3. If a violation is detected, it notifies the application task (with termination as the default
action). If there is no violation, a timeout is set based on Lemma 1. The monitor process
on each processor executes the following loop:

1. loop
2. wait for local events, or for messages from

3. other monitors, or for timeout

4. run the satisfiability checker (Theorem 3)

5. if (there is a violation) {

6. inform application tasks of the violation

7. } else {

8. set timeout if required (Lemma 1)

9. if (local event has happened) {

10. send times of local event and its

11. predecessor events to other monitors

12. }

13. }

14. endloop

5.0.1. Granularity of Timestamps

Each occurrence of an event needs to be timestamped and requires the reading of the local
clock. There are 2 ways of reading the hardware clock on the RS/6000 workstations. The
first is the traditional means of using the POSIX interface to read the clock. The RS/6000
workstations also support an efficient assembly-language interface to read the hardware
clock registers using a small number of machine instructions. Reading the clock registers
directly is not a general solution because it may not be supported on other machines. On a
Model 930, the POSIX call takes 23 #s while the assembly language interface takes only
512 ns. On a Model 530, the corresponding numbers are 46 #s and 768 ns. These results
indicate that it is possible to differentiate local events that are less than 1 #s apart by directly
reading the hardware registers.

6. Conclusions

Run-time monitoring of a distributed real-time system must address issues such as con-
straint specification, clock synchronization, timer granularity, message overhead and time
of detection. In this paper we have extended the uniprocessor monitoring model of

42

RUNTIME MONITORING OF TIMING CONSTRAINTS 269

(Chodrow, Jahanian and Donner 1991) to a distributed real-time system. The principal
advantage of our approach is that derived intermediate constraints can predict the violation
of a user-level constraint even before the violation occurs. This can enable the application
to take corrective action to adapt to the error condition. We have shown that the problem of
minimizing of the number of messages exchanged between processors while still detecting
violations at the earliest possible time is intractable. However, for one common class of
constraints which arises whenever processing occurs in pipelined stages, message-passing
requirements can be readily minimized. The drift among the various processor clocks can
also be taken into account with clock synchronization. We have proved that by sending
messages only along the precedence edges, all timing violations will be detected at the ear-
liest possible time. Finally we have described a prototype implementation of our distributed
monitor model.

Several extensions of this work are currently under investigation. Predictability is an
important requirement of real-time systems. Therefore, one must quantify the intrusiveness
of the monitoring activities on the timing behavior of the real-time application. Monitoring
activities must themselves be scheduled and included in a scheduling analysis of the system
(Jahanian and Rajkumar 1991). A clean high-level programming interface is needed to
specify the monitored constraints and their, communication requirements. We are also
designing a suite of complementary tools that support specification, testing, fault-injection
and run-time monitoring of embedded real-time systems.

The approach to run-time monitoring of real-time systems, presented in this paper, has
been used to check the simulation of an executable specification. References (Raju 1994),
(Raju and Shaw 1994) describe the design, implementation and some experiments with
a monitor for a real-time executable specification language called Communicating Real-
Time State Machines. The simulation of an executable specification generates a trace of
events. The trace can be tested for functional and timing correctness. The advantage of
monitoring a simulation is that the specification designer need not manually observe the
simulation to find errors. The monitor reports errors as soon as they occur and off-line
analysis is not required. Thus the specification can be debugged before moving to design
and implementation. Assuming that a specification has been implemented in software,
the question arises: how does one check the consistency between the specification and its
implementation? One approach is to execute the specification and implementation using the
same test cases and to compare the results. Our monitoring methodology permits an alternate
and perhaps simpler approach: monitor the same assertions in both the specification and
implementation.

Acknowledgements

We would like to thank Alan Shaw for his comments on an earlier draft of this paper, We
would also like to thank the reviewers of a shorter version of this paper that appeared in the
13th RTSS.

43

270 F. JAHANIAN, R. RAJKUMAR, AND S.C.V. RAJU

Appendix

Proof of Lemma 1: We first prove a lemma regarding violations in a constraint graph when
all the events occur on a single processor.

LEMMA 3 A negative cycle in a constraint graph implies a constraint violation and vice
versa.

Proof of Lemma 3: In the following, @(e) refers to the occurrence time of event e.
I f par t : Let there be a negative cycle of length I in the constraint graph. Consider a node

ej in the cycle. The negative cycle implies

 (ej) + l < (ej)

This can never be satisfied. Hence, a violation has occurred.
Only if par t : Say a constraint violation has occurred. The constraint can either be a

deadline or delay violation. In either case we will show the existence of a negative cycle.
Delay: Consider a delay P between ei and ej. In order for the delay to be violated, ej

must occur less than P units after e,i, i.e.

 (ej) - < P

Hence, there is an edge from e~ to ej of length Q where Q < P. Thus there is a cycle of
length

= Q - P < O

Deadline: Consider a deadline P between ei and ej. In order for the deadline to be
violated ej must occur later than P units after e~, i.e.

Hence, there is an edge from e~ to ei of length - Q where Q > P. Thus there is a cycle of
length

= P - Q < O •

Proof of Lemma 1:
Par t 1. First we show that if en happens before time T then the constraint graph is violated.
Next, we show that there cannot exist a time Q, where Q < T, such that the constraint is
violated and event en has not happened yet.

Say e,~ happens at t < T. This implies that we can insert an edge of weight t from vertex
0 to en. The relevant portion of the constraint graph is shown in Figure AA. !. There is a
cycle of length t - T which is negative. Hence, the constraint graph is violated.

44

RUNTIME MONITORING OF TIMING CONSTRAINTS 271

Figure A. 1.

Figure A,2.

Now assume that en has not happened, but there is a violation at time Q before T. By
Lemma 2, there must exist a negative cycle at time Q. Let the length of path from vertex 0
to vertex e,~ be q (Figure AA.2). Now,

- T + q < 0

~ q < T

This means that vertex e,~ has happened at a time less than T. This contradicts the assumption
that e,~ has not happened before T. Hence, no such Q can exist.

Par t 2. Let the path length P from vertex 0 to vertex en be the minimum of all shortest
paths from vertex 0 to all other vertices. First we prove that if e,~ does not happen by time
P, then a constraint has been violated. Next, we show that there cannot exist a time Q,
where Q < P, such that if any event ek does not occur by Q then the constraint graph is
violated.

Ife,~ does not happen at time P, then e,~ can happen at P + c~ or later (a is infinitesimally
small). Hence we can insert an edge of weight - (P + a) from vertex en to vertex 0
(Figure AA.3). There is a cycle from vertex 0 to vertex en and back to vertex 0 of length,

P.- - P - o g z -oL

Hence the constraint graph is violated.

Now assume that there is a time Q, such that if some event ek does not happen by Q, then
the constraint graph is violated. At time Q, there exists a negative cycle involving ek, since
the constraint has been violated. Since ek has not happened by Q, an edge of weight - (Q)

45

272 F. JAHANIAN, R. R A J K U M A R , AND S.C.V. RAJU

P

- (P+a)

Figure A.3.

p

from ek to,vertex 0 can be added. Say the path from vertex 0 to vertex ek is P . Since there
is a negative cycle,

P - Q < 0

~ p ' < Q

Since Q < P ,

~ p ' < p

Hence there is path from vertex 0 to vertex ek that is shorter than P. Thus P is not the
minimum of shortest paths from vertex 0 to all other vertices. This is a contradiction. Hence
no such Q can exist. II

Notes

I. RS/6000 and AIX are trademarks of IBM Corporation.

2. In a real system, the signal may be sent to one of many consoles. In this paper, we assume a single console
for the sake of simplicity,

3. We assume that indices are not arithmetical expressions.

References

Arvind, K. 1989. A New Probabilistic Algorithm for Clock Synchronization, Proc. 1EEE Real-Time Systems
Symp., Santa Monica, pp. 330-339.

Babaoglu, O. and Marzullo, K. 1993. Consistent Global States of Distributed Systems: Fundamental Concepts
and Mechanism. in Distributed Systems, S. Mutlender (editor), 2nd edition.

Chandy, K. M. and Lamport, L. 1985. Distributed Snapshots: determining global states of distributed systems.
ACM Transactions on Computer Systems.

Chodrow, S , Jahanian, E and Donner, M. 1991, Run-Time Monitoring of Real-Time Systems, Proc. IEEE
Real-Time Systems Syrup., pp. 74-83.

Cristian, E 1989. Probabilistic Clock Synchronization, Distributed Computing. 3: 146-158.
Garey, M. R. and Johnson, D. S, 1979, Computers and Intractability: A Guide to the Theory of NP-Completeness,

W. H. Freeman and Company.

46

RUNTIME MONITORING OF TIMING CONSTRAINTS 273

Garg, V. and Waldecker, B. 1992, Unstable Predicate Detection in Distributed Programs, Technical Report,
University of Texas at Austin.

Haban, D. and Shin, K. G. Dec. 1989. Application of Real-Time Monitoring to Scheduling Tasks with Random
Execution Times, Proc. IEEE Real-lime Systems Syrup., pp. 172-181.

Haban, D. and Wybranietz, D. Feb. 1990. A Hybrid Monitor for Behavior and Performance Analysis of Distributed
Systems. IEEE Trans. on Software Eng. (16)2:197-211.

Jahanian, E and Goyal, A. June 1990. A Formalism for Monitoring Real-Time Constraints at Run-time, Proc.
IEEE Fault-Tolerant Computing Syrup,, pp. 148-155.

Jahanian, E and Rajkumar, R. May 1991. An Integrated Approach to Monitoring and Scheduling in Real-Time
Systems, 1EEE Workshop on Real-77me Operating Systems and Software.

Kenny, K. B. and Lin, K.-J. May 1991. Building Flexible Real-Time Systems using the Flex Language. Computer,
pp. 70-78.

Kilpatrick, C., Schwan, K. and Ogle, D. March 1990. Using Languages for Capture, Analysis and Display of
Performance Information for Parallel and Distributed Applications, International Conf. on CompnterLanguages.

Koo, R. and Toueg, S. January 1987. Checkpointing and Rollback-recovery for Distributed Systems. IEEE
Transactions on Software Engineering, pp. 23-31.

Kopetz, H. and Verissimo, P. 1993. Real-Time and Dependability Concepts, Distributed Systems, S. Mullen-
der(editor), 2nd Edition, pp. 411-46.

Lundelius, J. and Lynch, N, i984. An Upper and Lower Bound for Clock Synchronization, Information and
Control 62, pp. 190-204.

Marzullo, K. and Neiger, G. 1991. Detection of Global State predicates, Proc. of 5th International Workshop on
Distributed Algorithms (WDAG-91), Delphi, Greece, Springer-Verlag.

Marzullo, K. and Sabel, L. March 1992. Using Consistent Subcuts for Detecting Stable Properties, Technical
Report Department of Computer Science, Cornell University.

Raju, S. C. V. 1994. Using Assertions for Validating, Verifying and Monitoring Real-Time Systems, Ph. D, Thesis,
University of Washington.

Raju, S. C. V., Rajkumar, R., and Jahanian, F. December 1992. Monitoring Timing Constraints in Distributed
Real-Time Systems, Proceedings of the 14th Real-Time S~tems Symposium, pp. 57-67.

Raju, S. C. V. and Shaw, A, C. February 1994. "A Prototyping Environment for Specifying, Executing and
Checking Communicating Real-Time State Machines", Software - Practice & Experience, pp. 175-195.

Snodgrass, R. 1988. A Relational Approach to Monitoring Complex Systems. ACM Trans. on Computer Systems.
(6)2: 157-196.

Tarjan, R. E. 1983. Data Strucn~res and Network Algorithms, Society for Industrial and Applied Mathematics.
Tokuda, H., Koreta M. and Mercer, C. W. Jan. 1989. A Real-Time Monitor for a Distributed Real-Time Operating

System, ACM Sigplan Notices. (24)1: 68-77.
Tsai, J, P., Fang, K-Y and Chert, H-Y. 1990. A Noninvasive Architecture to Monitor Real-Time Distributed

Systems, lEEk" Cmnputer. (23)3:1 t -23.

47

