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Abstract:

This paper examines pre-auction investments made by asymmetric agents that compete
for a supply contract from a monopolist principal. Agents are privately aware of their
managerial efficiencies which determine how well they can leverage fixed investments to
reduce their variable costs for servicing the contract, and they privately choose investment
levels prior to the procurement mechanism being declared by the principal. Hence, the dis-
tribution of “types” that is standard in the principal-agent literature is, here, endogenously
determined by the private actions of the agents. The principal declares a mechanism that
is optimal for her, after agents have made their private investment decisions. We show
that in equilibrium all optimal investment strategies by competing firms will have the form
of investing as if there is no reservation price up to a critical level of managerial type, and
investing minimally thereafter. This feature, however, implies that only trivial pure strat-
egy equilibria can exist when the principal has any reasonably competitive alternative for
servicing the contract. This is because in these cases an optimal mechanism induces agents
to adopt a discontinuous investment strategy which provides the principal an incentive to
deviate from the declared mechanism. An intuitive extrapolation of the extant literature
to our context (in which agents adopt technologies featuring a fixed-variable cost trade-off)
would suggest that we would see “underinvestment,” manifesting itself as lower fixed and
higher variable cost technologies in the industry. However, this intuition is either sustained
trivially or cannot be sustained in pure strategies when the principal has any reasonable
outside options for supply. The question of what cost structure we will see in equilibrium
in these contexts will require future effort, and a consideration of mixed strategies.

1



Pre-auction Investments by Type-conscious Agents

1. Introduction

This paper considers the induced level of investment in productive resources made by firms
that know they will be competing with other firms for a supply contract from a monopolist
buyer. Firms can incur fixed and sunk costs to lower their variable costs of supply, and
investments are made prior to the buyer declaring the rules (mechanism) by which the
indivisible supply contract will be allocated. Each supplying firm is privately conscious
of its own cost structure prior to making its investment decision (that is, they are “type
conscious”).

The motivating context for this work was a situation in which the capacity of the operating
room suite at a large Midwestern hospital had to be increased. As described in Lovejoy and
Li (2002) the hospital had two choices for enhancing its capacity. It could build new oper-
ating rooms or extend the working hours in the existing rooms incurring costly overtime.
The former solution incurred higher fixed costs but lower variable costs, and the latter
solution the reverse of that cost structure. What choice should they make if they knew
they would be in competition with other hospitals for a large health care contract from a
monopoly payer? A simple classroom experiment can reveal the complications inherent in
this decision. Imagine assigning to each of a group of individuals (representing firms in a
supply pool) a private cost structure, with the range of structures in the population fea-
turing a fixed-variable cost trade-off (those with higher fixed costs will have lower variable
costs). Then, the principal declares she will auction off a supply contract to the lowest
bidder in an open-cry auction. A rational individual will be willing to bid until the price
drops below his variable cost, so that the individual with the lowest variable cost (highest
fixed cost) will get the contract for a price equal to the second lowest variable cost in the
population. If the range of costs in the room is sufficiently dense, what will happen is that
the winning firm will just cover its variable cost, so that all firms end up with net losses
essentially equal to their fixed costs. In fact, the winning individual will lose the most
money, since he has the highest fixed cost. Now, after the individuals have played this
game, tell them they will play again but this time they get to choose their cost structure
from a menu of choices that feature a fixed-variable cost trade-off. What will they do?
Knowing that all firms ended up with a net loss equal to their fixed cost, it is tempting
to conclude that they will all choose a low fixed cost, high variable cost structure. But,
if all firms do this wouldn’t at least one firm be tempted to defect, anticipating that all
competitors feature very high variable costs? Also, the simple open-cry format may not
be the optimal mechanism design for the principal, and in particular we made no mention
of a reservation price which commonly attends optimal mechanisms.
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It is by now well understood how a seller can design an optimal auction mechanism that
gives her the highest expected revenues from the sale of an indivisible object to potential
buyers whose valuation of the object is their private information (Myerson, 1981; Riley
and Samuelson, 1981; Maskin and Riley, 1984). The classical formulation of the auction
as a non-cooperative game is facilitated through the notion of a “type”, where, following
Harsanyi (1967-68), players’ uncertainty about another player’s valuation is captured as
an exogenously specified probability distribution. Much of the extant literature on the
theory of auctions relies on this type distribution being readily available. Not much has
been written on designing optimal auction mechanisms when buyers may not approach the
auction with pre-determined valuation for the object they intend to bid for, but actively
“choose their type” before bidding. Such is the case, for example, when defense contractors
invest substantial resources in R&D before bidding for a government contract (Lichtenberg,
1986; Rogerson, 1989). Such proactive investments are costly, but could lead to a lower
cost structure or a higher probability of success in developing a new technology, thus higher
chance of winning the contract.

This paper analyzes the existence and character of pure-strategy equilibria in a game
where several supplier (agent) firms can make pre-auction investments to affect their cost
structure prior to entering an auction for an indivisible supply contract from a monopoly
buyer (principal). The analysis applies in general to principal-agent situations where agents
“buy their type” prior to bidding in an auction, principal declares her mechanism after
agents’ decisions have been made, and the assumptions imposed in our model (which are
fairly standard; see below) hold.

The question of pre-auction investments is important because it informs the induced cost
structures in an industry. For example, an intuitive extrapolation of the extant literature
(see below) suggests that if the principal does not commit to a mechanism prior to the
agents making their investment decisions, agents will underinvest. In our context, this
would mean that agents incur lower fixed costs and hence exhibit a higher variable cost
structure than might be socially or individually (for the principal and agents alike) optimal.
For example, if there were no safeguards to support fixed costs in electricity auctions, we
would expect no new base load plants to be built and to see all new generating capacity
in the form of gas turbines or other low fixed but high variable cost production systems.
This intuitive story, however, is too simple. If all competitors had high variable costs, then
at least one firm would perceive it advantageous to invest more fixed costs to lower their
variable costs, because they would perceive the likelihood of winning the auction to be
very high. In that situation, they might approach investing as if they were guaranteed to
win, and that may include robust investment in fixed cost assets. What is the nature of an
equilibrium in this setting? Here we show that no pure strategy equilibrium will exist in
situations where the principal has a meaningful alternative to awarding the contract. That
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is, unless the cost of alternative outside supply (or the cost of holding onto the contract
herself) is so high that it exceeds the worst case among the agents at minimal investment
levels, or so low that no supplier has any chance to win, there will be no pure strategy
equilibrium.

Existing literature

We largely follow Myerson (1981) in our auction design. Myerson assumes that an agent’s
value estimate for the object to be auctioned is privately known to the agent, and other
players’ uncertainty about agent i’s valuation can be described by a probability distri-
bution whose density is positive everywhere over a finite interval. This assumption is
almost universally employed by most authors in their analysis of optimal auctions (Riley
and Samuelson, 1981; Maskin and Riley, 1984), specific auction formats (Vickrey, 1961;
Wilson, 1969; Milgrom and Weber, 1982), and most applications thereof. We extend My-
erson’s analysis to situations where the “type distribution” for each agent i is generated
endogenously via a common prior belief on agent’s ability, and his conscious “investment”
decision.

The existing literature on pre-auction investments was largely motivated by either patent
races or by firms competing for government contracts (for example, defense contracts). In
both cases, firms can invest at time zero to reap probabilistic rewards (either winning the
contract, or cost reductions) at some future time. The focus of the articles is on the level
of time-zero investment relative to the social optimal.

Loury (1979) models a patent race in which the first firm to win gets all of the rents in
perpetuity from the patent. Firms choose investment levels that beget random times of
discovery, and the first discovery time wins. Firms are assumed to be ex ante symmetric,
and Loury restricts his attention to symmetric equilibria. He shows that firms over-invest
relative to a social optimum because they ignore the externality they place on others by
investing. However in Loury (1979) there is no self-interested principal trying to extract
rents from the agents. Dasgupta (1990) adds the feature of the self-interested principal,
and models firms that can invest in R&D to purchase a random cost outcome with a con-
tingent distribution that is known to all. The firms must choose a level of investment prior
to competing for a production contract in an auction mechanism designed by a monopoly
buyer. The level of investment and cost outcome are private information, and the sup-
pliers choose investment levels before the principal declares the mechanism design. The
suppliers are ex-ante symmetric and Dasgupta focuses on symmetric equilibria (for which
the optimal mechanism can take on several standard forms; the author analyzes imple-
mentation via a sealed low-bid auction). Since agents must choose levels of investment,
which incur sunk costs, prior to the principal declaring a mechanism the suppliers are
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exposed to opportunistic behavior by the buyer. This results in under-investment by the
agents. If the buyer can pre-commit to a mechanism the suppliers’ levels of investment
increase toward the social optimum. This aligns with known results that pre-commitment
in competition can sometimes make things better for everybody. Piccione and Tan (1996)
model a situation very similar to that in Dasgupta, focusing on symmetric equilibria and
in particular on the relationship between the contingent cost distributions and equilibrium
investment levels. They show that for certain forms of this distribution we again have
under-investment relative to the social optimum because of the opportunistic behavior of
the rent-extracting buyer. Again, pre-commitment by the buyer can mitigate this effect.
For other models where the principal commits to a mechanism prior to the agents’ invest-
ment decisions see Tan (1992), King et al (1992), Bag (1997), Che and Gale (2003) and
Arozamena and Cantillon (2004).

Our model considers firms with the following features:

• The principal declares the mechanism after the firms choose investment levels.

• Any exogenous uncertainty in firm “type” is resolved privately prior to firms choosing
investment levels. Firm types and investment levels are not publicly observable.

• Firms can be ex-ante asymmetric.

• The mechanism is not fixed, but is also endogenous in that principal invokes an optimal
mechanism given her beliefs about the agents’ investment strategies.

All of the previous work cited differs from our model in at least one of these dimensions.
Yet, ours is a plausible model for some industrial contexts. For example, the usual assump-
tion that supplying firms invest prior to the resolution of cost (or time) uncertainty means
that firms must choose levels of investment without knowing their cost structure. This is
plausible in a basic R&D context, but established industrial firms making investments in
familiar processes are likely to know their cost structure prior to committing those funds.
That is, there is private firm-specific information about the managerial type of each firm
that is known by the firm at the time of its investment decision. Our model addresses this
context, which explains what we mean by firms being “type conscious.”

Che & Gale (2003) and King et al (1992) also assume that an agent knows his own type
prior to investing. However, in their models an agent’s type is publicly observable while
his investment level is not. We treat both an agent’s type and his investment level as his
private information.

In our model the generally held beliefs about a firm’s capabilities can be asymmetrical, as
can the investment strategies followed by the firms based on their private information about
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those capabilities. Also, in our model, firms can enter the decision process with different
levels of historical investment in place, and disinvestment can be costly, amplifying the
asymmetrical nature of the competition.

The current literature focuses on the social efficiency of the equilibrium levels of investment,
assuming pure strategy equilibria exist. Our focus is on the existence of these equilibria,
and their structure when they exist.

Radner and Rosenthal (1982), Milgrom and Weber (1982) and Athey (2001) also study
the existence of pure-strategy equilibria in games of incomplete information. But they
consider situations where each player is an agent possessing private information. We
examine whether a balance can be reached between a principal and agents who possess
private information.

The existing R&D literature offers sufficient conditions for a pure-strategy equilibrium to
exist that can omit relevant situations. In Dasgupta (1990) and Piccione and Tan (1996)
these conditions are, essentially, that the buyer has no real alternative to the pool of bidders
for supply. Technically, in these papers the consequences to the buyer of not granting the
contract to any of the bidders is the incurrence of a cost, v0, that reflects the cost of a
fall-back position for outside (or internal) supply. The conditions imposed are that v0 is
higher than the worst possible random outcome at the lowest possible level of investment
for the supplying firms. Again, this may be appropriate for basic research contracts to
develop new-to-the-world products but can be less realistic in established industries with
global supply alternatives outside the preferred bidders in the auction pool, or with internal
sourcing options. It is not clear whether pure strategy equilibria can routinely be expected
to exist in these latter contexts. We show that the answer is negative. With meaningful
outside costs (that is, unless v0 is so high it is irrelevant or so low it renders the auction
meaningless) no pure strategy equilibrium will exist. That is, the sufficient conditions
assumed in the existing R&D literature are very close to necessary.

In our model, higher levels of investment will generate higher fixed costs, but lower variable
costs. This trade-off will be present in any set of undominated technology choices, because
nobody would invest in a technology that raises both of these types of costs. This is
also consistent with industrial reality, where higher fixed costs should translate into lower
variable costs of execution. Mathematically, there is little difference between this inter-
pretation and one in which firms invest a dollar amount in R&D to increase their chances
of winning a contract. However, this alternative interpretation has interesting intuitive
consequences. The model addresses the equilibrium cost structure one will expect to see
among the bidding firms. The study of pre-auction investments that feature fixed-variable
cost tradeoffs is not restricted to the R&D literature. Although differing in their focus,
Shleifer (1981), Pope (1990), Laffont & Tirole (1986), Kjerstad & Vagstad (2000), Fuloria
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& Zenios (2001) all take into consideration fixed-variable cost tradeoffs and discuss how
to induce a socially optimal cost-reduction effort, which is a firm’s private information, if
there are observable costs upon which a regulator relies for the design of a contract or an
auction. Newhouse (1996) provides an extensive review of this line of research and its im-
pact on managing health care payments. In our analysis the principal does not observe the
firms’ costs. That is, our principal’s optimal auction design has to be based on anticipation
of the firms’ investment strategies rather than observation of their costs.

The structure of this paper is as follows. Section 2 describes the basic model. Sections
3 and 4 analyze properties of an optimal mechanism and optimal investment strategies,
respectively. Section 5 examines the role of v0 in relation to the existence of a pure strategy
equilibrium. Section 6 concludes the paper.

2. Basic setting

We consider a market where n agents (firms) vie for an indivisible contract through a pro-
curement auction designed by a monopolist principal. All actors are risk neutral. Prior to
the auction, agent i chooses his investment level ki from the interval [ki, k̄i], incurring fixed
cost gi(ki). Given that level of investment agent i would incur a variable cost of Vi(ki, yi)
to service the contract, where yi ∈ [y

i
, yi] is the agent’s “managerial type.” An agent’s

managerial type reflects his ability to make efficient use of investments. Agent i knows yi,
but the principal and his competitors do not, and do not observe the investment level ki.
The common belief among these other players is that yi is distributed as a random variable
Yi with cumulative distribution function Hi and continuous, strictly positive density hi.
The Yi’s are assumed independent.

Throughout the paper we make the following assumptions:

(A1) gi is non-negative, strictly convex and continuously differentiable in investment level.

(A2) kLi is the unique investment level on [ki, k̄i] that minimizes gi.

(A3) Vi is non-negative, strictly decreasing, strictly convex and continuously differentiable
in investment level.

(A4) Vi is non-negative, strictly increasing and continuous in managerial type.

(A5) ∂Vi(ki,yi)
∂ki

is continuous and non-decreasing in managerial type.

(A6) kQyii is the unique investment level on [ki, k̄i] that minimizes gi(ki) + Vi(ki, yi).

(A7) The principal’s outside opportunity cost v0 <∞, and when she is indifferent between
allocating her contract and incurring an outside opportunity cost v0, she will allocate the
contract.
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Assumptions A1 to A3 describe the fixed-variable tradeoffs in question. A2 specifies a
unique fixed cost minimizing level of investment, beyond which gi is strictly increasing.
If agent i is certain that he will not win the contract he will choose investment level kLi
to minimize his fixed costs. Intuitively, one can think of agents starting with no capital
investments, so kLi = 0 and fixed costs strictly increase with investment level ki ≥ kLi . We
generalize this to accommodate potential situations that might arise in regulated industries,
in which an agent can begin with a non-zero level of investment and incur decommissioning
charges to reduce that level, resulting in a kLi > 0.

Assumption A4 implies that an agent with a smaller managerial type makes more efficient
use of investments than does an agent with a larger managerial type. Assumption A5
implies that an increase in managerial type has an adverse impact on the rate at which
variable cost declines with investment level. Assumption A6 simply specifies the notation
used for the cost minimizing investment level for an agent that is certain he will get the
contract. We use the notation kQyii to signal that this can depend on the size of the
contract Q and managerial type yi. Although, in our indivisible setting we will henceforth
refer only to the contract and not to its size Q. The uniqueness of kQyii follows from the
strict convexity assumptions A1 and A3.

Assumption A7 is a technical one that ensures a bounded support for the agents’ type
distributions, and facilitates more concise proofs without substantive loss to either the
results or intuition.

3. Properties of an optimal mechanism

Here we analyze the features of an optimal mechanism for any set of fixed investment
strategies by the agents. An investment strategy for an agent is a function from the
agent’s managerial type yi to an investment level ki. We denote by γi agent i’s investment
strategy, and let γ = (γ1, ..., γn) and γ−i = (γ1, ..., γi−1, γi+1, ..., γn).

If agent i adopts investment strategy γi(yi) he will have variable cost vi = Vi(γi(yi), yi) to
service the contract. Let Fi be the distribution of vi, derived from the known distribution
Hi of yi and the investment strategy γi. For any fixed set of investment strategies, hence
distributions Fi, the principal will want to design an optimal mechanism. The situation is a
standard independent private-values auction as analyzed by Myerson (1981). There, how-
ever, an agent’s “type” is the agent’s valuation of the contract vi and is given exogenously,
either as a known number (for agent i) or in distribution (for all other players).

This standard notion of type is appropriate in our setting, as well, once agents have
chosen their investment strategies. Once agent i has chosen investment level ki his variable
cost to service the contract is vi = Vi(ki, yi). Clearly, with fixed costs sunk, agent i
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would accept the contract for expected payments above vi, would be indifferent when
expected payment is at that value and would reject expected payments below it. So, vi
is the appropriate notion of type relevant to the principal’s mechanism design problem,
because the mechanism is declared after investments have been made. It is because of this
sympathy with the existing literature that we call vi an agent’s “type” without further
qualification. In contrast, we will call yi the agent’s “managerial type.” Note that once
investment strategies have been adopted, the distributions Fi of types are known and
well-defined. However, since investment strategies are strategically chosen by agents we
cannot automatically assume that they possess sufficient structure to ensure that Fi has
a density, or given a density that it is positive. Indeed, we will see below that the type
distribution for agents in equilibrium will have gaps of zero probability. In the following
we note what can be said about optimal mechanisms with general type distributions, and
make an assumption about the class of mechanisms that will be adopted by the principal.

We first introduce notation for the support of Fi and a decomposition of that support into
sets with various combinations of Lebesgue (denoted by λ) and probability (denoted by µi
for Fi) measures. Define

vi = sup{v|Fi(v) = 0}
vi = inf{v|Fi(v) = 1}

The structure of the problem (and assumption A7) will guarantee that these are bounded,
specifically vi ≥ 0 and vi <∞. Let fi denote the density for Fi when it exists. Following
Bergemann and Pesendorfer (2001) we partition [vi, vi] into the set Mi of probability mass
points, a set Pi with positive density and a set Oi with zero density. Specifically, recall
that λ refers to Lebesgue measure and µi to the probability measure associated with Fi,
and define

Mi = {vi ∈ [vi, vi]|λ(vi) = 0 but µi(vi) > 0}

Pi = {vi ∈ [vi, vi]|fi(vi) exists and is strictly positive }

Oi = the maximal union of open intervals ∪j(aji , bji ) contained in [vi, vi] such that fi = 0
on each interval.

Because Fi is nondecreasing, it is differentiable a.e.-λ (almost everywhere in Lebesgue
measure) so µi(Mi ∪ Pi) = 1. Technically, however, we will include the right hand limits
of the intervals in Oi in the support of Fi. That is, define Bi = ∪{bji |(aji , bji ) ∈ Oi}. If
there is a point mass at vi ∈ Bi then vi is already in the set Mi, but if not vi could be a
point where only the right side derivative of Fi exists. Define Ωi = Mi ∪ Pi ∪ Bi. Clearly
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µi(Ωi) = 1 and we will use Ωi as the support of Fi. We will restrict our attention to direct
revelation mechanisms (see below), so Ωi is the set of credible reports from agent i, and
ΠiΩi is the product space on which the mechanism is defined.

Facing any set of type distributions the principal will declare a mechanism, which is a set of
allocation functions p and transfer functions x with the following properties. The principal
asks for reports from each agent, and based on these reports the principal allocates the
contract to agent i with probability pi. Also as a function of the vector of reports from the
n agents, the principal transfers xi dollars to agent i. The mechanism is chosen in such a
way that the agents will accept the contract if it is offered to them, and be rewarded by an
amount equal to the transfer. Hence, pi and xi are both functions of the vector of reports
from the agents. Let p = (p1, p2, .., pn) and x = (x1, x2, ..., xn). The set of functions (p, x)
is a mechanism.

The principal commits to the mechanism (p, x), the agents submit their reports, and then
the mechanism is implemented. As in Myerson, we will invoke the Revelation Principle
and restrict our attention to feasible direct revelation mechanisms. In such a mechanism
an agent cannot be worse off for playing the game (“individual rationality” or IR) and will
choose to report his true type to the principal (“incentive compatibility” or IC). By the
IC constraints, an agent will reveal vi truthfully to the principal, so in the set of functions
(p, x), pi and xi are both functions of the truthful report vector v = (v1, v2, ..., vn). The
principal chooses a cost minimizing (p, x) subject to the IR and IC constraints, and such
that the pi are legitimate probabilities (that is, are non-negative and sum to something
equal to or less than unity). We next look at the agents’ reporting decisions, and then the
principal’s mechanism design problem.

Agent optimal reporting

For any vi ∈ Ωi define Gi(vi) = Ev−ipi(v−i, vi) (the probability that agent i wins with a
report of vi) and xi(vi) = Ev−ixi(v−i, vi) (the expected transfer with a report of vi). So,
agent i’s expected utility for being type vi ∈ Ωi and reporting that he is type si ∈ Ωi will
be

Ui(si|vi) = −Gi(si)vi + xi(si). (1)

Facing any mechanism, the utility of agent i will be the best possible expected value over
all credible reports, or

Ui(vi) = supsi∈ΩiUi(si|vi). (2)

Since Ui(vi) is the supremum of a set of affine functions (with finite slopes) it is convex,
absolutely continuous and differentiable a.e.-λ on [vi, vi]. If ri(vi) attains the supremum
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at type vi, then −Gi(ri(vi)) is a subgradient of the convex function Ui(vi) at vi. Clearly if
the IC constraints hold (Ui(vi|vi) ≥ Ui(si|vi) for all si ∈ Ωi) ri(vi) is attained at vi for all
vi ∈ Ωi. We will assume that the suprema in (2) are attained on all of [vi, vi]. If not, we
could follow the logic in Milgrom (1999) to extend the feasible set of affine functions to its
closure, and extend the utility function to this set to guarantee attainment. Practically,
all this does is allow an agent to choose a signal that represents getting arbitrarily close
to the supremum, attaining the correct value.

In the classical context (Mi = Oi = ∅) we know from Myerson (1981) that the IC and IR
constraints hold if and only if

Ui(vi) = Ui(vi) +
∫ vi

vi

Gi(s)ds,

Gi(vi) is non-increasing on [vi, vi] and Ui(vi) ≥ 0. In our more general context, but
following identical logic (also see Milgrom 1999 and Milgrom and Segal 2002), it can be
shown that the IC and IR constraints hold if and only if

Ui(vi) = Ui(vi) +
∫ vi

vi

Gi(ri(s))ds for all vi ∈ Ωi, (3)

Gi(ri(s)) is non-increasing on [vi, vi] and Ui(vi) ≥ 0. Note that evaluating (3) requires
that ri(vi) be defined for each vi between vi and vi. Intuitively, while an agent cannot
credibly claim to be of type vi ∈ (aji , b

j
i ) ⊆ Oi, an agent of type aji can claim to be bji and

the principal needs to grant sufficient information rents to dissuade this deceit. Hence, the
integral in (3) extends across intervals in Oi as well as intervals in the credible reporting
set Ωi. Without any appeal to optimality on the part of the principal, yet, equation (3)
will hold for any agent that faces a known mechanism (p, x), knows his type and chooses
a utility maximizing report.

The principal’s objective

The principal will incur a cost v0 if she does not award the contract to any agent, and will
transfer in expectation Ev

∑n
i=1 xi(v) to the agents, so the principal wishes to maximize

Ev
[−(1−

n∑

i=1

pi(v))v0 −
n∑

i=1

xi(v)
]

= −v0 +
n∑

i=1

EviGi(vi)v0 −
n∑

i=1

Evixi(vi)

subject to pi(v) ≥ 0 and
∑n
i=1 pi(v) ≤ 1 for all v, and the IR and IC constraints. When

the IR constraints hold ri(vi) = vi and xi(vi) = Ui(vi) +Gi(vi)vi for all vi ∈ Ωi. Using (3)
we have that the principal’s objective is to maximize

−v0 +
n∑

i=1

EviGi(vi)[v0 − vi]−
n∑

i=1

EviUi(vi)
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= −v0 −
n∑

i=1

Ui(vi) +
n∑

i=1

EviGi(vi)
[
v0 − vi

]−
n∑

i=1

Evi

∫ vi

vi

Gi(ri(s))ds (4)

subject to the constraints that for each agent i, Gi(ri(s)) is non-increasing on [vi, vi],
pi(v) ≥ 0 and

∑n
i=1 pi(v) ≤ 1 for all v. v0 is a constant and following classical logic the

principal will set the transfers such that Ui(vi) = 0 for all agents. Following the logic in
Bergemann and Pesendorfer (2001) we note that ri(vi) for vi ∈ Oi impacts the principal’s
objective only through the integral in (4), so with Gi non-increasing the principal will
want to maximize ri if possible. That is, the principal will design a mechanism such that
ri(vi) = bji for all vi ∈ (aji , b

j
i ) ⊆ Oi. Using this, and the usual analysis (c.f Myerson

1981 for the general logic, and Begemann and Pesendorfor 2001 for its application to this
problem type in an auction rather than procurement setting) we get that the principal’s
objective is to maximize

n∑

i=1

∫

vi∈Pi
Gi(vi)

[
v0 − vi − Fi(vi)

fi(vi)
]
fi(vi)dvi

]

+
n∑

i=1

∑

vi∈Mi

Gi(vi)(v0 − vi)πi(vi)−
n∑

i=1

∑

bj
i
(Oi)

Gi(b
j
i )Fi(b

j
i )(b

j
i − aji ) (5)

(where πi(vi) is the probability mass at vi and the final sum is over all upper endpoints
of the closure of intervals in Oi) subject to the constraints that for each agent i, Gi(vi) is
non-increasing on Ωi, pi(v) ≥ 0 and

∑n
i=1 pi(v) ≤ 1 for all v . The principal then sets the

transfers to satisfy

xi(vi) = Gi(vi)vi +
∫

s∈Pi,s≥vi
Gi(s)ds+

∑

bj
i
(Oi),b

j
i
≥vi

Gi(b
j
i )(b

j
i − aji ). (6)

We remark, as in Bergemann and Pesendorfer, that this expression reduces to the correct
known expressions (c.f. Myerson 1981 and Lovejoy 2006) for the principal’s objective
function in the cases with positive density everywhere (Mi = Oi = ∅) and with discrete
type spaces (Pi = ∅ but Mi 6= ∅). In the former case (5) reduces to

Ev

n∑

i=1

pi(v)
[
v0 − vi − Fi(vi)

fi(vi)
]

and in the latter case with Ωi = {v1
i , v

2
i , ..., v

m
i } and when vi = vji , define ∆vi = vji − vj−1

i ,
(5) reduces to

Ev

n∑

i=1

pi(v)
[
v0 − vi − Fi(vi)

πi(vi)
∆vi

]
.
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Much of the insight into optimal mechanisms and the intuitive appeal of the related lit-
erature stems from the linear form of the principal’s objective in p, and the notion of a
virtual cost, exhibited by these two special cases. Indeed, when fi > 0 everywhere Myerson
(1981) shows that even in cases where vi − Fi(vi)

fi(vi)
is not monotone, the problem can be

transformed into one in which there exists a nondecreasing function ci(vi) such that the
principal’s objective is to maximize

Ev

n∑

i=1

pi(v)
[
v0 − ci(vi)

]
(7)

subject to pi(v) ≥ 0 and
∑n
i=1 pi(v) ≤ 1 for each v. Naturally, for any report vector v,

setting pi(v) = 0 if the bracketed term is less than zero for all i, and otherwise distributing
pi(v) over the agents with the minimum ci(vi) will satisfy the monotonicity requirement
on Gi and hence be an optimal allocation. This in turn defines an optimal transfer, which
is any transfer such that xi(v) = Gi(vi)vi +

∫ vi
vi
Gi(s)ds.

Unfortunately, such a reduction is not available for the general form (5). When there exist
intervals (aji , b

j
i ) ∈ Oi with no point mass at bji , there is no easy way to separate p out to

generate a linear form with its attendant insights. Here we will assume that the principal
restricts her choice of mechanism to the class C of mechanisms with allocations generated as
in (7) for some functions ci(vi) non-decreasing on [vi, vi]. This class contains all standard
mechanisms as well as all published mechanisms known to the authors. We now show that
for any absolutely continuous type distributions the principal can get arbitrarily close to
optimality by choosing an allocation in this class. Since we later show that all equilibrium
type distributions will be absolutely continuous, this result will suffice.

Proposition 1: For any absolutely continuous µ and ε > 0, there exists a feasible mech-
anism (p, x) such that p ∈ C and the principal’s expected utility is within ε of its optimal
value.

From the proof of Proposition 1, the mechanism implemented by the principal is optimal
for a type distribution with positive density everywhere on (vi, vi), and arbitrarily close
to the true absolutely continuous µ. For any type vector v, the allocation p is chosen to
maximize (7) such that pi(v−i, vi) and Gi(vi) are non-increasing on [vi, vi] and the transfers
are set such that

xi = Gi(vi)vi +
∫ vi

vi

Gi(s)ds (8)

for vi ∈ [vi, vi]. As shown in the proof, such a mechanism can be chosen to get arbitrarily
close to the principal’s optimal utility facing µ. The structure inherent in (7) and (8) will
be used in what follows.
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4. Properties of optimal investment strategies

In this section we investigate how agents will invest when facing the mechanism (p, x)
described above. Define ν̂i = inf{vi ∈ [vi, vi]|Gi(vi) = 0}. If Gi(vi) > 0 for all vi ∈ [vi, vi)
define ν̂i = vi. If Gi(vi) = 0 for all vi ∈ (vi, vi] define ν̂i = vi. Because Gi is non-
increasing once it hits zero it never recovers, so Gi(vi) = 0 for vi > ν̂i. ν̂i is agent i’s
“reservation price” because agent i cannot win with any bid higher than ν̂i. If an agent
wins the contract, he will be compensated for his variable costs plus earn an information
rent equal to

∫ vi
vi
Gi(s)ds =

∫ ν̂i
vi
Gi(s)ds. As is usual in these contexts, any agent reporting

his maximal feasible variable cost vi (or, indeed, any variable cost vi ≥ ν̂i) will earn no
information rent.

From the form of the optimal transfers, agent i will be compensated for his expected vari-
able costs plus an information rent equal to

∫ ν̂i
Vi(ki,yi)

Gi(z)dz. So agent i with managerial
type yi who invests at level ki will enjoy an expected profit of

φi(ki, yi) = −gi(ki) +
∫ vi

Vi(ki,yi)

Gi(z)dz = −gi(ki) +
∫ ν̂i

Vi(ki,yi)

Gi(z)dz.

We note that while an agent will consider this total expected profit when choosing an
investment level ki, the principal will ignore the sunk costs gi(ki) when designing her
mechanism. This is a consequence of the mechanism being declared after agents have
committed to their investment levels.

With a mechanism and γ−i fixed, agent i will choose an investment level k ∈ [ki, ki] to
maximize φi(k, yi). For yi ∈ [y

i
, yi], define

Πi(yi) = maxk∈[ki,ki]
φi(k, yi)

and
Γi(yi) = {k ∈ [ki, ki] : Πi(yi) = φi(k, yi)}.

That is, Πi(yi) is the maximal expected profit for agent i with managerial type yi, and
Γi(yi) is the set of maximizing investment levels at yi. Define Γi as the set of optimal
investment strategies for agent i, that is the set of functions γi : [y

i
, yi] → [ki, ki] with

γi(yi) ∈ Γi(yi) for all yi. The following lemma shows that the optimal investment functions
will inherit some continuity properties.

Lemma 1: For all agents i

a) Πi(yi) is continuous in yi on [y
i
, yi].
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b) Γi(yi) is an upper semi-continuous point-to-set map on [y
i
, yi]. In particular, for all

y ∈ [y
i
, yi] and all ε > 0, there exists a δ > 0 such that y′ ∈ [y

i
, yi] and |y′ − y| < δ will

imply that every element of Γi(y′) is within ε of some element of Γi(y).

c) If Γi(y) is single-valued at y then any optimal investment function γi is continuous at
y. That is, if Γi(y) = {k} a singleton, then for any sequence yj → y in [y

i
, yi] and any

γi ∈ Γi, we will have γi(yj)→ γi(y) = k. �

Recall kLi minimizes agent i’s fixed costs. Lemma 2 below shows that any optimal invest-
ment strategy γi ∈ Γi will be either kLi everywhere, or will begin at some investment level
strictly above kLi at y

i
and descend until the first time it hits kLi , and then it will stay at

kLi for all greater yi up to the upper limit yi. Also, a positive investment level above the
minimal kLi is associated with a positive probability of winning the auction. Vi(γi(yi), yi)
is strictly increasing in yi, and is either ≥ ν̂i everywhere (in which case γi(yi) = kLi ev-
erywhere), or begins at Vi(γi(yi), yi) < ν̂i (and γi(yi) > kLi ) and then as managerial type
yi increases the variable cost Vi(γi(yi), yi) increases up to ν̂i at which point the minimal
investment kLi is optimal there and for all greater yi up to yi. Parts (a) through (d) es-
tablish the characteristics of the relevant functions that will generate monotone optimal
policies using lattice programming (c.f. Topkis 1978) technology. To briefly review this,
we say that φ(k, y) has “antitone differences” in k and y if for all k > k′, φ(k, y)− φ(k′, y)
is non-increasing in y. That is, the marginal improvement for an additional unit of in-
vestment in k declines as managerial type y increases. Under these conditions, we expect
the optimal level of investment to be lower at higher y values (as shown in part (h) be-
low). A “descending” point-to-set map is a generalization of the notion of a non-increasing
function. We say Γ(y) is descending if for all y′ < y, k′ ∈ Γ(y′) and k ∈ Γ(y) will imply
Min{k′, k} ∈ Γ(y′) and Max{k′, k} ∈ Γ(y). Parts (e) through (j) below employ these
conditions and results to establish the form that all optimal investment strategies must
take.

Lemma 2: For all agents i and all γi ∈ Γi

a) φi(ki, yi) is strictly decreasing in yi whenever Vi(ki, yi) < ν̂i.

b) φi(ki, yi) has antitone differences in ki and yi everywhere on [ki, ki]×[y
i
, yi], and strictly

antitone differences whenever Vi(ki, yi) < ν̂i.

c) γi(yi) ≥ kLi always.

d) Γi(yi) is a descending point-to-set map.

e) If Vi(γi(yi), yi) < ν̂i then γi(yi) > kLi . In particular if Vi(kLi , yi) < ν̂i then γi(yi) > kLi .

f) Vi(γi(yi), yi) ≥ ν̂i if and only if γi(yi) = kLi .
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g) If for any y′i, γi(y
′
i) = kLi , then γi(yi) = kLi for all yi ≥ y′i.

h) γi(yi) is non-increasing in yi.

i) Vi(γi(yi), yi) is strictly increasing in yi.

j) γi(yi) = kLi uniquely and vi = Vi(γ(yi), yi) = Vi(kLi , yi). �

As Lemma 2 shows, any optimal investment strategy by any agent will yield a variable
cost strictly increasing in managerial type yi. As long as that variable cost is less than ν̂i

then the optimal investment level will be strictly greater than kLi . However, if the variable
cost ever hits ν̂i then the optimal investment level will drop to kLi and stay there for all
higher managerial types. For any γi ∈ Γi define ψγi ≡ sup{[y

i
, ȳi] | Vi(γi(yi), yi) < ν̂i}

where ψγi ≡ y if Vi(γi(yi), yi) ≥ ν̂i. Then ψγi is the switch point between these two policy
regimes. We will suppress the superscript γ when there is no confusion.

Lemma 3: For any γi ∈ Γi

a) γi(yi) > kLi for yi < ψi.

b) γi(yi) = kLi for yi > ψi.

c) If ψi < ȳi then ν̂i ≤ Vi(kLi , ψi). �

In summary, an optimal investment strategy by any agent will feature a variable cost that
is strictly increasing in managerial type yi. The optimal investment level will be non-
increasing in yi but strictly greater than kLi for yi < ψi, which is the cutoff beyond which
the agent’s variable cost exceeds his reservation price. For yi > ψi, the agent will minimize
his fixed costs with investment level kLi . A representative situation is shown graphically in
Figure 1, which will be more completely described below. It is clear from Lemma 3 that if
the limits exist

limyi↑ψiVi(γi(yi), yi) ≤ ν̂i ≤ limyi↓ψiVi(γi(yi), yi) = Vi(kLi , ψi).

That is, in Figure 1 the reservation price must be somewhere in the gap indicated by
the dotted line. There may be a discontinuity in the optimal investment function at ψi,
and this point is determined by the agent’s reservation price, itself of a function of the
principal’s outside opportunity cost v0. The next section explores more completely the
influence of this outside cost.

5. The role of the opportunity cost v0

We now explicitly consider the role of the principal’s opportunity to service the contract
at cost v0. This will affect the optimal allocation chosen by the principal by affecting the
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reservation price on each agent, and therefore will affect the point at which agent i cannot
hope to win the contract (and as a result will choose the minimal level of investment kLi ).
We first consider the effect of v0 on optimal allocations, holding the agents’ investment
strategies fixed (Lemma 4 below) and then the effect of v0 on the optimal allocation and
investment strategies in equilibrium (Lemmas 5 and 6 and Proposition 2).

As described in section 3, for any fixed set of investment strategies and therefore type
distributions, there will exist for each agent i a nondecreasing function ci(vi) of vi (agent
i’s virtual cost) such that given any report vector v = (v1, ..., vn) the principal will choose
an allocation p to maximize (7) subject to p being nonnegative and

∑n
i=1 pi ≤ 1.

We focus on the interplay of γ and p only, because given p the set of optimal transfers x is
preordained as usual. It is clear from (7) that the principal will put maximal allocation on
agents with minimal virtual cost. For any report vector v, define cmin to be the minimum
ci(vi) over all agents i, and define M to be the set of agents with that minimal virtual
cost, that is M = {i|ci(vi) = cmin}. When v0 < cmin the set of optimal allocations is
a singleton, the zero vector. When cmin ≤ v0 the set is the nonnegative p such that∑
i∈M pi = 1. The following Lemma follows directly from this. For any fixed investment

strategies by agents, let P v0(v) denote the set of optimal allocations at report vector v
and let Gv0

i (s) denote Gi(s) = Ev−ipi(v−i, s) when p ∈ P v0 . The following lemma shows
that the sets P v0 and functions Gi(vi) are essentially nondecreasing (componentwise and
pointwise, respectively) in v0. The more complicated presentation is the result of potential
non-uniqueness issues for these sets and functions.

Lemma 4: For any v′0 < v0 and report vector v:

a) For any p′ ∈ P v′0(v) there exists a p ∈ P v0(v) with p′i ≤ pi for all i.

b) For any p ∈ P v0(v) there exists a p′ ∈ P v′0(v) with p′i ≤ pi for all i.

c) For any Gv
′
0
i (s), there exists a Gv0

i (s) such that Gv
′
0
i (s) ≤ Gv0

i (s) for all s.

d) For any Gv0
i (s), there exists a Gv

′
0
i (s) such that Gv

′
0
i (s) ≤ Gv0

i (s) for all s. �

The outside cost v0 has a discontinuous effect on the set of optimal allocations at any
report vector v. As long as v0 is high enough that the principal wishes to allocate the
contract, further increases in v0 do not affect the optimal allocations. That is, once v0

exceeds the minimum virtual cost among the agents, the same set of allocations will be
optimal for all higher v0’s. However, when v0 is reduced below the minimal virtual cost,
non-allocation is the unique optimum. The intuitive result is that for any agent i and bid
vector v, the probability of winning the contract is nondecreasing in v0.
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We now consider the equilibria that can be obtained at different levels of outside oppor-
tunity cost v0. For any distribution of managerial types and outside cost v0 ≤ ∞, let
(γ, p, x) denote an equilibrium solution. That is, if the agents use investment strategies γ
then (p, x) is an optimal mechanism for the principal, and if the principal invokes (p, x)
the agents will optimally invest at the levels determined by γ. Define (γ∞, p∞, x∞) anal-
ogously for v0 =∞ (technically, we use v0 =∞ to denote an opportunity cost arbitrarily
higher than the level at which the contract is awarded with probability one, practically in
this case the principal has no real alternative options for supply).

Because once v0 is “high enough” the optimal allocations are independent of v0, the equi-
librium solutions will be also. Lemma 5 shows that in equilibrium any investment strategy
γi ∈ Γi will either match an equilibrium strategy with v0 = ∞, or will be kLi and in fact
will switch from the former to the latter at the point that Vi(γi(yi), yi) hits ν̂i (at yi = ψγi ).
So, at first agents will invest as if the principal has no outside opportunities, but then at a
critical managerial type they will drop to the minimal level of investment. This is because
agents know their managerial type yi and their variable cost Vi(γi(yi), yi) exactly, so as
long as Vi < ν̂i they only need to worry about winning against the other agents, which is
precisely the situation they are in when v0 =∞. Once yi hits ψγi (Vi(γi(yi), yi) hits ν̂i) the
agent gets no rents but will pay her fixed costs, so will minimize those. Lemma 5 shows
this formally.

Lemma 5:

If an equilibrium exists at any v0 ≤ ∞, then for every equilibrium (γ, p, x) there exists an
equilibrium (γ∞, p∞, x∞) with v0 =∞ such that for all agents i:

a) γ∞i (yi) = γi(yi) when yi < ψγi .

b) G∞i (vi) = Gi(vi) if vi < ν̂i. �

The situation as proved in Lemma 3 and Lemma 5 is illustrated in Figure 1. Optimal
investment strategies γi will have a simple structure, being equal to either γ∞i or kLi , and
will jump from one to the other at ν̂i. In equilibrium the variable cost Vi(γi(yi), yi) as a
function of managerial type yi is strictly increasing, but may exhibit a jump discontinuity
as agents jump from a robust investment level to kLi at ψi. If this is the case, the investment
strategy γi generates a set of variable costs between the left limit as y ↑ ψi and the right
limit as y ↓ ψi that cannot occur with positive probability. Unfortunately, this situation
is not sustainable in equilibrium.

The next lemma shows that when gaps like this exist, the principal is always better off
setting ν̂i at least as low as the left side limit. But, with ν̂i at that level any “competitive”
agent (any agent that could win at y = ψi against other agents, but cannot win against
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v0) would defect to kLi strictly prior to ψi, contradicting the optimality of γ. This is
because the information rents decrease to zero as y increases to ψi but the agent’s fixed
costs are bounded away from the minimum. At some point close to ψi the agent will not
be covering his fixed cost and will defect to kLi . In Figure 2 this point is shown as ψ′i. But,
then note that ν̂i is now strictly in the middle between the variable costs at the new left
and right side limits at ψ′i. The principal with ν̂i as shown is always better off lowering it
to ν̂′i. So, the principal will lower ν̂i to ν̂′i and the agent will defect even earlier, etc. This
process continues until defection at the lower limit y

i
is reached. This is made formal in

the part (b) of the following lemma, which ties the existence of a discontinuity in Vi to a
discontinuity in Gi.

Lemma 6:

a) In any equilibrium for all agents i, ν̂i ≤ lim supy↑ψγ
i
Vi(γi(y), y).

b) No pure strategy equilibrium can exist in which Gi(vi) is discontinuous at ν̂i ∈ (vi, vi)
for any i. �

We are now ready to show that no equilibrium can exist in which the opportunity cost v0

plays a meaningful role. That is, if v0 is so low that ν̂i = vi then agent i will always invest
minimally and will be indifferent to participating in the auction. If this is true for all
agents, the auction is essentially meaningless. If ν̂i = vi for all agents i then pure-strategy
equilibria can exist but the outside opportunity cost might as well be infinite. These
features are intuitively clear. The following proposition essentially extends the latter logic
to ν̂i > vi. That is, we show that any pure strategy equilibrium in which any agent has
ν̂i ∈ (vi, vi) must be almost everywhere identical to one with v0 = ∞, or else it cannot
exist. Intuitively, we have either a meaningless auction or one in which v0 has no impact
in that it might as well be infinite.

Proposition 2: For any pure strategy equilibrium (γ, p, x) and any agent i with ν̂i ∈
(vi, vi), there will exist an equilibrium (γ∞, p∞, x∞) with v0 =∞ such that

a) ν̂i = ν̂∞i

b) γi(yi) = γ∞i (yi) almost everywhere on [y
i
, yi]

c) Gi(vi) = G∞i (vi) almost everywhere on [vi, vi].

Proposition 2 is easy to interpret in the often-assumed context of symmetric investment
strategies yielding type distributions that feature the standard assumptions of regularity
(f exists and is positive everywhere, and vi + Fi(vi)/fi(vi) is strictly increasing). Then,
ci(vi) = vi + Fi(vi)/fi(vi), ci(vi) = vi and ci(vi) = vi + 1/fi(vi) ≥ vi. In this case v0 > vi
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will imply ν̂i > vi and v0 < vi will imply v0 < ci(vi) so that ν̂i < vi. But, in the symmetric
case ν̂∞i = vi always, so no pure strategy equilibrium can exist with v0 ∈ (vi, vi). This
leaves only extreme possibilities. If v0 < vi for all agents, then the principal is better
off denying the contract regardless of reports, and knowing this all agents will invest at
the minimal level kLi . We then obtain a pure strategy equilibrium but the auction is
meaningless. Any higher, more meaningful v0 will provide incentives for at least one agent
to deviate from his minimal level of investment and disrupt the equilibrium. The only
other hope for a pure strategy equilibrium is for v0 ≥ vi = Vi(kLi , yi), the worst possible
managerial type at minimal investment and therefore the highest possible variable cost
attainable by any combination of action and managerial type. That is, with the common
assumptions of symmetry and regularity, the sufficient conditions identified by Dasgupta
for the existence of an equilibrium (v0 greater than the worst possible agent cost) are
also (essentially) necessary. If v0 < vi, either pure strategy equilibria do not exist or the
equilibrium is trivial and the auction meaningless.

While the assumptions of symmetry and regularity tie our analysis to familiar concepts
in the literature, these features cannot be expected to hold routinely for problems of this
type. However, the intuition remains intact. When agents are asymmetric, ν̂∞i = vi is not
automatic because the support for one agents’ cost distribution may lie completely below
another’s. However, there is always one agent with ci(vi) ≤ cj(vj) for all j 6= i. Such
an agent has ν̂∞i = vi, and any outside opportunity cost vi < v0 < ci(vi) disallows pure
strategy equilibria (since all it takes to disrupt equilibria is one agent defecting).

So, if the principal has any (even moderately) competitive external or internal alternative
for supply outside the pool of bidders, the only equilibrium cost structures we can see
among the bidders are all firms investing at minimal levels (low fixed, high variable costs),
or a mixture of investments reflecting the non-existence of pure strategies.

6. Conclusion

This paper examines pre-auction investments made by asymmetric, type-conscious firms
(agents) that compete for a supply contract from a monopolist buyer (principal). Agents
are privately aware of their managerial types prior to choosing their investment levels,
removing all uncertainty (for them, but not their competitors) about the cost consequences
of their investment. Increased fixed investments reduce their variable cost to service the
contract, and hence their valuation of the contract. So, the distribution of “types” that
is standard in the literature is, here, endogenously determined by the private actions of
the agents. The principal declares a mechanism that is optimal for her, after agents have
made their private investment decisions.
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We show that in equilibrium all optimal investment strategies by competing firms will
have the form of investing as if there is no alternative source of supply beyond the pool
of bidders (that is, the firms are competing only with each other) up to a critical level of
managerial type, and investing minimally thereafter. So, all optimal investment strategies
for games with any outside opportunity cost can be constructed knowing only the optimal
strategy for an infinite outside cost and the reservation prices.

This structure, however, implies that only trivial pure strategy equilibria can exist when the
principal has a reasonably competitive alernative to awarding the contract. For example,
if the outside opportunity cost is so low that no bidding firm can be competitive under any
circumstances, then a trivial pure strategy equilibrium will exist with all agents adopting
a minimal fixed cost (maximal variable cost) technology. But, in those cases, an auction is
not required or meaningful. If the principal’s outside opportunity cost is so high that she
must assign the contract to some agent regardless of their investment levels or managerial
efficiencies, then a pure strategy equilibrium can exist. But, for situations where the
outside opportunity is meaningfully competitive, no pure strategy equilibrium can exist
and we expect a mixture of investment strategies.

Returning to our motivating context of capacity expansion in a medical system, we have
only anecdotal observations to offer as points of comparison with this theory. We do
see mixtures of expansion strategies across medical systems, but we cannot make a clear
assignment of cause to this result. While there are some powerful national payers approxi-
mating our powerful principal, there are also less powerful local payers that can use excess
hospital capacity that give the health systems some bargaining power. Also, the medical
system contracting office that we interacted with did not describe the negotiations as one
in which either party sought to behave in a unilaterally optimal fashion, attempting to ex-
tract maximal rents from their opponents. Rather, issues of fairness, trust and reciprocity
were evident in our conversations, suggesting that issues of relationship and repeated in-
teraction were relevant to them. Also, the medical industry in general is evolving from
a relatively protected environment to one in which intense cost competition will be more
prevalent. Our model may better reflect the future of this industry than the status quo.
Finally, our model shares with all models based on Bayes Nash equilibria the assumption
of common beliefs about managerial types, which may not reflect reality. Still, returning
to the simple experiment described in the introduction, we see that the results proved here
have intuitive appeal that might suggest robustness to these issues. When firms can incur
a fixed cost to reduce their variable costs, they will do so only if the information rents will
cover that investment. This means that whatever they perceive the highest competitive
variable cost to be, they will cease to invest in cost reductions strictly below that level. So,
any attempt by the principal to reduce the information rents that she pays will result in
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a reaction by the agents that lowers the fixed costs and increases the variable costs in the
bidding pool. But, this can only be taken so far. Eventually, when all agents exhibit very
high variable costs at least one will perceive an opportunity to invest, lower his variable
costs, and win both the contract and higher profits. If the principal anticipates this and
tries again to extract some of that rent, the process begins anew.

An intuitive extrapolation of the extant literature to our context (in which agents adopt
technologies featuring a fixed-variable cost trade-off) would suggest that we would see
“underinvestment,” manifesting itself as lower fixed and higher variable cost technologies
in the industry. However, this intuition is either sustained trivially or cannot be sustained
in pure strategies when the principal has any reasonable outside options for supply. The
question of what cost structure we will see in equilibrium in these contexts will require
future efforts, and a consideration of mixed strategies.

Appendix:

Proposition 1: For any absolutely continuous µ and ε > 0, there exists a feasible mech-
anism (p, x) such that p ∈ C and the principal’s expected utility is within ε of its optimal
value.

Proof: For ease of notation, define

Uµ0 (G) =
n∑

i=1

Eµvi
[
Gi(vi)(v0 − vi)−

∫ vi

vi

Gi(ri(s))ds
]
.

The principal’s objective is to maximize Uµ0 (G) over G generated by µ-feasible allocations.
An allocation p is µ-feasible if for all v, pi(v) ≥ 0 and

∑n
i=1 pi(v) ≤ 1, and Gµ,pi (vi) :=

Eµv−ipi(v−i, ri(vi)) is non-increasing in vi on [vi, vi]. In fact, an optimal allocation p can be
selected such that pi(v−i, ri(vi)) is nonincreasing in vi on [vi, vi] and therefore continuous
a.e.-λ. Any µ-feasible allocation has a preordained transfer x from (6). If we endow the
space of functions Gi : [vi, vi] → R with the metric d(G, G̃) = supv∈[vi,vi]

|Gi(v) − G̃i(v)|
then Uµ0 (G) is continuous in G.

For any µ we can define a sequence of measures µn each with strictly positive density
everywhere on [vi, vi] such that µn ⇒ µ (weak convergence). This means that for any G

non-increasing on [vi, vi] we have Uµn0 (G)→ Uµ0 (G) since µ is absolutely continuous. Since
the µn have strictly positive densities on [vi, vi], from Myerson’s (1981) classical results
we can choose a µn-optimal allocation pn in the class C. Further, we can choose pn ∈ C
to be µ-feasible. This is because from (7) we can generate pn pointwise for each v to
satisfy pn,i(v) ≥ 0 and

∑n
i=1 pn,i(v) ≤ 1, and for all v−i, pn,i(v−i, vi) is non-increasing in

vi. This last feature guarantees that Gµ,pni (v) is non-increasing on [vi, vi], and hence pn
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is µ-feasible. Hence, the proof is complete if we can show that by choosing n sufficiently
large and choosing pn ∈ C µn-optimal and µ-feasible, we can make Uµ0 (Gµn,pn)−Uµ0 (Gµ,p)
arbitrarily small. Note that

Uµ0 (Gµn,pn)− Uµ0 (Gµ,p)

= Uµ0 (Gµn,pn)− Uµn0 (Gµn,pn) (a)

+Uµn0 (Gµn,pn)− Uµn0 (Gµ,p) (b)

+Uµn0 (Gµ,p)− Uµ0 (Gµ,p). (c)

Since Gµn,pn and Gµ,p are non-increasing (and therefore continuous a.e.-λ), we can make
(a) and (c) arbitrarily small (by weak convergence) by choosing n sufficiently large. To
complete the proof we need to show that we can make Uµn0 (Gµn,pn)−Uµn0 (Gµ,p) arbitrarily
small. This would follow from the continuity of U0 in G if we can show that for all ε > 0
there exists an Nε such that n ≥ Nε will imply d(Gµn,p̃, Gµ,p) < ε for some µn-feasible p̃.
This will suffice, because then by the µn-optimality of pn we have

Uµn0 (Gµn,pn)− Uµn0 (Gµ,p) ≥ Uµn0 (Gµn,p̃)− Uµn0 (Gµ,p) ≥ −ε

which would provide the missing part (b).

To show the existence of such a p̃, note that Gµn,p → Gµ,p by weak convergence and the
assumption that p is continuous a.e.-λ. So, for any ε > 0 there exists an Nε such that
n ≥ Nε implies that d(Gµn,p, Gµ,p) < ε. For that n Gµn,p is everywhere within ε of a
non-increasing function, so we can construct another non-increasing function G̃ ≤ Gµn,p

such that d(G̃,Gµ,p) < ε. Further, we can generate G̃ from an allocation p̃ that we can
construct by lowering (never raising) pi(v) at select vectors v. Further, this can be done
while maintaining p̃i ≥ 0 because only pi > 0 require address. So, G̃i(v) = Gµn,p̃i (v) is
non-increasing on [vi, vi]. That is p̃ is µn-feasible. This completes the argument. �

Lemma 1: For all agents i

a) Πi(yi) is continuous in yi on [y
i
, yi].

b) Γi(yi) is an upper semi-continuous point-to-set map on [y
i
, yi]. In particular, for all

y ∈ [y
i
, yi] and all ε > 0, there exists a δ > 0 such that y′ ∈ [y

i
, yi] and |y′ − y| < δ will

imply that every element of Γi(y′) is within ε of some element of Γi(y).

c) If Γi(y) is single-valued at y then any optimal investment function γi is continuous at
y. That is, if Γi(y) = {k} a singleton, then for any sequence yj → y in [y

i
, yi] and any

γi ∈ Γi, we will have γi(yj)→ γi(y) = k.

Proof: Parts (a) and (b) follow from Berge’s (1997) “Maximum Theorem” in chapter 6 of
that text, and the definition of an upper semi-continuous map given there. Part (c) follows
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from (b) because if Γi(y) = {k} a singleton, then for any sequence yj → y in [y
i
, yi] and

any sequence kj such that kj ∈ Γi(yj) for all j, we will have kj → k. �

Lemma 2: For all agents i and all γi ∈ Γi

a) φi(ki, yi) is strictly decreasing in yi whenever Vi(ki, yi) < ν̂i.

b) φi(ki, yi) has antitone differences in ki and yi everywhere on [ki, ki]×[y
i
, yi], and strictly

antitone differences whenever Vi(ki, yi) < ν̂i.

c) γi(yi) ≥ kLi always.

d) Γi(yi) is a descending point-to-set map.

e) If Vi(γi(yi), yi) < ν̂i then γi(yi) > kLi . In particular if Vi(kLi , yi) < ν̂i then γi(yi) > kLi .

f) Vi(γi(yi), yi) ≥ ν̂i if and only if γi(yi) = kLi .

g) If for any y′i, γi(y
′
i) = kLi , then γi(yi) = kLi for all yi ≥ y′i.

h) γi(yi) is non-increasing in yi.

i) Vi(γi(yi), yi) is strictly increasing in yi.

j) γi(yi) = kLi uniquely and vi = Vi(γ(yi), yi) = Vi(kLi , yi).

Proof:

a) Part (a) follows from the definition of φi(ki, yi) and the facts that Vi(ki, yi) is strictly
increasing in yi and Gi(vi) > 0 for vi < ν̂i.

b) Let y′i < yi. We want to show that φi(ki, yi) − φi(ki, y′i) is non-increasing in ki and
strictly decreasing if ν̂i > Vi(ki, yi) > Vi(ki, y′i). If ν̂i > Vi(ki, yi) > Vi(ki, y′i) then
φi(ki, yi)−φi(ki, y′i) = − ∫ Vi(ki,yi)

Vi(ki,y′i)
Gi(z)dz so we want to show that the negative of this, or

∫ Vi(ki,yi)
Vi(ki,y′i)

Gi(z)dz, is strictly increasing in ki. We know this expression is continuous and
differentiable almost everywhere, so to show weak (strict) monotonicity it suffices to show
the derivative is non-negative (strictly positive) at its points of differentiability, because
the remaining points have measure zero. At any point of differentiability

∂

∂ki

∫ Vi(ki,yi)

Vi(ki,y′i)
Gi(z)dz = Gi(Vi(ki, yi))

∂Vi(ki, yi)
∂ki

−Gi(Vi(ki, y′i))
∂Vi(ki, y′i)

∂ki

≥ Gi(Vi(ki, y′i))
∂Vi(ki, yi)

∂ki
−Gi(Vi(ki, y′i))

∂Vi(ki, y′i)
∂ki

because Gi(Vi) is non-increasing in yi and ∂Vi/∂ki < 0 by assumption A3. But this
equals Gi(Vi(ki, y′i))[

∂Vi(ki,yi)
∂ki

− ∂Vi(ki,y
′
i)

∂ki
] which is > 0 by assumption A5, so φi(ki, yi)
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has strictly antitone differences as long as Vi(ki, yi) < ν̂i. To complete part (b) we need
to show antitone differences when Vi(ki, yi) ≥ ν̂i. If Vi(ki, yi) > Vi(ki, y′i) ≥ ν̂i then
φi(ki, yi) − φi(ki, y′i) = 0 a constant. If Vi(ki, yi) ≥ ν̂i > Vi(ki, y′i) then φi(ki, yi) −
φi(ki, y′i) = − ∫ ν̂i

Vi(ki,y′i)
Gi(z)dz which is strictly decreasing in ki because Vi is strictly

decreasing in ki and Gi > 0.

c) It is clear that φi(k, yi) = −gi(k) +
∫ ν̂i
Vi(k,yi)

Gi(z)dz is strictly increasing in k when
k < kLi , so any optimal k will be greater than or equal to kLi .

d) Part (d) follows from part (b) and known results (c.f. Topkis, 1978, Theorem 6.1) for
monotone optimal policies.

e) Suppose Vi(γi(yi), yi) < ν̂i, then Gi(Vi(γi(yi), yi) > 0 and at γi(yi) = kLi we have

∂

∂ki
{−gi(ki) +

∫ ν̂i

Vi(ki,yi)

Gi(z)dz} = −Gi(Vi(kLi , yi))
∂Vi(ki, yi)

∂ki
> 0.

If kLi is not a point of differentiability for the bracketed expression, we can take a right side
limit and achieve the same result that the principal is strictly better off increasing ki from
kLi . So kLi cannot be optimal and γi(yi) > kLi . The particular case of Vi(kLi , yi) < ν̂i yields,
because γi(yi) ≥ kLi always by part (c), Vi(γi(yi), yi) ≤ Vi(kLi , yi) < ν̂i so γi(yi) > kLi .

f) Part (e) showed that Vi(γi(yi), yi) < ν̂i implies γi(yi) > kLi , and the inverse is γi(yi) = kLi
implies Vi(γi(yi), yi) ≥ ν̂i. So we need to show that Vi(γi(yi), yi) ≥ ν̂i implies γi(yi) = kLi .
Suppose Vi(γi(yi), yi) ≥ ν̂i then Vi(kLi , yi) ≥ Vi(γi(yi), yi) ≥ ν̂i because γi(yi) ≥ kLi always.
So, γi(yi) > kLi implies −gi(γi(yi)) +

∫ ν̂i
Vi(γi(yi),yi)

Gi(z)dz = −gi(γi(yi)) < −gi(kLi ) ≤
−gi(kLi ) +

∫ ν̂i
Vi(kLi ,yi)

Gi(z)dz contradicting the optimality of γi(yi).

g) Suppose yi > y′i, γi(y
′
i) = kLi and γi(yi) > kLi . From the optimality of kLi at y′i we know

that

−gi(kLi ) +
∫ ν̂i
Vi(kLi ,y

′
i
)
Gi(z)dz = −gi(kLi ) (because Vi(kLi , y

′
i) ≥ ν̂i and part (e))

≥ −gi(ki) +
∫ ν̂i
Vi(ki,y′i)

Gi(z)dz for all ki. Now, for yi > y′i we have if γi(yi) > kLi then

−gi(γi(yi)) +
∫ ν̂i
Vi(γi(yi),yi)

Gi(z)dz ≥ −gi(kLi ) +
∫ ν̂i
Vi(kLi ,yi)

Gi(z)dz = −gi(kLi ) (because

Vi(kLi , yi) > Vi(kLi , y
′
i) ≥ ν̂i). So, together we have that for all ki,

−gi(ki) +
∫ ν̂i
Vi(ki,y′i)

Gi(z)dz ≤ −gi(kLi ) ≤ −gi(γi(yi)) +
∫ ν̂i
Vi(γi(yi),yi)

Gi(z)dz.

Let ki = γi(yi) and this implies that
∫ ν̂i
Vi(γi(yi),y′i)

Gi(z)dz ≤
∫ ν̂i
Vi(γi(yi),yi)

Gi(z)dz.

But since Vi(ki, yi) is strictly increasing in yi, this is impossible unless Gi(Vi(γi(yi), y′i) = 0,
which since Gi is non-increasing implies Gi(Vi(γi(yi), yi)) = 0. That is, Vi(γi(yi), yi) ≥ ν̂i

and γi(yi) = kLi by part (f), contradicting the assumption that γi(yi) > kLi .
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h) The monotonicity result follows from Topkis (1978) Theorem 6.3 in the region over which
φi(ki, yi) has strictly antitone differences, which by part (b) is where Vi(γi(yi), yi) < ν̂i. If
Vi(γi(yi), yi) ≥ ν̂i then γi(yi) = kLi on [yi, yi] by part (f). Since γi(yi) ≥ kLi always by part
(c), γi is non-increasing in yi.

i) Since γi is non-increasing and Vi(ki, yi) is strictly decreasing in ki and strictly increasing
in yi, Vi(γi(yi), yi) is strictly increasing in yi.

j) For any set of fixed strategies by agents, the principal will perceive the upper limit
of the support of agent i’s type to be vi = Vi(γi(yi), yi), and an optimal mechanism
will leave no information rents for such an agent. That is, even if the agent gets the
contract, he will be just compensated for variable costs and no more, leaving his final
profit equal to −gi(γi(yi)). So, γi(yi) must equal kLi , the unique minimizer of gi. As a
result, vi = Vi(kLi , yi). �

Lemma 3: For any γi ∈ Γi

a) γi(yi) > kLi for yi < ψi.

b) γi(yi) = kLi for yi > ψi.

c) If ψi < ȳ then ν̂i ≤ Vi(kLi , ψi).
Proof: Parts (a) and (b) follow from the definition of ψi and Lemma 2 parts (e) and
(f). We prove part (c) by contradiction. Suppose ψi < yi and Vi(kLi , ψi) < ν̂i. Then, by
the continuity of Vi in yi there would exist a yi > ψi such that Vi(kLi , yi) < ν̂i, but then
Vi(γi(yi), yi) ≤ Vi(kLi , ψi) < ν̂i contradicting the definition of ψi. �

Lemma 4: For any fixed investment strategies by agents, let P v0(v) denote the set of
optimal allocations at report vector v. For any v′0 < v0 and v:

a) For any p′ ∈ P v′0(v) there exists a p ∈ P v0(v) with p′i ≤ pi for all i.

b) For any p ∈ P v0(v) there exists a p′ ∈ P v′0(v) with p′i ≤ pi for all i.

c) For any Gv
′
0
i (s), there exists a Gv0

i (s) such that Gv
′
0
i (s) ≤ Gv0

i (s) for all s.

d) For any Gv0
i (s), there exists a Gv

′
0
i (s) such that Gv

′
0
i (s) ≤ Gv0

i (s) for all s.

Proof: Given any report vector v the principal will choose an allocation p to maximize

n∑

i=1

pi[v0 − ci(vi)]

subject to the constraints that pi ≥ 0 and
∑n
i=1 pi = 1. Define cmin to be the minimum

ci(vi) over all agents i, and define M to be the set of agents with that minimal virtual
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cost, that is M = {i|ci(vi) = cmin}. When v0 < cmin the set of optimal allocations is a
singleton, the zero vector. When v0 ≥ cmin the set of optimal allocations is the set of all
nonnegative p such that

∑
i∈M pi = 1. (a) through (d) all follow from this. �

Lemma 5:

If an equilibrium exists at any v0 ≤ ∞, then for every equilibrium (γ, p, x) there exists an
equilibrium (γ∞, p∞, x∞) with v0 =∞ such that for all agents i:

a) γ∞i (yi) = γi(yi) when yi < ψγi .

b) G∞i (vi) = Gi(vi) if vi < ν̂i.

Proof: Define ṽi = inf{vi|ci(vi) > v0}. For any equilibrium (γ, p, x), we first show
that there exists an optimal allocation responding to γ, but with v0 = ∞, such that
G∞i (vi) = Gi(vi) when vi < ṽi for all agents i. We then show that any agent i facing such
a G∞i can optimally choose an investment strategy γ∞i satisfying part (a).

If ci(vi) ≤ v0 define ṽi = vi. With just one agent we would have ṽi = ν̂i. But, with
multiple asymmetric agents it is possible that a bid vi by agent i satisfies ci(vi) < v0 yet
pi(v−i, vi) = 0 for all v−i that can occur with positive probability. This would occur, for
example, if vi is higher than vj for some agent j.

Let γ be from the equilibrium (γ, p, x), and Gi generated from p as usual. For that fixed
γ, we know from Lemma 4 that there exists an allocation response G∞i (when v0 = ∞)
with G∞i ≥ Gi everywhere. We now show we can choose among these an allocation such
that G∞i (vi) = Gi(vi) when vi < ṽi. Since ν̂i ≤ ṽi, it suffices to show this for vi < ṽi.
For any report vector v define cmin and M as in Lemma 4. ci(vi) ≥ cmin always. If
ci(vi) > cmin then pi = 0 is optimal and will remain optimal as v0 increases to infinity.
If ci(vi) = cmin and vi < ṽi (implying ci(vi) ≤ v0) then the set of optimal allocations is
the set of nonnegative p vectors such that

∑
i∈M pi = 1. This set remains constant as v0

increases to infinity. So for all agents i and report vectors v with vi < ṽi, and all optimal
allocations p(v) there exists an allocation optimal at v0 =∞ with p∞i (v) = pi(v). Clearly,
in this case G∞i (vi) = Gi(vi) as well. So, with γ fixed there exists an optimal response
by the principal (but with v0 = ∞) that generates G∞i with G∞i (vi) = Gi(vi) whenever
vi < ν̂i.

We now show that facing any such G∞i , agent i can optimally invest in k = γ∞i (yi)
whenever yi < ψγi , which will complete the proof. Denote

φ∞i (k, yi) = −gi(k) +
∫ vi

Vi(k,yi)

G∞i (s)ds
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and let φi denote this expression with Gi instead of G∞i . First, note that k = γi(yi)
maximizes φi(k, yi) over k ∈ [ki, ki], and almost everywhere

∂φi
∂k

= −∂gi
∂k
−Gi(Vi(k, yi))∂Vi

∂k
.

Since ∂Vi/∂k < 0, the right hand side of this equation is nondecreasing in Gi. But we
have chosen G∞i ≥ Gi, so almost everywhere

∂

∂k

[
φ∞i (k, yi)− φi(k, yi)

] ≥ 0.

But, this means that φ∞i (k, yi) − φi(k, yi) is nondecreasing in k (φ∞i (k, y) − φi(k, y) is
continuous and the measure zero points of nondifferentiability do not contribute to the
integral) so from Topkis (1978) Lemma 6.1 for all k optimal with Gi there exists a k∞

optimal with G∞i such that k∞ ≥ k. We will now show that in addition we can choose
such a k∞ such that k∞ = k whenever Vi(k, yi) ≤ ν̂i.
For any agent i and yi, k∞ = γ∞i (yi) must maximize φ∞i (k, yi) over k ∈ [ki, ki]. Call this
problem I. Define problem II to be to choose k∞ subject to the additional constraint that
Vi(k∞, yi) ≤ ν̂i. Let F (I) denote the set of feasible solutions to I and S∗(I) the set of
optimal solutions to I, with F (II) and S∗(II) defined analogously for problem II. We know
(c.f. Lovejoy 2006 Lemma 1) that if S∗(I)∩F (II) 6= ∅ then S∗(II) = S∗(I)∩F (II). Now,
consider any k optimal in φi(k, yi) such that Vi(k, yi) ≤ ν̂i. We have chosen a k∞ optimal
in φ∞i (k, yi) with k∞ ≥ k, which means Vi(k∞, yi) ≤ Vi(k, yi) ≤ ν̂i, that is S∗(I)∩F (II) is
not empty. So any optimal solution to II is also optimal in I. But, problem II is to choose
k subject to k ∈ [ki, ki] and Vi(k, yi) ≤ ν̂i to maximize

φ∞i (k, yi) = −gi(k) +
∫ vi
Vi(k,yi)

G∞i (s)ds

= −gi(k) +
∫ ν̂i
Vi(k,yi)

G∞i (s)ds+
∫ vi
ν̂i
G∞i (s)ds

= −gi(k) +
∫ ν̂i
Vi(k,yi)

Gi(s)ds+ constant

= φi(k, yi) + constant

where we have used the fact that G∞i (vi) = Gi(vi) when vi < ν̂i and Gi(vi) = 0 when
vi > v̂i. Note that γi(yi) maximizes this expression in an unconstrained fashion, so if γi(yi)
is feasible in II (that is, if Vi(γi(yi), yi) ≤ ν̂i) it is optimal in II, so γi(yi) is also optimal in
problem I. This implies γ∞i (yi) = γi(yi) and completes the proof. �

Lemma 6:

a) In any equilibrium for all agents i, ν̂i ≤ lim supy↑ψγ
i
Vi(γi(y), y).
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b) No pure strategy equilibrium can exist in which Gi(vi) is discontinuous at ν̂i ∈ (vi, vi)
for any i.

Proof: (a) For ease of notation define

Lγ = lim infy↓ψγ
i
Vi(γi(y), y) and L

γ
= lim supy↑ψγ

i
Vi(γi(y), y).

Because Vi(γi(yi), yi) is strictly increasing and yi has a continuous density, the set {y|Lγ ≤
Vi(γi(y), y) ≤ Lγ} has (λ and µ) measure zero. But by the definition of ψγi we know that
yi > ψγi will imply Vi(γi(y), y) > ν̂i so Lγ ≥ ν̂i and the set {y|Lγ ≤ Vi(γi(y), y) ≤ ν̂i} ⊆
{y|Lγ ≤ Vi(γi(y), y) ≤ Lγ}, so the former set has µ-measure zero. It follows that ν̂i > L

γ

cannot be optimal for the principal, because with any such ν̂i she would be strictly better
off lowering it to L

γ
. By doing so, she would not change any allocations except on a set of

reported values that occurs with probability zero, but she would transfer a strictly lower
amount to agent i. This is because the information rent to agent i at y is

∫ ν̂i

Vi(γi(y),y)

Gi(s)ds

and by definition Gi(s) > 0 for s < ν̂i.

b)Gi(vi) discontinuous at ν̂i ∈ (vi, vi) means that there exists an ε > 0 such thatGi(vi) > ε

for all vi < ν̂i. Gi(vi) bounded away from zero means that an optimal investment level is
bounded away from kLi . This is because at yi agent i will choose k ∈ [ki, ki] to maximize
φi(k, yi) and almost everywhere

∂φi(k, yi)
∂k

= −∂gi(k)
∂k

−Gi(Vi(k, yi))∂Vi(k, yi)
∂k

.

From Assumptions A3 and A5, we know that

∂Vi(k, yi)
∂k

≤ ∂Vi(ki, yi)
∂k

≤ ∂Vi(ki, yi)
∂k

< 0.

So for any optimal k such that Vi(k, yi) < ν̂i, k = kLi is not an option (Lemma 2e) and
in fact there will exist a fixed χ > 0 such that a necessary condition for optimality is that
∂gi(k)
∂k > χ, implying the existence of a δ > 0 such that an optimal k with Vi(k, yi) < ν̂i

must satisfy k > kLi + δ.

Now, for any yi < ψγi we will have Vi(γi(yi), yi) < ν̂i and γi(yi) > kLi + δ. We know from
part (a) that ν̂i ≤ Lγ . So for any sequence yn ↑ ψγi we have

lim sup
n→∞

{−gi(γi(yn)) +
∫ ν̂i

Vi(γi(yn),yn)

Gi(s)ds
} ≤ −gi(kLi + δ) < −gi(kLi ).
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But this means that there exists a yi < ψγi such that γi(yi) > kLi is dominated by kLi , and
so γi cannot be an equilibrium investment strategy for agent i. �

Proposition 2: For any pure strategy equilibrium (γ, p, x) and any agent i with ν̂i ∈
(vi, vi), there will exist an equilibrium (γ∞, p∞, x∞) with v0 =∞ such that

a) ν̂i = ν̂∞i

b) γi(yi) = γ∞i (yi) almost everywhere on [y
i
, yi]

c) Gi(vi) = G∞i (vi) almost everywhere on [vi, vi].

Proof: From Lemma 5 we know that under the conditions stated there will exist an
equilibrium (γ∞, p∞, x∞) such that G∞i (vi) = Gi(vi) for vi < ν̂i. Hence G∞i (vi) > 0 for
vi < ν̂i and hence ν̂∞i ≥ ν̂i. In fact, we must have ν̂∞i = ν̂i, because if ν̂∞i > ν̂i we
would have Gi(vi) = G∞i (vi) ≥ G∞i (ν̂i) > 0 for all vi < ν̂i (Lemma 5b). But this means
that Gi(vi) is discontinuous at ν̂i, so (γ, p, x) cannot be an equilibrium (Lemma 6b). So,
ν̂∞i = ν̂i which implies that G∞i (vi) = Gi(vi) for vi < ν̂i and G∞i (vi) = Gi(vi) = 0 for
vi > ν̂i so the only place these can differ is at ν̂i. Likewise, γi(yi) = γ∞i (yi) for y < ψγi
and γi(yi) = γ∞i (yi) = kLi for yi > ψ∞i , so these two can differ only at ψ∞i . �
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