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Abstract

Dendritic cells (DCs) retrovirally transduced with IL-4 have recently been
shown to inhibit murine collagen-induced arthritis and associated Thl
immune responses in vivo, but the mechanisms that underly these effects
are not yet understood. In this report we demonstrate that IL-4-transduced
DCs loaded with antigen led to lower T cell production of IFN-y, increased
production of IL-4, and an attenuated, delayed type hypersensitivity response.
We hypothesized that the ability of such DCs to regulate the Thl immune
response in vivo depends in part on their capacity to produce IL-12 and IL-23.
Quantitative mRNA analysis revealed that IL-4-transduced DCs stimulated
with CD40 ligand expressed higher levels of IL-12p35 mRNA, but lower
levels of mRNA for IL-23p19 and the common subunit p40 found in
both IL-12 and IL-23, compared with control DCs. These results, which
indicate that expression of the IL-12 and IL-23 subunits is differentially
regulated in IL-4-transduced DCs, were confirmed by ELISA of the IL-12
and IL-23 heterodimers. Thus, therapeutic suppression of Thl -mediated
autoimmunity (as recently shown in murine collagen-induced arthritis) and
induction of Th2 responses in vivo by IL-4-transduced DCs occurs despite
their potential to produce increased levels of IL-12, but could reflect, in
part, decreased production of IL-23. Copyright © 2005 John Wiley & Sons,
Ltd.
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Introduction

Dendritic cells (DCs) are potent APCs in the induction and the regula-
tion of immune responses [1]. Recently, attention has been focused on the
use of DCs in immunotherapy. We previously demonstrated that a single
injection of bone-marrow-derived DCs retrovirally transduced to express IL-
4 reduces the incidence and severity of murine collagen-induced arthritis
(CIA), a model of rheumatoid arthritis [2]. Since IL-4-transduced polyclonal
T cells or fibroblastic cells failed to inhibit CIA, the ability of IL-4-transduced
DCs to inhibit the ongoing pathogenic Thl response may require specific
interaction between T cells and IL-4-secreting DCs [2]. A second group
also showed suppression of CIA using DCs infected with an adenoviral
vector that expressed IL-4 [3]. Further studies are necessary, however, to
fully understand the functional characteristics of these engineered cells.
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IL-12, one of the important immunoregulatory
cytokines secreted by DCs, is a 70-kD disulfide-linked
heterodimer of p35 and p40 subunits that was originally
described as a factor that stimulates both natural killer
(NK) cell and cytotoxic T cell activity [4,5]. It is now
clear that IL-12 has a pivotal role in promoting Th1-type
immune responses by inducing differentiation of naive T
cells into the Th1 phenotype [6-8]. Furthermore, IL-12
augments the established Th1 response by inducing T cell
proliferation and IFN-y production [9-12]. IL-23, a more
recently identified cytokine expressed by DCs, that may
also be pivotal in the activation of T cells, has both struc-
tural and functional similarities to IL-12. It is composed
of the IL-12p40 subunit and a novel p19 protein [13]. IL-
23 induces proliferation and IFN-y production by T cells
[13]. Although IL-23 may play an important role in the
induction of Th1 responses, it does not bind to IL-12R52
[13], and may therefore have a role distinct from IL-12 in
the differentiation of T cells.

The major stimuli known to elicit IL-12 or IL-23
production by DCs are the ligation of CD40 by the CD40
ligand (CD40L, CD154) expressed on activated T cells,
and binding of bacterial products to specific DC surface
receptors [13-15]. Previous studies have documented
conflicting results regarding the regulatory effect of IL-
4 on the ability of DCs to produce IL-12; IL-4 was
initially reported to be inhibitory [15], but more recent
studies demonstrate that it can enhance IL-12 production
[16-18]. Most of these studies do not include data on
the expression of individual IL-12 subunits, and did not
measure expression of the IL-23p19 subunit. Since the
ability of IL-4-expressing DCs to regulate the immune
response may be affected in part by altered production of
IL-12 and/or IL-23, we investigated the effect of retroviral
transduction of DCs with IL-4 on production of these
cytokines.

The potential of IL-4-transduced primary culture DCs
to skew antigen-specific immune responses in primary
immune reactions has not yet been determined. Our
previous studies demonstrated that IL-4-transduced DCs
alter the balance of Th1/Th2 cells in the spleen, and
cause a shift toward a polyclonal Th2 response [2];
we therefore hypothesized that immunization with IL-4-
transduced DCs pulsed with antigen could induce primary
Th2 immune responses.

Materials and methods
Mice

Male C57BL/6 mice were purchased from the Jackson
Laboratory (Bar Harbor, ME, USA) and used at
8-10 weeks of age. Animal use procedures were approved
by the University of Michigan Committee on the Use and
Care of Animals.

Copyright © 2005 John Wiley & Sons, Ltd.
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Culture medium for DCs

Complete medium (CM) consisted of RPMI 1640
supplemented with 10% heat-inactivated fetal calf
serum (FCS), 0.1 mM nonessential amino acids, 1 mM
sodium pyruvate, 2 mM L-glutamine, 100 U/ml penicillin,
100 pg/ml streptomycin, and 5 x 10~> M 2-ME (all from
Life Technologies, Grand Island, NY, USA).

Generation of bone-marrow-derived
DCs

DCs were obtained from a 5 day culture of bone marrow
(BM) cells in 10 ng/ml recombinant murine GM-CSF
(Immunex, Seattle, WA, USA) and 10 ng/ml rmiIL-4
(Schering-Plough, Kenilworth, NJ, USA) as described
[19]. DCs were enriched by centrifugation on 14.5%
metrizamide (Sigma, St. Louis, MO, USA) gradients and
washed in HBSS, generating a cell population of more
than 90% DCs by immunophenotypic analysis [19].

Generation of retrovirally transduced
DCs from BM cells

IL-4- or enhanced green fluorescent protein (EGFP)-
transduced DCs were generated as described [2]. Based
on measurement of EGFP expression by flow cytometry,
more than 90% of DCs were consistently transduced [2].
IL-4-transduced DCs produced 10-50 ng IL-4/10° cells
per 24 h as defined by ELISA. IL-4 was not detected in the
culture supernatants of EGFP-transduced DCs.

In vivo anti-keyhole limpet hemocyanin
(KLH) response

EGFP- or IL-4-transduced DCs were cultured overnight
in CM with or without 50 pg/ml of KLH. The DCs
were washed in HBSS and 2 x 10° cells were injected
subcutaneously (s.c.) in the right and left thighs of mice.
Inguinal lymph nodes were harvested 5 days after DC
injection. Lymph node cells were resuspended in Click’s
medium (Life Technologies) supplemented with 1% heat-
inactivated mouse serum, and 5 x 10° cells were cultured
with or without KLH (50 ug/ml) in 96-well flat-bottomed
plates. Culture supernatants were assayed by ELISA for
IL-2 after 48 h, and for IFN-y, IL-4, and IL-10 after 72 h.

Delayed type hypersensitivity (DTH)
assay

EGFP- or IL-4-transduced DCs were pulsed with 50 ug/ml
KLH overnight. After extensive washing, the KLH-pulsed
DCs (2 x 10°) were injected s.c. into the right flanks of
mice. Eight days later, these animals were challenged
by s.c. injection of KLH (25 ug/10 ul phosphate-buffered
saline (PBS)) into the right hind footpad. The same
volume of PBS alone was injected into the left hind
footpad as a control. Footpad swelling responses were
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measured at 24 h by a blinded observer using a caliper
with consistent pressure (Mitutoyo, Aurora, IL, USA). The
response was calculated as the difference between the
right and left footpad swelling.

Cytokine assays

Murine IFN-y, IL-2, IL-4, IL-10, IL-12p70, p40, and IL-
18 were assayed by ELISA using paired antibodies (Abs)
(BD PharMingen, San Diego, CA, USA) according to the
manufacturer’s instructions. Mouse IL-23 was measured
by ELISA using antibody and IL-23 standards generously
supplied by Dr. Robert Kastelein (DNAX), as previously
described [13].

Preparation of a mouse CD40L-
transfected NIH 3T3 cell line

A cDNA encoding murine CD40L was obtained from
PNGVL3-mCD40L (Vector Core, Center for Gene Therapy,
University of Michigan) and subcloned into the pRET6
retroviral vector [2]. The Phoenix A amphotropic packag-
ing cell line (provided by G. Nolan, Stanford University,
Palo Alto, CA, USA) was transiently transfected with the
pRET6-mCD40L construct using calcium/phosphate pre-
cipitation. The ecotropic GP + E86 packaging cell line
[20] was subsequently infected with filtered viral super-
natants from Phoenix A in the presence of protamine sul-
fate. A polyclonal ecotropic producer line was established
by selection with puromycin (4 ug/ml). Murine fibroblast
NIH 3T3 cells were transduced with filtered retroviral
supernatants from GP 4+ E86-mCD40L and selected with
puromycin (4 pg/ml) for 3 days. Cell surface expression
of CD40L was confirmed by flow cytometry.

Culture of DCs

DCs were incubated in 12-well plates at a density
of 10%/ml with rmCD40L-trimer (10 pg/ml, Immunex),
lipopolysaccharide (LPS) (1 pg/ml), or LPS plus IFN-y
(1000 U/ml, Life Technologies) in the presence or absence
of rmIL-4 (10-50 ng/ml) or rmIL-10 (50 ng/ml), both
from R&D Systems (Minneapolis, MN, USA). To neutralize
IL-4, anti-IL-4 mAb (20 ug/ml, 11B11, BD PharMingen)
was added to some cultures. In some experiments,
DCs were co-cultured in 12-well plates with irradiated
(30 Gy) mouse CD40L-transfected NIH 3T3 cells plated
overnight at 2.35 x 10° cells/well. Culture supernatants
were harvested at 6-48 h and stored at -80 C until
analyses. For mRNA analysis, cells were lysed in Trizol
after 6 or 12 h of culture.

Semiquantitative RT-PCR

Total cellular RNA was extracted with Trizol in a
single-step method, and used for the synthesis of first-
strand ¢cDNA with oligo-(dT);5 and reverse transcriptase
(Life Technologies). cDNA samples were amplified

Copyright © 2005 John Wiley & Sons, Ltd.
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using Taq polymerase (Promega, Madison, WI, USA)
in a thermal cycler (Perkin-Elmer, Norwalk, CT, USA).
Reaction products were analyzed by electrophoresis and
visualized by ethidium bromide staining. cDNA (1-3 ul)
from serially diluted samples was amplified for 26
cycles using primers for hypoxanthine phosphoribosyl
transferase (HPRT), and the amount of PCR product was
determined by densitometric analysis and plotted against
the sample volume. The amplification of cDNA was linear
in the range of the sample volumes that were used.
c¢DNA concentrations of each sample were normalized to
yield equivalent HPRT polymerase chain reaction (PCR)
products. The appropriate PCR cycles were established for
semiquantitative assay of each individual PCR product;
26 cycles for p40, 32 cycles for p19, and 36 cycles for
p35. The PCR primers used for HPRT, p35, and p40
were described by Kato et al. [21]. The following primers
were used for p19: 5'-GCTGTTGCCCTGGGTCACTCA-3’
and 5'-CTGGGCATCTGTTGGGTCTCC-3'.

Real-time PCR

Real-time PCR was performed using the iCycler iQ
detection system (Bio-Rad Laboratories, Hercules, CA,
USA) with a dual-labeled fluorogenic probe. The
primers and probes used (Table 1) were obtained from
Life Technologies and Integrated DNA Technologies
(Coralville, IA, USA), respectively. The probes for p35,
pl9, and p40 were labeled with 6-FAM and BHQ-1,
and the y-actin probe was labeled with HEX and BHQ-
1. Reactions were performed in duplicate in a 96-well
iCycler iQ PCR plate (Bio-Rad Laboratories) in 50 ul of
total reaction volumes with 1.5 U Platinum Tag DNA
polymerase (Life Technologies), 4 mM MgCl,, 200 uM
dATP, 200 uM dCTP, 200 uM dGTP, 400 uM dUTP, 1
U uracil DNA glycosylase, 0.2 uM of primer and probe
sets for p35, pl9, p40, or y-actin, and cDNA samples.
The PCR was performed as follows: one 2 min cycle at
50°C; one 3 min cycle at 95 °C; followed by 45 cycles of
denaturation for 15 s at 95 °C and an annealing/extension
step of 1 min at 60 °C. The threshold cycle is the PCR cycle
at which an increase in the fluorescent emission above
the baseline signal is first detected. Since the values of the
threshold cycle decrease proportionally with increased
target quantity, they were used to determine the relative
c¢DNA amounts in each sample and evaluate levels of
p35, p19, and p40 mRNA which were normalized by the
quantity of y-actin mRNA.

Results

In vivo primary immune reactions
induced by adoptive transfer of
KLH-pulsed IL-4-transduced DCs

To examine the potential of IL-4-transduced DCs to skew
cytokine production in primary immune reactions, EGFP-

J Gene Med 2005; 7: 869-877.
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Table 1. Primers and probes used for real-time PCR

Y. Morita et al.

Target gene Forward primer

Reverse primer

Probe

IL-12p35 CACCCTTGCCCTCCTAAACC CAAGGCACAGGGTCATCATC (6FAM)CCTCAGTTTGGCCAGGGTCATTCCA (BHQ1)
IL-23p19 CCAGCAGCTCTCTCGGAATC TCATATGTCCCGCTGGTGC (6FAM)TGCATGCTAGCCTGGAACGCACA(BHQ1)

p40 TCAGTGTCCTGCCAGGAGG CAGTTCAATGGGCAGGGTCT (6FAM)TGTCACCTGCCCAACTGCCGAG(BHQ1)
y-actin CGCAAAGACCTGTATGCCAAT GGGCTGTGATCTCCTTCTGC (HEX)TACCACCATGTACCCAGGCATTGCTGAC(BHQ1)

or IL-4-transduced DCs pulsed with KLH were injected
s.c. into mice. Inguinal lymph nodes were harvested
5 days later. Lymph node cells were cultured with or
without KLH and the culture supernatants were assayed
for IFN-y, IL-2, IL-4, and IL-10 (Figure 1). Lymph node
cells from mice injected with non-pulsed DCs did not
secrete lymphokines upon in vitro restimulation with
KLH. EGFP-transduced DCs pulsed with KLH induced the
activation of cells secreting IFN-y, IL-2, IL-4 and IL-10,
while IL-4-transduced DC favored the development of T
cells producing lower levels of IFN-y and generally less
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Figure 1. T cell cytokine production by lymph node cells
from mice immunized with EGFP- or IL-4-transduced DCs. The
transduced DCs were incubated overnight with or without KLH
(50 pg/ml). The s.c. injection was performed in the right and
left thighs of mice with 2 x 10° cells, respectively. Five days
later, inguinal lymph nodes were harvested and cultured with
(shaded bars) or without KLH (50 pg/ml). Culture supernatants
were assayed by ELISA for IL-2 after 48 h, and IFN-y, IL-4 and
IL-10 after 72 h of incubation. Data are the mean + SEM of
duplicate cultures. Lane 1, non-pulsed EGFP-transduced DCs;
lane 2, KLH-pulsed EGFP-transduced DCs; lane 3, non-pulsed
IL-4-transduced DCs; lane 4, KLH-pulsed IL-4-transduced DCs

IL-2, but significantly increased levels of IL-4. These data
indicate that IL-4-transduced DCs favor the development
of a Th2 response in primary immune reactions in lymph
node cells. To examine whether the observed ex vivo
cytokine secretion pattern reflects the functional immune
response in vivo, a delayed type hypersensitivity (DTH)

Copyright © 2005 John Wiley & Sons, Ltd.

assay was performed. Eight days after injection of KLH-
pulsed DCs, mice were rechallenged and examined for
footpad swelling responses to KLH. The extent of swelling
induced in animals that had received IL-4-transduced
DCs was approximately 50% of that seen with EGFP-
transduced DCs (Figure 2).

IL-4 increases IL-12 heterodimer and
decreases p40 production by
BM-derived DCs

We next examined the effect of IL-4 on production of
the heterodimeric IL-12p70 and the p40 subunit by bone
marrow (BM)-derived DCs, as determined by ELISA of
culture supernatants (Table 2). In these experiments,
BM-derived DCs were stimulated for 12 or 24 h through T-
cell-dependent (rmCD40L-trimer) or T-cell-independent
(LPS) pathways in the presence or absence of IL-4. IL-
12p70 levels were significantly increased by IL-4 in the
context of stimulation by either LPS or CD40L. In contrast,
p40 levels were decreased.

.25 T

.20 —
.15

.10

Footpad swelling (mm)

.05

EGFP-DC

IL4-DC

Figure 2. DTH responses induced by EGFP- or IL-4-transduced
DCs. KLH-pulsed EGFP- or IL-4-transduced DCs (2 x 10°) were
injected s.c. into the right flanks of mice. Eight days later, these
animals were challenged by s.c. injection of KLH (25 pg/10 pl
PBS) into the right hind footpad, or PBS into the left hind
footpad. The response was calculated as the difference between
the right and left footpad swelling. Data are the mean + SEM
of five individual mice/group. The footpad swelling induced
by IL-4-transduced DCs was significantly (p < 0.05) diminished
compared with that induced by EGFP-transduced DCs

J Gene Med 2005; 7: 869-877.
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Table 2. Effect of IL-4 on the production of IL-12p70 and p40 production by bone-marrow-derived DCs
(=) CD40L LPS LPS + IFN-y
(=) +IL-4 -) +IL-4 ) +IL-4 =) +IL-4
IL-12p70 (pg/ml) 12 h <20 <20 <20 120 517 1690 1750 5690
4 h <20 <20 <20 123 314 1330 1770 5900
p40 (ng/ml) 12 h 0.4 0.3 4.0 1.7 30.8 14.9 57.5 24.3
24 h 1.8 0.6 7.0 2.2 27.6 14.6 58.5 40.4

DCs (10%/ml) were cultured for 12 or 24 h with rmCD40L-trimer (10 ug/ml), LPS (1 ug/ml) or LPS plus IFN-y (1000 U/ml) in the presence of absence
of IL-4 (50 ng/ml). Concentrations of IL-12p70 and p40 in the culture supernatants were measured in duplicate by ELISA. The data shown are from a

single experiment representative of two identical experiments.

IL-4 differentially regulates IL-12 and
IL-23 subunit gene expression in
BM-derived DCs

To directly examine the effect of IL-4 on expression of
IL-12 and IL-23 subunit genes in BM-derived DCs, the
mRNA levels of IL-12p35, IL-23p19, and the common
subunit p40 were assessed by PCR (Figures 3A and 3B).
P35 mRNA expression was enhanced by the combination
of CD40 ligation and IL-4, but this enhancement was
inhibited by IL-10 at 12 h. In contrast, p19 and p40
mRNA expression was induced by CD40L alone, but this
induced expression was decreased by IL-4 or IL-10. To
confirm the semiquantitative PCR results, p35, p19, and
p40 mRNA expression was also determined by real-time
PCR using different sets of primers and a different house
keeping gene, y-actin, and similar results were obtained
(Figure 3C). When comparing the results at 6 and 12 h, it
is evident that induction of p35 mRNA is more sustained
when DCs are stimulated by CD40L in the presence of
IL-4.

Increased production of IL-12p70 in
IL-4-transduced DCs

We next evaluated the effect of retroviral transduction
of DCs with IL-4 on production of IL-12p70 and p40 by
the transduced DCs. EGFP- or IL-4-transduced DCs were
stimulated for 24 h by rmCD40L-trimer, LPS, or LPS plus
IFN-y and levels of cytokines in culture supernatants were
determined by ELISA (Table 3). The results were similar
to the findings observed in untransduced DCs exposed
to IL-4. IL-12p70 levels were significantly increased in
IL-4-transduced DCs by both LPS and CD40L stimuli,
compared with EGFP-transduced DCs. By contrast, p40
levels tended to be lower in culture supernatants of IL-4-
transduced DCs, especially after the CD40L stimulus. We
also measured IL-18, which could be produced by DCs,
and may play a role for Th1/Th2 immune responses [22].
IL-18 was not detected in the culture supernatants of DCs.
When CD40L-transfected cells were used as the CD40L
stimulus, similar results were obtained (Figure 4A). To
confirm the specificity of the effect of IL-4 on the
transduced DCs, EGFP-transduced DCs were cultured for
24 h with various concentrations of rmIL-4 in the presence

Copyright © 2005 John Wiley & Sons, Ltd.
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Figure 3. Effects of IL-4 and IL-10 on the expression of mRNA
for IL-12 and IL-23 subunits in bone-marrow-derived DCs. DCs
(10%/ml) were stimulated for 6 h (lanes 1-5) or 12 h (lanes
6-10) with rmCD40L-trimer (10 iLg/ml) and IL-4 (50 ng/ml) or
IL-10 (50 ng/ml) as follows: lanes 1 and 6, control; lanes 2 and
7, CD40L; lanes 3 and 8, CD40L and IL-4; lanes 4 and 9, CD40L
and IL-10; lanes 5 and 10, CD40L, IL-4, and IL-10. (A, B) mRNA
expression of IL-12p35, IL-23p19, and the common subunit
p40 were measured by semiquantitative RT-PCR. (A) PCR
products were stained with ethidium bromide. (B) Data were
obtained from densitometric analysis, and all values were
further normalized by HPRT PCR product. (C) Real-time PCR
was performed as described in ‘Materials and methods’. Levels of
p35, p19, or p40 mRNA were normalized to y-actin mRNA level.
The y-axis in (B) and (C) corresponds to a scale of arbitrary units

J Gene Med 2005; 7: 869-877.
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Table 3. IL-12p70 and p40 production by EGFP- or IL-4-transduced DCs

(=) CDA4O0L LPS LPS + IFN-y
EGFP-DC IL4-DC EGFP-DC IL4-DC EGFP-DC IL4-DC EGFP-DC IL4-DC

IL-12p70 (pg/ml) <20 <20 30 600 150 2280 1630 7070
p40 (ng/ml) 0.6 0.6 6.3 4.2 373 25.6 63.7 53.1

Virally transduced DCs (10%/ml) were cultured for 24 h with or without rmCD40L-trimer (10 wg/ml), LPS (1 ug/ml) or LPS plus IFN-y (1000 U/ml).
Culture supernatants were assayed in duplicate for cytokines by ELISA. The data shown are from a single experiment representative of five identical

experiments.

of CD40L-transfected cells, and IL-12p70 and p40 levels
in culture supernatants were determined by ELISA
(Figure 4B). The results revealed that rmIL-4 augmented
IL-12p70 production, but diminished p40 production
in a dose-dependent manner. Additionally, when IL-4-
transduced DCs were cultured with neutralizing anti-
IL-4 mAb, IL-12p70 production was decreased and p40
production was increased (Figure 4B).

Differential gene expression of IL-12
and IL-23 subunits in EGFP- or
IL-4-transduced DCs

We also determined mRNA levels of p35, p19, and p40
in EGFP- or IL-4-transduced DCs treated with rmCD40L-
trimer and assessed by both semiquantitative RT-PCR and
real-time PCR (Figure 5). As expected, p35, p19, and p40
mRNA expression by transduced DCs was induced by the
CD40L stimulus. IL-4-transduced DCs expressed higher
levels of p35 mRNA but lower levels of p19 and p40
mRNA, compared with EGFP-transduced DCs.

Exposure to IL-4 during activation of
DCs suppresses IL-23 secretion

To confirm that IL-4 could directly and specifically
suppress production of IL-23, BM-derived DCs were
cultured on 3T3 cells that express CD40L, and 48 h culture
supernatants were assayed for the IL-23 heterodimer by
ELISA. IL-4 at 10 or 50 ng/ml substantially suppressed IL-
23 production, an effect that was prevented by inclusion
of neutralizing anti-IL-4 mAb in the culture medium
(Figure 6).

Discussion

We previously reported that DCs genetically engineered
to express IL-4 inhibit established Thl responses
in an experimental model of autoimmune arthritis
[2]. Expression of MHC molecules and co-stimulatory
ligands for T cell activation was not affected by IL-
4 gene transduction, but splenic T cell production
of IL-4 in response to anti-CD3 was enhanced after
administration of IL-4-transduced DCs [2]. The present
study further examines the functional characteristics of

Copyright © 2005 John Wiley & Sons, Ltd.
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Figure 4. Effect of IL-4 on the production of IL-12p70 and p40
by retrovirally transduced DCs. (A) EGFP- or IL-4-transduced
DCs (105/ml) were co-cultured for the indicated time
with CD40L-expressing NIH 3T3 cell lines. Closed circles,
IL-4- transduced DCs; open circles, EGFP-transduced DCs.
(B) EGFP-transduced cells were co-cultured for 24 h with
CD40L-expressing cells in the presence of the indicated con-
centrations of rmIL-4. IL-4-transduced cells were co-cultured
with CD40L-expressing cells in the presence or absence of neu-
tralizing anti-IL-4 mAb. Concentrations of IL-12p70 and p40 in
culture supernatants were measured in duplicate by ELISA

these unique cells. We hypothesized that immunization
with antigen-pulsed IL-4-transduced DCs could induce
Th2 responses in vivo in primary immune responses. This
study supports that hypothesis since KLH-pulsed IL-4-
transduced DCs preferentially induced the activation of T
cells programmed to secrete IL-4. Moreover, DTH reaction
induced by IL-4-transduced DCs is significantly reduced
compared with that seen with control DCs. This change

J Gene Med 2005; 7: 869-877.
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Figure 5. Differential mRNA expression of IL-12 and IL-23
subunits in EGFP- or IL-4-transduced DCs. The transduced DCs
(10%/ml) were stimulated for 6 h (lanes 1-4) or 12 h (lanes
5-8) with rmCD40L-trimer (10 pg/ml). RNA was extracted from
cultures of EGFP-transduced DCs without stimulus (lanes 1
and 5) or with CD40L (lanes 2 and 6), and from cultures of
IL-4-transduced DCs without stimulus (lanes 3 and 7) or with
CD40L (lanes 4 and 8). (A, B) mRNA expression of IL-12p35,
IL-23p19, and p40 was measured by semiquantitative RT-PCR.
(A) PCR products were stained with ethidium bromide. (B) Data
obtained from densitometric analysis are shown and all values
were normalized by HPRT PCR product. (C) Real-time PCR was
performed and levels of p35, p19, or p40 mRNA were normalized
to y-actin mRNA level. Data is displayed as described in Figure 1

in the strength of the DTH response may reflect down-
regulation of the secretion of y-IFN by IL-4 and/or other
regulatory mechanisms.

Cytokine production is one of the most important
mechanisms by which DCs determine the direction of
T cell immune responses, and DC-derived IL-12 is critical
for induction of primary Th1 immune responses [22—25].
Injection of distinct subsets of DCs, pulsed with antigen,
preferentially induces Th1l or Th2 responses in mice, in
a pattern that is clearly associated with their capacity

Copyright © 2005 John Wiley & Sons, Ltd.
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Figure 6. IL-4 inhibits IL-23 release by DCs. DCs were co-cultured
for 48 h with CD40L-expressing NIH 3T3 cell lines in the presence
of the indicated concentrations of rmIL-4, and in the presence or
absence of neutralizing anti-IL-4 mAb. Concentrations of IL-23
heterodimer in culture supernatants were measured in duplicate
by ELISA

to secrete IL-12 invitro [23-25]. Distinct subsets of
human DCs, DC1 or DC2, which have different capacities
to produce IL-12, induce the in vitro differentiation of
naive T cells into Thl or Th2 cells, respectively [26].
Previous studies have demonstrated the role of IL-4 in the
regulation of IL-12 production by activated DCs [15-18].
Initial work documented an inhibitory effect of IL-4 on
the production of IL-12 by mouse splenic DCs stimulated
by anti-CD40 mAb [15]. However, more recent work
has demonstrated that IL-4 enhances IL-12 production by
mouse splenic DCs treated with various stimuli [16], and
by cultured human monocyte-derived DCs stimulated with
CD40L [16-18]. During initial stages of DC activation
by infectious agents in vivo, IL-4 induction of DC IL-12
production may help to initiate Thl responses, while
later in the course of T cell priming IL-4 induces a Th2
response [27]. We focused on bone marrow (BM)-derived
DCs, since their use for immunotherapeutic approaches
is being explored. Our data supports these recent results
by demonstrating that IL-4 strongly increases secretion of
IL-12p70 by mouse BM-derived DCs, either untransduced
or retrovirally transduced, in response to CD40 ligation
or LPS.

Semiquantitative and quantitative mRNA analyses
clearly show that expression of the IL-12 and IL-23
subunits is differentially regulated by IL-4 for each
subunit. The data from semiquantitative and real-time
PCR assays yielded very similar results in this regard,
despite some minor quantitative differences. Our results
demonstrate that (1) IL-4 up-regulates IL-12p35 mRNA
expression in DCs in the presence of a CD40L stimulus;
(2) CDA40 ligation induces expression of both IL-23p19
and the common subunit p40 mRNA, and both of
them are down-regulated by IL-4; (3) IL-10 inhibits p40

J Gene Med 2005; 7: 869-877.
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mRNA expression. Considering that IL-4 enhances IL-
12p70 production and the p40 subunit is more abundant
than IL-12p70, p35 expression is therefore the limiting
factor controlling production of IL-12p70 by DCs. This
conclusion is consistent with results observed in another
APC, human monocytes, stimulated with LPS [28,29].

IL-4-expressing DCs induced Th2 responses in lymph
node T cells that were exposed to antigen in vivo, and, in
our previous study, inhibited arthritis in the CIA model
[2]. It is of particular interest that both of these effects
occurred despite the potential of IL-4 DCs to produce
increased levels of IL-12. It has been thought that IL-4 is
dominant over IL-12 for effects on T cell differentiation,
since addition of IL-4 and IL-12 together induces Th2
development in vitro using T cells from a TCR-transgenic
mouse [6]. Our data suggest a dominant effect of IL-4
in vivo, but could also reflect decreased production of IL-
23. Since IL-4 down-regulates mRNA expression of both
p19 and p40 subunits that form IL-23, we hypothesized
that IL-4 directly decreases the production of IL-23 by
DCs, and confirmed this by ELISA. IL-23 is known
to stimulate IFN-y production by T cells [13]. If DC-
derived IL-23 cooperates with IL-12 in the development
of Thl responses, the stimulatory effect of IL-4 on IL-12
production may be offset by its inhibitory effect on IL-23
production.

Recent reports have suggested that IL-12 is not always
required for generation of Thl responses, as long as
IL-23 is present [30,31]. In a murine EAE model, p35
—/— mice remained susceptible to CNS inflammation,
but IL-23-deficient mice were resistant [32]. Direct pro-
inflammatory effects of IL-23 on macrophage function
were demonstrated, as well as effects on generation and
function of Thl memory cells [32]. Moreover, although
both IL-12 and IL-23 also act on DCs themselves, their
effects on DC function are distinct, with IL-23 uniquely
able to shift the outcome of antigen presentation from
tolerance to immunogenicity [33]. The effects of IL-23 are
mediated through the IL-23 receptor, which includes IL-12
RA1 as well as a distinct IL-23R subunit [34]. Transgenic
overexpression of IL-23 p19 leads to a fatal, multi-organ
inflammatory process [35]. In human psoriasis, IL-23 is
expressed more strongly than IL-12 by lesional cutaneous
DCs [36].IL-23 has been reported to markedly up-regulate
T cell production of the pro-inflammatory cytokine IL-17,
an effect not duplicated by IL-12 [37]. Taken together,
these reports emphasize that IL-23 may have a dominant
role in initiating Thl immune responses and related
inflammatory pathways. This notion is consistent with our
present findings that DC IL-12 and IL-23 gene expression
and cytokine production respond in a divergent manner
to regulation by IL-4. This differential regulation of IL-12
and IL-23 by IL-4 could be unique to DCs, since IL-
4 coordinately down-regulated both IL-12 and IL-23 in
virus-activated macrophages [38].

In some systems it can be shown that priming of IFN-y
producers still occurs in the presence of both IL-4 and IL-
12, although IFN-y production is inhibited by the presence
of IL-4 [8]. Indeed, our results show that IL-4-transduced
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DCs still induce a DTH response, although its magnitude
is significantly diminished compared with responses
induced by control DCs. Therefore, DC-derived IL-12
may limit the ability of IL-4-transduced DCs to control
Th1l-mediated autoimmune diseases. Suppression of IL-12
production in IL-4-transduced DCs might result in more
potent immunoregulatory effects. Further modification of
DCs, such as treatment with aspirin [39] or with IL-10
[40], or transduction with both IL-4 and IL-10, could be
considered.

In summary, this report provides additional information
regarding the functional profile of IL-4-transduced DCs.
Our findings show that IL-4-expressing DCs induce Th2
responses not only in the CIA model, but also in primary
antigen-specific immune responses. Our data also indicate
a distinct regulatory role of IL-4 in the differential
expression of IL-12 and IL-23 by DCs. Therefore, the
mode of action of IL-4 in vivo may be more complex than
previously appreciated, encompassing the influence of IL-
4 on APCs, including DCs, as well as on T cells. Supporting
this notion, some Thl-type inflammatory diseases can
be exacerbated by IL-4 treatment [41,42], and DCs
transduced with an adenoviral IL-4 construct accelerated
allograft rejection [43]. Furthermore, defective Thl
responses were recently demonstrated in IL-4-deficient
mice [44,45]. Further understanding of DC biology and
the immunoregulatory roles of cytokines such as IL-4,
IL-10, IL-12, and IL-23 will be necessary for rational use
of cytokine-modified DCs for human disease.

Acknowledgements

This work was supported by research grants from the Wilson
Foundation and the Arthritis Foundation (to Y.M. and D.A.F.), by
Grant-in-Aid for Young Scientists from The Ministry of Education,
Culture, Sports, Science and Technology, Japan (15790512
to Y.M.), by Research Project Grants from Kawasaki Medical
School (16-413F to Y.M.), by National Institutes of Health
grants (DK02349 to K.T.M. and AR38477 to D.A.F.), and by
the University of Michigan Rheumatic Disease Core Center. We
thank Dr. Michael B. Widmer of Immunex for rmGM-CSF and
rmCD40L-trimer, Dr. Robert Kastelein of DNAX for the IL-23
ELISA reagents, Jennifer Fuller for her work in preparing the
PRET6-mCD40L construct, Dr. Nobuhiro Takeshita and Judith
Endres for technical assistance, and Dr. Ekaphop Sirachainan
and Sutang Guo for help with real-time PCR assays.

References

1. Banchereau J, Steinman RM. Dendritic cells and the control of
immunity. Nature 1998; 392: 245-252.

2. Morita Y, YangJ, GuptaR, etal. Dendritic cells genetically
engineered to express IL-4 inhibit murine collagen-induced
arthritis. J Clin Invest 2001; 107: 1275-1284.

3. KimSH, Kim S, Evans CH, etal. Effective treatment of
established murine collagen-induced arthritis by systemic
administration of dendritic cells genetically modified to express
IL-4. J Immunol 2001; 166: 3499—-3505.

4. Kobayashi M, FitzL, RyanM, etal. Identification and
purification of natural killer cell stimulatory factor (NKSF),
a cytokine with multiple biologic effects on human lymphocytes.
J Exp Med 1989; 170: 827-845.

J Gene Med 2005; 7: 869-877.



IL-4 Suppresses IL-23 in DCs

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Stern AS, Podlaski FJ, Hulmes JD, etal. Purification to
homogeneity and partial characterization of cytotoxic
lymphocyte maturation factor from human B-lymphoblastoid
cells. Proc Natl Acad Sci U S A 1990; 87: 6808-6812.

. Hsieh CS, Macatonia SE, Tripp CS, et al. Development of TH1

CD4+ T cells through IL-12 produced by Listeria-induced
macrophages. Science 1993; 260: 547-549.

. Manetti R, Parronchi P, Giudizi MG, et al. Natural killer cell

stimulatory factor (interleukin 12 [IL-12]) induces T helper type
1 (Th1)-specific immune responses and inhibits the development
of IL-4-producing Th cells. J Exp Med 1993; 177: 1199-1204.

. Seder RA, Gazzinelli R, Sher A, et al. Interleukin 12 acts directly

on CD4+ T cells to enhance priming for interferon gamma
production and diminishes interleukin 4 inhibition of such
priming. Proc Natl Acad Sci U S A 1993; 90: 10188-10192.

. Gately MK, Desai BB, Wolitzky AG, et al. Regulation of human

lymphocyte proliferation by a heterodimeric cytokine, IL-12
(cytotoxic lymphocyte maturation factor). J Immunol 1991;
147: 874-882.

Chan SH, Perussia B, Gupta JW, et al. Induction of interferon
gamma production by natural killer cell stimulatory factor:
characterization of the responder cells and synergy with other
inducers. J Exp Med 1991; 173: 869-879.

Sieling PA, Wang XH, Gately MK, et al. IL-12 regulates T helper
type 1 cytokine responses in human infectious disease. J
Immunol 1994; 153: 3639-3647.

MoritaY, Yamamura M, Nishida K, etal. Expression of
interleukin-12 in synovial tissue from patients with rheumatoid
arthritis. Arthritis Rheum 1998; 41: 306-314.

Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages
IL-12p40 to form a cytokine, IL-23, with biological activities
similar as well as distinct from IL-12. Immunity 2000; 13:
715-725.

Cella M, Scheidegger D, Palmer-Lehmann K, et al. Ligation of
CD40 on dendritic cells triggers production of high levels of
interleukin-12 and enhances T cell stimulatory capacity: T-T
help via APC activation. J Exp Med 1996; 184: 747-752.

Koch F, Stanzl U, Jennewein P, et al. High level IL-12 production
by murine dendritic cells: upregulation via MHC class II and
CD40 molecules and downregulation by IL-4 and IL-10. J Exp
Med 1996; 184: 741-746.

Hochrein H, O’Keeffe M, Luft T, et al. Interleukin (IL)-4 is a
major regulatory cytokine governing bioactive IL-12 production
by mouse and human dendritic cells. J Exp Med 2000; 192:
823-833.

Ebner S, Ratzinger G, Krosbacher B, et al. Production of IL-12
by human monocyte-derived dendritic cells is optimal when the
stimulus is given at the onset of maturation, and is further
enhanced by IL-4. J Immunol 2001; 166: 633-641.

Kalinski P, Smits HH, Schuitemaker JH, et al. IL-4 is a mediator
of IL-12p70 induction by human Th2 cells: reversal of polarized
Th2 phenotype by dendritic cells. J Immunol 2000; 165:
1877-1881.

Fields RC, Shimizu K, Mule JJ. Murine dendritic cells pulsed
with whole tumor lysates mediate potent antitumor immune
responses in vitro and in vivo. Proc Natl Acad Sci U S A 1998;
95: 9482-9487.

Markowitz D, Goff S, Bank A. A safe packaging line for gene
transfer: separating viral genes on two different plasmids. J
Virol 1988; 62: 1120-1124.

Kato T, Hakamada R, Yamane H, etal. Induction of IL-12
p40 messenger RNA expression and IL-12 production of
macrophages via CD40-CD40 ligand interaction. J Immunol
1996; 156: 3932-3938.

Stoll S, Jonuleit H, Schmitt E, et al. Production of functional
IL-18 by different subtypes of murine and human dendritic
cells (DC): DC-derived IL-18 enhances IL-12-dependent Thl
development. Eur J Immunol 1998; 28: 3231-3239.

Pulendran B, Smith JL, Caspary G, et al. Distinct dendritic cell
subsets differentially regulate the class of immune response
in vivo. Proc Natl Acad Sci U S A 1999; 96: 1036-1041.
Maldonado-Lopez R, De Smedt T, Michel P, et al. CD8alpha+
and CD8alpha- subclasses of dendritic cells direct the
development of distinct T helper cells in vivo. J Exp Med 1999;
189: 587-592.

Iwasaki A, Kelsall BL. Freshly isolated Peyer’s patch, but not
spleen, dendritic cells produce interleukin 10 and induce the

Copyright © 2005 John Wiley & Sons, Ltd.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

877

differentiation of T helper type 2 cells. J Exp Med 1999; 190:
229-239.

Rissoan MC, Soumelis V, Kadowaki N, et al. Reciprocal control
of T helper cell and dendritic cell differentiation. Science 1999;
283:1183-1186.

Biedermann T, Zimmermann S, Himmelrich H, etal. IL-4
instructs TH1 responses and resistance to Leishmania major
in susceptible BALB/c mice. Nat Immunol 2001; 2: 1054-1060.
Hayes MP, Wang J, Norcross MA. Regulation of interleukin-12
expression in human monocytes: selective priming by interferon-
gamma of lipopolysaccharide-inducible p35 and p40 genes.
Blood 1995; 86: 646-650.

Snijders A, Hilkens CM, van der Pouw Kraan TC, et al.
Regulation of bioactive IL-12 production in lipopolysaccharide-
stimulated human monocytes is determined by the expression
of the p35 subunit. J Immunol 1996; 156: 1207-1212.

Cooper AM, Kipnis A, Turner J, et al. Mice lacking bioactive IL-
12 can generate protective, antigen-specific cellular responses to
mycobacterial infection only if the IL-12 p40 subunit is present.
J Immunol 2002; 168: 1322-1327.

Gran B, Zhang GX, YuS, etal. IL-12p35-deficient mice are
susceptible to experimental autoimmune encephalomyelitis:
evidence for redundancy in the IL-12 system in the induction of
central nervous system autoimmune demyelination. J Immunol
2002; 169: 7104-7110.

Cua DJ, Sherlock J, ChenY, et al. Interleukin-23 rather than
interleukin-12 is the critical cytokine for autoimmune
inflammation of the brain. Nature 2003; 421: 744-748.
Belladonna ML, Renauld JC, Bianchi R, et al. IL-23 and IL-12
have overlapping, but distinct, effects on murine dendritic cells.
J Immunol 2002; 168: 5448-5454.

Parham C, Chirica M, TimansJ, etal. A receptor for the
heterodimeric cytokine IL-23 is composed of IL-12Rbetal and a
novel cytokine receptor subunit, IL-23R. J Immunol 2002; 168:
5699-5708.

Wiekowski MT, Leach MW, Evans EW, etal. Ubiquitous
transgenic expression of the IL-23 subunit pl9 induces
multiorgan inflammation, runting, infertility, and premature
death. J Immunol 2001; 166: 7563-7570.

Lee E, Trepicchio WL, Oestreicher JL, et al. Increased expression
of interleukin 23 p19 and p40 in lesional skin of patients with
psoriasis vulgaris. J Exp Med 2004; 199: 125-130.

Aggarwal S, Ghilardi N, Xie MH, et al. Interleukin-23 promotes
a distinct CD4 T cell activation state characterized by
the production of interleukin-17. J Biol Chem 2003; 278:
1910-1914.

Pirhonen J, Matikainen S, Julkunen I. Regulation of virus-
induced IL-12 and IL-23 expression in human macrophages.
J Immunol 2002; 169: 5673-5678.

Hackstein H, Morelli AE, Larregina AT, et al. Aspirin inhibits
in vitro maturation and in vivo immunostimulatory function
of murine myeloid dendritic cells. J Immunol 2001; 166:
7053-7062.

De Smedt T, Van Mechelen M, De Becker G, et al. Effect of
interleukin-10 on dendritic cell maturation and function. Eur J
Immunol 1997; 27: 1229-1235.

Ramanathan S, de Kozak Y, Saoudi A, et al. Recombinant IL-4
aggravates experimental autoimmune uveoretinitis in rats. J
Immunol 1996; 157: 2209-2215.

Fort M, Lesley R, Davidson N, et al. IL-4 exacerbates disease in
a Thl cell transfer model of colitis. J Immunol 2001; 166:
2793-2800.

Kaneko K, Wang Z, Kim SH, et al. Dendritic cells genetically
engineered to express IL-4 exhibit enhanced IL-12p70
production in response to CD40 ligation and accelerate organ
allograft rejection. Gene Ther 2003; 10: 143-152.

Mencacci A, Del Sero G, Cenci E, et al. Endogenous interleukin
4 is required for development of protective CD4+ T helper type
1 cell responses to Candida albicans. J Exp Med 1998; 187:
307-317.

Schuler T, Qin Z, Ibe S, et al. T helper cell type 1-associated and
cytotoxic T lymphocyte-mediated tumor immunity is impaired
in interleukin 4-deficient mice. J Exp Med 1999; 189: 803-810.

J Gene Med 2005; 7: 869-877.



