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ABSTRACT Cluster distance geometry is a re-
cent generalization of distance geometry whereby
protein structures can be described at even lower
levels of detail than one point per residue. With
improvements in the clustering technique, protein
conformations can be summarized in terms of alter-
native contact patterns between clusters, where
each cluster contains four sequentially adjacent
amino acid residues. A very simple potential func-
tion involving 210 adjustable parameters can be
determined that favors the native contacts of 31
small, monomeric proteins over their respective
sets of nonnative contacts. This potential then fa-
vors the native contacts for 174 small, monomeric
proteins that have low sequence identity with any of
the training set. A broader search finds 698 small
protein chains from the Protein Data Bank where
the native contacts are preferred over all alterna-
tives, even though they have low sequence identity
with the training set. This amounts to a highly
predictive method for ab initio protein folding at
low spatial resolution. Proteins 2005;60:82–89.
© 2005 Wiley-Liss, Inc.
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INTRODUCTION

Distance geometry is a way to deal with geometric
problems in terms of distances between points, rather than
using angles, coordinates, etc. In chemical applications the
points are usually atoms, and although it is simple to
calculate interatomic distances from atomic coordinates, it
is also possible to go from limited information on inter-
atomic distances to a sampling of configurations in terms
of coordinates that are consistent with the given con-
straints.1 Distance geometry can be generalized to treat
disjoint sets of points rather than individual points, and
the distances between pairs of points become the sums of
squares of all distances between each pair of point sets.
This lends itself to treating protein conformations where
the polypeptide chain is broken up into blocks each contain-
ing a given number of sequentially adjacent residues, and
the distance between two such blocks is the sum of the
squares of the distances between the two sets of C� atoms.2

Breaking up all conformation space into regions defined in
terms of upper and lower bounds on these generalized
distances, it is possible to devise a simple contact energy
function such that the statistical weight of the region

containing the experimentally determined native conforma-
tion predominates over the that of the nonnative regions at
some sufficiently low temperature.3

Qualitatively speaking, this problem has been ad-
dressed by many people over decades as what one might
call the structure recognition problem: given the correct
native conformation for some amino acid sequence and an
assortment of incorrect or decoy conformations, devise an
energy-like function that gives a lower value for the correct
conformation over all alternatives, preferable for many
different sequences. While there are many different ways
to produce such functions (such as refs. 4–24) and many
different ways to devise decoys (such as refs. 13, 16, 23,
25–28), a key assumption is that somewhere on the order
of 105 decoys can adequately cover all possible conforma-
tions. However, suppose that it is sufficient to describe
polypeptide conformations using two variables per resi-
due, and there are 100 residues. Even sampling all corners
of a 200 dimensional cube in such a conformation space
would involve 2200 � 1.6 � 1060 decoy structures, and
surely this is inadequate. Indeed, we have shown that local
optimization of the potential function with respect to
conformation is easily able to locate nonnative structures
having much superior function values, even for widely
respected protein recognition potentials.29

The guiding principles in this work are that (1) conforma-
tion space needs to be divided into regions covering whole
ranges of conformations rather than relying on a wide
scattering of individual conformations, and (2) it may well
be advantageous to represent protein structures at low
resolution to reduce the dimensionality of the conforma-
tion space. This second point is the key motivating factor
behind the current work. It is computationally infeasible
to thoroughly explore all possible, self-avoiding, conforma-
tions of a polypeptide chain having n � 100 residues, even
at a resolution of one point per residue. In terms of
interpoint distances, the space to be searched has dimen-
sion O(n2). Although one may be able to solve the structure
recognition problem for some sampling of thousands of
nonnative structures, it remains a strong possibility that
the result is a spurious fit to a woefully inadequate
coverage of conformation space. On the other hand, if the
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chain is grouped into blocks of b sequentially adjacent
residues, the conformation space now has dimension
O(n2/b2), and the same finite sampling of nonnative struc-
tures is orders of magnitude closer to being adequate.
Therefore, in this work we will not consider b �1 models.
Of course, there remains a tradeoff between a more
feasible sampling problem and a cruder approximation to
intramolecular interactions. At a ridiculous extreme, con-
sider b � n. Now in the cluster distance geometry analysis,
there is only one degree of conformational freedom, which
corresponds to the radius of gyration of the polypeptide
chain, and the search over conformation space is extremely
easy. However, the single cluster of n residues is character-
ized only by amino acid content, rather than sequence, so
the energy-like function is unable to discriminate between
folding and nonfolding sequences having similar amino
acid contents. Here we will explore models between the
b � 1 and b � n extremes, looking for enhanced conforma-
tional coverage while still retaining enough sequence
discrimination to perform well at structure recognition.

METHODS
Sequence Partitioning

Here we are developing a model for protein folding at
low spatial resolution. So far we have considered only
soluble globular proteins consisting of a single polypeptide
chain without substantial ligands or disulfide bridges, so
that the stability of the native state can be attributed to
intrachain interactions between residues and solvation of
residues in an unspecified generic aqueous environment.
Attention has been restricted to chain lengths n � 128
residues for the time being in order to keep the CPU and
memory requirements within reason. There is no intrinsic
reason why this limit could not be raised in the future.
Instead of representing the chain by all its atoms, or all its
nonhydrogen atoms, or even just the C� atom of each
residue, we group sequentially adjacent blocks of b resi-
dues together and represent each block as a cluster of b
points located at the respective C� atoms. Each point is
labeled according to the type of the residue, considering
only proteins having the standard 20 residue types.

Previously3 we adopted the zero-filling approach often
seen in signal processing, where shorter chains had imagi-
nary noninteracting residues appended to the C-terminus
to bring the total up to 128, and then all chains were
segmented into blocks of eight residues. As a shorter
example, suppose b � 3 and a given chain had seven
residues denoted by 1234567. Zero-filling to nine residues
gives 123456700 with two imaginary residues (“0”) ap-
pended, so that it can be segmented evenly into 123�456�700.
One problem is that the last segment has only one real
residue while the others have three. The other is that
perhaps a phase shift in segmenting would give more
meaningful groups of residues. For instance, if residues 1
and 2 are disordered but 3 is the beginning of a helix, then
having �345� as a block may be better. Here we do no zero
filling but rather truncate residues as necessary from the
N- and C-termini to have an even number of blocks. Thus,
1234567 becomes 123�456 or 234�567 or 345, and in

subsequent calculations we consider equally all three
alternative segmentations for all chains of seven residues.
Such segmentation rather than zero-filling turns out to be
essential to producing models that are successful at struc-
ture recognition.

In general, for chain length n and block size b, as long as
n � 2b � 1, there will always be b different segmentations
of the chain, of which 1 � n mod b of the segmentations will
consist of n/b blocks, and the rest will have n/b � 1
blocks. (The “floor” notation x denotes the largest integer
less than or equal to x.) Any segmentation involves delet-
ing fewer than b residues each from both ends. In this work
we have used n � 128 and b � 4, 8, or 15.

Contact Energies

For a given conformation of a polypeptide chain, let dij

be the distance between the C� atoms of residues i and j.
For a given segmentation of the chain, we summarize its
conformation in terms of the b2 squared distances between
blocks I and J.

DIJ � �
i � l

�
j � J

dij
2 (1)

Note that intrablock distances DII will tend to be smaller
than interblock distances, especially when I and J are well
separated in sequence. A simple sort of energy function
would count all the residues of the two blocks to be in
contact when the DIJ fell below some cutoff, and otherwise
they would not be interacting. If the cutoff is too low,
nearly all blocks would not be in contact, whereas if the
cutoff is too high, nearly all would be in contact. Using the
nonredundant subset of polypeptide chains extracted from
the Protein Data Bank30 (PDB) and furnished with MOE31

version 2004.03, we abstracted 1860 chains having n �

128. We will refer to these as the “chain set” (see Table I).
Zero-filling each chain to the nearest multiple of the block
size, there are many alternative interblock distance matri-
ces for a given chain length. The cutoffs listed in Table II
are those that produced the largest total number of
contact/noncontact differences between comparable matri-
ces. Of course the cutoffs depend strongly on b, and the
offdiagonal values are much larger than the diagonal ones.
Generally CII is somewhat smaller than the observed
upper bound on DII for all-helical segments.2 Note that
these cutoffs are general properties of a large set of PDB
structures without regard to the types of residues involved
in contacts, so there is actually no contradiction between
conveniently comparing zero-filled structures here and
using multiple segmentations in all other aspects of this
study.

A strictly binary cutoff for contact versus no contact can
cause problems where small changes in conformation give
large changes in contacts and hence energy. The usual
solution is some sort of sigmoidal contact function c(DIJ)
that is 1 for short distances, 0 for long distances, and
smoothly varying in between. Here we used a continuous,
piecewise linear function
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c�DIJ� � �
1 for DIJ � �1 � w�CIJ

� DIJ

2wCIJ
�

w � 1
2w

otherwise

0 for DIJ � �1 � w�CIJ

(2)

where the relative half-width of the transition is 0 � w � 1,
and always c(CIJ) � 1/2. In what follows we take w � 0.2
usually.

For the 20 standard amino acid types, there are 20 � 21/2
� 210 unordered residue pair types. Let tIJ be a vector of
210 elements, where each element is the number of the
corresponding type pairs found for one residue in block I
and the other in block J. Thus, the sum of the elements of
tIJ is b2 for I 	 J, but for intrablock interactions, we count
only interactions between residue pairs i to i � 4 and
beyond. In either case, we use the same vector of 210
adjustable parameters a to convert contact counts to an
energy-like value

E � �
s�1

b �
I�J

�a � ts,IJ�c�Ds, IJ� (3)

summing over all segmentations s for chain length n of the
given conformation of the protein. In the end, the energy is
just a linear function of the adjustable parameters, al-
though a nonlinear function of conformation. We find it
essential to consider all segmentations, rather than choos-
ing just one or adopting a zero-filling approach.

Given that the energy function has a myopic view of
conformation that emphasizes close contacts but does not
reflect how distant noninteracting blocks are, a matching
measure of conformational similarity would be more appro-
priate than the usual RMSD (root-mean-square deviation
in corresponding C� coordinates after optimal rigid-body
superposition). Here we have used the simple dissimilarity
measure between two conformations A and B,

S�A, B� � k�1 �
s

�
l�J

�c�DA, s, IJ� � c�DB, s, IJ�� (4)

where k is the total number of terms in the double sum. In
other words, S(A, B) is the mean absolute difference in
contact values for all intra- and interblock interactions.
Customarily we take S(A, B) � 0.1 to mean that A and B
are very similar conformations.

Using this similarity criterion, suppose we have a set of
dissimilar conformations for each of a variety of chain
lengths such that each protein P in some training set has a
conformation Pnat similar to its PDB structure and several
dissimilar conformations Pnon. Adjusting the energy param-
eters amounts to solving the quadratic program: minimize
��a��2 subject to E(Pnat) � 1 � E(Pnon) for all nonnative
conformations for all proteins in the training set. The

TABLE I. Sets of Proteins

Name No. proteins Composition

Chain set 1860 Derived from the MOE31 nonredundant chain database of 7000 high-resolution PDB
structures having less than 90% sequence identity. Selected those having n � 128,
consisting of only the 20 standard amino acids where all residues have C� coordinates.

Monomer set 262 Monomeric biological unit, no disulfide bridges or substantial ligands. 50 � n � 128, compact
radius of gyration

PDB codes: 1a6s, 1aa3, 1adr, 1af8, 1ah9, 1aoy, 1aps, 1ark, 1auz, 1aw0, 1awj, 1b4r, 1b64, 1bax,
1blj, 1bo9, 1cb1, 1cdz, 1cpz, 1d1n, 1d6t, 1d8b, 1d8j, 1dcj, 1dgn, 1doq, 1dro, 1du6, 1e41, 1edi,
1egx, 1ehx, 1eik, 1eiw, 1eo1, 1eqk, 1ewi, 1f0z, 1f68, 1f6v, 1faf, 1fc1, 1fex, 1fho, 1fj7, 1fjc, 1fjd,
1fli, 1fna, 1fo5, 1fvq, 1fyj, 1g10, 1g2h, 1g6p, 1g7d, 1g7e, 1gb4, 1gh8, 1ghc, 1ghh, 1ghj, 1gjx,
1gl5, 1gxh, 1gxi, 1gyz, 1h5p, 1h67, 1h8c, 1h95, 1hce, 1hd0, 1hdj, 1hks, 1hqb, 1hqi, 1hs7,
1hsq, 1ig6, 1iio, 1ilo, 1ily, 1ipg, 1iqs, 1iqt, 1irz, 1itp, 1iv0, 1iyu, 1j0g, 1j2m, 1j3t, 1j7q, 1j8k,
1jei, 1jfw, 1jns, 1jrm, 1jt8, 1jw2, 1jxs, 1k5k, 1k85, 1k8b, 1ka5, 1kkg, 1klp, 1kmd, 1kom, 1ksr,
1kvi, 1kvn, 1l5i, 1l7b, 1l7y, 1lab, 1ll8, 1lq7, 1lwr, 1m5z, 1mc7, 1mg8, 1mjd, 1mp1, 1mvg,
1mwy, 1myo, 1n27, 1n87, 1n88, 1n91, 1neq, 1ngr, 1nho, 1nr3, 1nso, 1ny8, 1nz8, 1nz9, 1o1u,
1o78, 1oo3, 1plt, 1p68, 1p6r, 1p8g, 1p97, 1p9k, 1pav, 1pba, 1pc0, 1pfj, 1pls, 1pmr, 1pqx, 1pse,
1puz, 1pve, 1q02, 1q1o, 1q7x, 1qjo, 1qjt, 1qlc, 1qly, 1qp2, 1qqv, 1qzp, 1r4g, 1r57, 1rdu, 1rgw,
1rja, 1rlf, 1ryj, 1ryk, 1ryu, 1rzs, 1s79, 1s7a, 1sb6, 1sq8, 1sro, 1t0g, 1t1h, 1tac, 1tiv, 1tiz, 1tk7,
1tns, 1u2f, 1uaw, 1uc6, 1ucp, 1ucv, 1uep, 1ueq, 1uew, 1uez, 1ufm, 1ufn, 1ufw, 1ufx, 1ug0,
1ug1, 1ug7, 1ug8, 1ugv, 1uh6, 1uhc, 1uhf, 1uhp, 1uhr, 1uht, 1uhu, 1uhw, 1uhz, 1ujd, 1ujs,
1ujt, 1uju, 1ujv, 1ujy, 1ul7, 1um1, 1um7, 1uqv, 1uss, 1v2y, 1v31, 1v32, 1v38, 1v3f, 1v5j,
1v5k, 1v5l, 1v5p, 1v5s, 1v5t, 1v5u, 1v62, 1v6b, 1v89, 1vb7, 1vig, 1vye, 1wit, 1wot, 1yua,
2a3d, 2bby, 2bjx, 2cjn, 2fmr, 2fnb, 2mss, 2u1a, 2u2f, 2vik, 3crd, and 3hck.

Training set 211 monomer set except for 51 problematic proteins: 1ah9, 1aoy, 1aps, 1auz, 1b64, 1blj, 1bo9, 1cdz,
1cpz, 1du6, 1eqk, 1f0z, 1f6v, 1fex, 1fyj, 1gxh, 1hks, 1hqi, 1irz, 1iv0, 1iyu, 1jt8, 1jw2, 1k8b,
1ksr, 1l7b, 1lab, 1n87, 1ngr, 1nho, 1o1u, 1oo3, 1pc0, 1pqx, 1puz, 1qlc, 1qqv, 1ryj, 1rzs, 1sb6,
1sq8, 1t1h, 1tk7, 1uhz, 1ujs, 1ul7, 1yua, 2a3d, 2bjx, 2fmr, and 2u2f

TABLE II. Diagonal (CII) and Offdiagonal (CIJ) Contact
Distance Cutoffs as a Function of Block Size (b)

b CII (Å2) CIJ (Å2)

4 364.3 5398.1
8 3553.4 22077.3

12 13197.2 51150.8
15 27028.4 86166.3
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intent is to favor the native conformations of the proteins
over their respective nonnative conformations by an arbi-
trary margin of one energy unit while keeping the magni-
tudes of the parameters as low as possible so that the
natives are not favored by some fortuitous cancellation of
large and opposing effects. The margin is truly arbitrary in
that if a satisfies all the linear inequalities for a unit
margin, then ka satisfies the inequalities for margin k � 0.
A nonzero margin is needed to avoid solutions where
E(Pnat) 
 E(Pnon), that is, the energy function cannot make
an unambiguous decision as to whether the native or some
nonnative conformation of protein P is preferable. In the
end, the differences in energy between native and nonna-
tive structures were generally much greater than the
margin, and the absolute values of the energies were
typically at least on the order of 10.

In general, there may be no solution to a quadratic
program32 if the linear inequalities are mutually inconsis-
tent, which is the same as saying there is no “feasible
region.” If a feasible region exists, it is some kind of
(possibly unbounded) polyhedron in the space of the 210
adjustable energy parameters. If the objective function is
positive definite, as it is in this case, then there is a unique
solution to the quadratic program somewhere in the
feasible region, and at the solution most of the inequalities
will be “slack,” that is, they are satisfied by more than
the required margin. Anywhere between zero and 210 of
the inequalities may be “active” at the solution. These
active constraints in our problem correspond to having
E(Pnat) � 1 � E(Pnon) for some nonnative conformations
of some of the training proteins. Exactly the same
solution can be reached by deleting all the slack inequali-
ties and using only the active constraints.

There are certainly specialized algorithms for efficiently
solving quadratic programs, but in this case it was more
expedient to convert it to a local nonlinear optimization of
a function F that is the weighted sum of the objective
function above plus quadratic penalty terms enforcing the
inequalities (v � 0 being the weighting factor).

F�a� � �a�2 � v �
P

�
non

�max �0, E�Pnat� � 1 � E�Pnon�
�
2 (5)

Then if the problem is infeasible, there will be violated
inequalities at the minimum. Otherwise, there will be a
unique local minimum corresponding to the solution of the
quadratic program. Indeed, the same feasible optimal
solution was always found from different random starting
points. All this was programmed in MOE31 in the SVL
language.

Protein Structures

The advantage of dealing with cluster distance matrices
is that there is a clear connection between two blocks being
in contact and what types of residues are in contact, so that
the energy function in Equation (3) is a simple function of
the DIJ elements and the sequence. Steric exclusion and
basic chain connectivity translate into simple constraints2

on the DIJ, so that steric repulsion and virtual bond
stretching terms are not required in the energy function.

The disadvantage is that one can easily propose distance
matrices corresponding to no three-dimensional structure
whatsoever, or to structures incompatible with normal
packing of protein secondary structural elements. Here,
we restrict attention to matrices of interblock contacts,
made up of elements c(DIJ), that are calculated from sets of
experimentally determined protein structures. For each
chain length we retain only those matrices that correspond
to some piece of a real structure and that otherwise differ
from one another sufficiently, as measured by Equation (4)
using the similarity cutoff S(A, B) � 0.1. In other words,
these sets of contact matrices amount to the decoy sets
used in other studies, except by the similarity cutoff used,
each contact matrix covers a region of conformation space
that can be rather large if it involves few contacts.

Of course, the coverage of conformation space depends
on the set of protein structures surveyed to produce the set
of significantly different contact matrices. The chain set
described above consists of 1860 different structures as-
sumed by real polypeptide chains, but they are taken out of
context in the sense that they may be stabilized by
substantial interactions with other polypeptide chains,
polynucleotide chains, large prosthetic groups, and so on.
A second set, called the “monomer set,” was devised so as
to include proteins that apparently fold as single polypep-
tide chains due to aqueous solvation and intrachain inter-
actions without significant interactions with other peptide
or nonpeptide moieties (see Table I). PDB has over 27,600
entries, but many of them have the same protein with
different ligands or closely related proteins, etc. They list a
subset where no two proteins have more than 90% se-
quence identity. Then PDB also lists a special database of
biological unit files, explicitly describing the quaternary
structure (monomer, dimer, etc.). From these we find 724
PDB entries having a single chain in the biological unit
consisting of no more than 128 residues and having no
nonpeptide atoms other than water molecules or sodium
ions. Out of these, we find 262 proteins having at least 50
residues, coordinates for each C� atom, no disulfide
crosslinks, and are reasonably compact in that the radius
of gyration is no more than 30% greater than the minimum
value for that chain length.6 In the case of NMR struc-
tures, simply the first model in the PDB entry is used. This
“monomer set” is a rather comprehensive list of proteins
for which the native state should be stabilized by effects
included in the current model. These cover a variety of
general fold types: 46 all �, 41 all �, 9 �/�, 57 � � �, 4 small
proteins, 4 peptides, 2 designed proteins, and 99 for which
no SCOP classification33 is yet available.

Covering sets of contact matrices are generated by first
adding any contact matrix from the monomer set that
differs from those already present for that chain length.
Depending on the block size used, the 262 proteins in the
monomer set are covered by 257 to 259 contact matrices, so
only a few protein pairs have equivalent contact matrices
even at the level of four or eight residue blocks. Next, novel
contact matrices are added from the 1860 members of the
chain set, which includes many less compact structures,
typically resulting in a total of 1750 contact matrices of all

CLUSTER DISTANCE GEOMETRY 85



the various chain lengths observed. Hence, the chain set
also has little redundancy in conformations. Finally, many
more novel but realistic contact matrices can be generated
from these matrices by deleting a block at the end of a
chain. For a given chain length this continues until the
number of distinct contact matrices exceeds a preset limit,
such as 50 or 100. For short chains, fewer than the limit
may be found because essentially all possible distinct
contact matrices have been generated. For the longest
chains, the limit may not be reached because there are
fewer contact matrices available in the surveys of the
chain and monomer sets. Generally the limit is reached for
a wide range of intermediate lengths.

RESULTS
Key Parameters

The motivation behind this work is that viewing protein
structure at low resolution, i.e., large b, greatly simplifies
the dimensionality and combinatorial complexity of the
protein conformation space. However, this must be bal-
anced against the need to make meaningful distinctions
between distinct folds. Surveying a set of 32 small, mono-
meric protein crystal structures having different folds
(listed in ref. 3, Table I), we compared each protein chain of
n residues with the first n residues of all the longer chains.
For b � 15 there is an offdiagonal cutoff CIJ such that all
such pairs of structures produce distinguishable contact/
noncontact matrices. For larger b there is no such cutoff.
Hence, in Table II that is the largest value of b listed. Not
surprisingly, smaller values discriminate better between
native and nonnative conformations, so here we have
tested b � 8 and 4, although other values may given even
better results.

When adjusting the energy parameters, a key factor is
the criterion for distinguishing native and nonnative con-
tact matrices in the quadratic program. In Equation (4) we
have used S(A, B) � 0.1 as the test for conformations A and
B being essentially the same. Larger values of the cutoff,
such as 0.15, tend to reduce the number of different
contact matrices to be considered, but the resulting energy
parameters have less predictive power (results not shown).
The other parameter for distinguishability is the relative
width w in Equation (2). A discontinuous contact function
c(DIJ) with w � 0 makes it very difficult to solve the
quadratic program for all but trivial training sets. On the
other hand, a very broad transition with w � 0.9 also
makes it impossible to solve the quadratic program. In
terms of predictive power, the best results are obtained
when w � 0.2, and this value is used in all that follows.

Training and Prediction

Neither for block size 4 nor 8 is it possible to find a
feasible set of energy parameters that satisfies all mem-
bers of the monomer set. After minimizing F in Equation
(5), some proteins had their respective native energies less
than all nonnative energies by the required margin, while
other proteins had violations of such inequalities. Succes-
sively eliminating the protein having an inequality vio-
lated by the greatest margin and readjusting the energy

parameters, it is eventually possible to find a subset
consisting of 211 proteins to use as a training set (see
Table I), and all these can be satisfied simultaneously.
With regard to sequence, the training set has little redun-
dancy. By the construction of the whole monomer set, no
pair of proteins has 90% or greater sequence identity after
optimal alignment. Then in an alignment of all pairs of
proteins in the training set, sequence identities range from
2.8 to 89.5%, and 99% of the pairs have less than 30%
sequence identity, 89% of the pairs have less than 20%
sequence identity, and all but the 20 most similar pairs
have less than 47% sequence identity. It is not at all
obvious what distinguishes the 211 proteins in the train-
ing set from the 262 � 211 � 51 problematic ones (see
Table I). The monomer set as a whole consists largely of
structures determined by NMR, often associated with
DNA binding in vivo, but inspection of the problematic
PDB entries and associated literature references reveals
no evidence for substantial associated ligands, although
often the ends of the chain are rather extended from the
main protein globule.

Table III summarizes the predictive power of these sorts
of models. For a given block size, a set of contact matrices
was found that are all different according to Equation (4),
but every native conformation in the monomer and chain
sets is included by the same criterion. In addition, trun-
cated chains were also included so as to bring up the total
number of alternative contact matrices for each chain
length to either 50 or 100, as indicated in the table under
number of structures. When the training set is used to
adjust the energy parameters, most of the proteins contrib-
ute no active constraint at the solution to the quadratic
program. The number of proteins that do is given in the
table as the number of active proteins. Typically, the
smaller the number of actives, the greater the predictive
power. For example, for b � 8 and a maximum of 50
different contact matrices for each chain length n, only 69
of the 211 training set proteins were active at the solution.
By the nature of quadratic programming, the same energy
parameters would have been obtained if only these 69
active proteins had been used, instead of the full training
set. A generous assessment of this outcome is to view the
262 �69 � 193 other members of the monomer set as a test
set, remembering that the 211 member training set is a
subset of the monomer set (see Table I). Then the correct
native structure was recognized for 211 � 69 �142 pro-
teins in the monomer set, which corresponds to a 142/
193 � 75% success rate. A stricter interpretation is to
discount any predictions where the sequence identity of
the predicted protein is greater than 30% after optimal
sequence alignment with any member of the active set. In

TABLE III. Training and Prediction Results

b
No.

structs
No.

actives
Predicted

monomers
Predicted

chains

8 50 69 113 407
4 50 31 174 698
4 100 56 141 556
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this case, 213 out of 262 monomer proteins were correctly
predicted, but only 113 of these had low sequence identity
with the active set, and this is listed in the table under
predicted monomers. A more rigorous assessment is to
view the chain set as a completely separate test set and
exclude members of the chain set having sequence similar-
ity to the active proteins. Thus, for the 1860 members of
the chain set, 487 were correctly predicted, and 407 of
those had less than 30% sequence identity to all members
of the active set, as shown in the table under predicted
chains.

Increasing the resolution to b � 4 dramatically de-
creases the size of the active set required to determine the
energy parameters, and the numbers of sequentially dis-
similar proteins that were correctly predicted rose for both
the monomer and chain sets. The gross score is 226 out of
the 262 monomer set were correctly predicted, of which
174 were sequentially dissimilar to all the actives, but that
still leaves 36 members of the monomer set that are not in
agreement with this model for reasons that have yet to be
determined. On the other hand, there are 698 correct
predictions of proteins in the chain set that are sequen-
tially dissimilar to the active set, even though these chains
may involve disulfide bridges or be associated with other
polypeptide chains or large ligands that may play an
important role in stabilizing the observed conformation. Of
the 751 correctly predicted proteins in the chain set
(without regard to sequence similarity to the active set),
132 had at least one disulfide bridge, several had seven,
and one (1le6) had eight. Also, many of these correctly
predicted chains are closely associated with other chains.
For example, 1gmj.a is one of four largely helical chains
forming a heterodimer of heterodimers in the crystal
structure, each chain having a radius of gyration far
greater than the minimum value for its chain length. It so
happens that this conformation is viewed as the most
stable of 50 alternatives for that sequence when one
disregards its closely associated neighbors.

Raising the maximum number of alternative contact
matrices to 100 for b � 4 presents a more challenging
problem. Now there are 100 alternative contact matrices
for chain lengths 10, 11, and 13–112, and the least
coverage is 45, 43, 20, 14, 22, and 19 contact matrices for
chain lengths 123–128, respectively. Parameters can still
be determined (Table IV) on the basis of 56 active proteins,
and only 42 of the 262 proteins in the monomer set are
incorrectly predicted. Of the correct predictions, 141 have
little sequence identity with the active set. Similarly for
the 1860 members of the chain set, 648 are correctly
predicted, and of these, 556 have little sequence identity
with the active set (Table III). Although these interaction
parameters work well, their values correspond only roughly
with conventional wisdom about protein folding, in that
hydrophobic-hydrophobic residue type pairs tend to have
favorable negative values, and hydrophilic-hydrophilic
interactions tend to have unfavorable positive values. The
most unfavorable (positive) interaction in Table IV is
between Gly and Met residues, while the most favorable is
between Cys and Ala. It is not obvious this is due to some
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sort of overfitting, because these residue types are not that
rare in the training set.

One might ask whether choosing for a given sequence
the correct contact matrix out of 100 alternatives consti-
tutes an accurate prediction of the tertiary structure. First
note that these sets of contact matrices are not guaranteed
to cover all possible energetically reasonable polypeptide
conformations in three dimensions. They certainly include
the conformations of a couple thousand chains in PDB, but
further work will be required to establish a truly exhaus-
tive set. As it stands, it is possible that the correct contact
matrix is missing for some proteins. Second, consider a
protein having a disordered lengthy end of the chain that
is not in contact with the compact globular remainder. Two
such conformations may agree well in the folded part while
differing substantially in how the chain end extends out
into the solution. By the similarity criterion used here, the
contact matrices of the two conformations may be identi-
cal, yet the RMSD for the superposition of the entire chain
may be large. Thus, it is possible to have very similar
contact matrices but differ substantially in overall confor-
mation in an energetically trivial way. Third, it is possible
to make rather fine distinctions in conformation by contact
matrices, such that choosing the right one actually amounts
to a good prediction. For example, 1adr is a compact, all-�
protein in the monomer set having 76 residues. Comparing
with all contiguous 76 residue chain segments from the
other 261 proteins in the monomer set, there are none
having a similar contact matrix at the level of four residue
blocks. However, residues 11–86 of protein 1dgn have a
conformation that is visually clearly similar to 1adr,
namely � � 0.60 in the universal scale34 of 0 to 2, or
equivalently 6.5 Å in RMSD. Yet because the two contact
matrices are clearly different, this method would have to
choose the native structure of 1adr over that of this piece of
1dgn.

CONCLUSIONS

It is possible to describe the conformations of polypep-
tide chains in terms of distances between several-residue
segments such that a simple linear function of interresi-
due contacts can discriminate between the native conforma-
tion and numerous nonnative sets of contacts for many
different proteins. Generally, the lower resolution models
imply a more thorough coverage of conformation space, but
the cruder approximation to interresidue interactions
restricts the predictive power of the model. So far, atten-
tion has been restricted to fairly small, soluble, globular
proteins that are stabilized by intrachain noncovalent
interactions, rather than associations with other polypep-
tide chains, polynucleotides, or other large ligands. While
this is a promising step, there remain two shortcomings.
First, some proteins are not in agreement with the model
for reasons that are not yet clear. Second, the sets of
contacts considered for a given chain length are derived
from experimental protein structures and thus embody
general information about polypeptide flexibility, second-
ary structures, and overall packing, but the set does not
necessarily cover all possible conformations. Thus, one

cannot yet use this approach to develop a quantitative
statistical mechanical model of protein folding.
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