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Abstract. Using a continuous class of real-space renormalisation transformations we study 
the critical behaviour of the king model in a variety of two-dimensional lattices. We use the 
simplest possible cluster, with two cells, and a single renormalised coupling. Certain of 
these transformations-well separated from the majority spin rule-produce sharply more 
accurate critical properties than the rest. From this study we note an optimal set of 
conditions which characterise the successful transformations. The optimal transformations 
appear to have a certain ‘locality’ property: renormalised couplings beyond nearest 
neighbour are especially small. 

1. Introduction 

Matter near a second-order phase transition has a singular free energy per degree of 
freedom f which has a well known scaling symmetry. Thus for an Ising ferromagnet at a 
temperature t measured from the critical temperature and in a magnetic field h, the free 
energy f satisfies the scaling law (Widom 1965, Fisher 1967) 

f ( t ,  h )  = A - d f ( ~  Y ~ t ,  A y h h )  (1) 

provided the fields t and h are sufficiently small. Here d is the dimension of space, A is 
an arbitrary scale parameter and the exponents Yr and Y h  determine the singular 
behaviour near the critical point. Recently, much progress has been made in under- 
standing the scaling symmetry by use of the idea of renormalisation (Wilson and Kogut 
1974, Niemeijer and van Leeuwen 1976, BrCzin et a1 1973). By renormalisation of an 
Ising model, we mean a mapping of each of its configurations onto a configuration of a 
similar system with fewer spins. If the distribution function of the renormalised system 
is characterised by the same Hamiltonian as the original system, one says that it is at a 
fixed point. By postulating the existence of such fixed points, one may derive the scaling 
behaviour of equation (1) and the exponents Y t  and Yh.  Typically, one determines the 
fixed point using some finite truncation of the real infinite system. Excellent results are 
often obtained even in severely truncated systems: the predicted critical indices y t  and 
Y h  and the critical temperature come very close to their true values. The success of these 
approximations is the more puzzling in view of the formal pathologies of renor- 
malisation (Griffiths and Pearce 1979). Further, the success of these approximations 
depends sensitively on how the truncation is made and on how the mapping into the 
renormalised spins is defined. The reasons for this sensitivity are not understood; the 
successful approximations must be found for each new system by trial and error. 
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It is our purpose here to understand what makes a successful approximation and 
how the transformation may be optimised. Previous workers have studied the problem 
of optimisation. They wished to obtain good results for a particular case (Berker and 
Wortis 1976), or to satisfy some pre-specified extrema1 (Kadanoff 1975, Kadanoff et a1 
1976, Barber 1977, Shenker et a1 1979) or self-consistency (Kadanoff and Houghton 
1975, Subbarao 1975, Hsu and Gunton 1977, Lewis 1977, Mazenko et a1 1978, 
Fiorenzato et a1 1978) criterion. The resulting transformation often proves to be 
accurate in several respects. Our approach inverts the reasoning; we find accurate 
transformations empirically, and then look for criteria which characterise them. We 
study the Ising model in the simplest possible finite lattice approximation (Subbarao 
1975, Niemeijer and van Leeuwen 1976)-two-cell clusters-with various boundary 
conditions. We allow for the most general mapping from the spins of a cell to the 
renormalised spin. As a consequence, there is a two-parameter family of renor- 
malisation transformations with the popular majority spin rule as a special case. We 
vary these parameters to find the best transformation. 

The results of this study are surprising and suggestive. We find that certain values of 
the parameters give sharply superior results. For one optimal type of truncation in each 
lattice there is a narrow range of the mapping parameters for which the exponents y t ,  Y h  

and the critical temperature are all as close as possible to their true values. The 
occurrence of this optimisation phenomenon is taken as evidence of the accuracy of our 
approximation, with the hope that there exist revealing criteria which determine these 
successful approximations. Indeed, we find that the cases which exhibit the optimisa- 
tion property have certain features in common. They occur on periodically continued 
clusters rather than on those with free or mean-field boundaries. Where several 
periodic continuations are possible, only a subset show optimisation. The optimum 
point is successively better in the triangular, square and hexagonal lattices. The optimal 
parameters show a striking linear variation with the lattice coordination number. In a 
separate study we find that the optimal transformations appear to have especially small 
fixed-point couplings beyond the nearest-neighbour Ising coupling: the optimal trans- 
formation is ‘local’ at the fixed point. 

In 8 2 we describe the parameterised real-space renormalisation transformation 
(RSRT). Section 3 describes the exaniples studied and displays the results of the 
calculations. 

2. Renormalisation transformation 

Our system is a s,t of N Ising spins U ‘  = il, i = 1, . . . , N, on a two-dimensional lattice. 
The Hamiltonian X { F }  contains a nearest-neighbour coupling and a magnetic field 
energy 

H { p } =  - X { F } / k T  = K C p‘p’  + h C p’ .  (2) 
(11)  I 

The thermodynamics is determined by the partition function 

z[HI= C exp(HIF1). 

To define the renormalisation group transformation, we form cells of b2 lattice sites, SO 

that the lattice of cells has its lattice spacing increased by a scale factor b. Figure 1 shows 
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i b )  

( C )  

Figure Formation of the cells in the renormalisation trant-drmation on ( a )  triangular, ( b )  
square, and ( c )  hexagonal lattices; 0 = site spin p, 0 = cell spin p’ .  The straight (jagged) 
lines represent the intercell (intracell) site-spin interactions. 

how such cells may be constructed in the triangular (b  = J?), square (b = 2) and 
hexagonal (b  = 2) lattices. With each cell we associate a new Ising spin variable 
p: = *1; c = 1, . . . , N‘ = N/6*. The Hamiltonian of this cell-spin system is defined (see 
however Griffiths and Pearce 1979) by the renormalisation transformation 

1 where the weight factor (projection matrix) P ( p : l p c  . . . p : )  specifies the conditional 
probability that the given cell spin has the value p:, given that its site spins have the 
values p: . . . p: (in the triangular-lattice cell p: is absent). We shall consider a class of 
projections P restricted as follows: 

(i) The transformation must preserve the partition function: Z[H’]  = Z [ H ] .  This 
restriction assures that the scaling behaviour of equation (1) will emerge near the critical 
point (Niemeijer and van Leeuwen 1976). The partition function is preserved if the 
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4 1 P(p.:Ipcc...pc)=<v, 

r 1 2 3 4 1  w, pc = p c  = p c  = p c  = p c  
1 2 3 4  1 - w, pc = p c  = p c  = p c  =-/*.: 

exactly one of p c  . . . p c  = -pk 

exactlyoneof p c . .  . p c  = p :  

1 4 

1 4 1-U, 

0.5, otherwise. 
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Figure 2. Boundary conditions used for the triangular lattice two-cell cluster. ( a )  Free cell 
for the site spins (left picture) and the cell spins (right picture); sites A l ,  . . . , B3 are 
positions of spins p a ,  . . . , p i .  Lines between sites denote an Ising coupling Kpp between 
the corresponding spins. ( b )  Periodic boundary: Left-hand picture shows the periodic 
continuation of the A-B cluster. Middle picture shows one cluster with its boundary sites. 
Dashed lines denote fKpp couplings (each of which would be counted twice in the 
continued lattice). Right-hand picture shows the corresponding cluster of cell spins. (c)  
Mean-field boundary: sites X have a spin equal to ;(@La + . . . + p i ) .  Sites X' have a spin 
equal to ; ( p i  + p g ) .  

3. Results 

A striking feature of our results is the importance of the parameter w which controls the 
projection of the unanimous states. When w is one, a ferromagnetic ground state will 
be mapped completely into another. We find that w - 1 must be less than -0.01 to 
preserve the correct qualitative fixed point behaviour. This great sensitivity to w arises 
numerically from the large Boltzmann weight of the ground state compared with other 
states of the truncated system. In the results reported below we have taken w = 1, so the 
unanimous states are preserved identically. 

The parameter v has a more complicated effect on the fixed-point behaviour. We 
recall that v controls the mapping of the next-to-unanimous state of a cell, and that 
v = w = 1 corresponds to the majority spin rule. Figure 3 summarises the effects of U by 
displaying K" ,  yr ,  and Y h  as functions of U for each truncated lattice we have studied. In 
most of these truncations there is no U which is distinctly 'best'. The v which brings K" 
closest to its true value is far from the U values which bring y t  or y h  closest to their true 
values. Figures 3 ( b ) ,  (f), and ( h )  show a striking difference: the U values which optimise 
K",  Y t ,  and Y h  differ by a percent or less: there is an optimal v .  
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Figure 3, The critical indices K*, yh and y t  calculated using the two-cell cluster renor- 
malisation transformation as a function of the projection parameter v ( w  = l j .  The 
horizontal dashed lines indicate the exact known values at the king critical point. Tri- 
angular lattice: ( a )  free boundary; ( b )  periodic boundary; (c )  mean-field boundary. Square 
lattice: ( d )  free boundary; ( e )  periodic boundary (row continuation); (f) periodic boundary 
(checkerboard continuation); (g) mean-field boundary. Hexagonal lattice: ( h )  periodic 
boundary. 
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The three cases which show this behaviour are virtually all? periodic continua- 
tions-one for each lattice type. But not all periodic continuations show this behaviour 
(cf figure 3 ( e ) ) .  There is a nearly linear relationship between the optimal v values for 
the three lattices (table 1, left column) and their coordination number n. A linear 
extrapolation based on these values from the square and hexagonal lattices predicts 
n = 6.03 for the triangular lattice-a half percent from its true value. We note further 
that y r  appears to attain a maximum near the optimal v .$  

These results suggest that the optimal U minimises the sources of error in our 
approximate RSRT. A major source of error is our neglect of couplings beyond the 
nearest-neighbour coupling. We expect that these further couplings would be small if 
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Figure 4. Second ( K h )  and third ( K ; )  nearest-neighbour 
calculated in the second-order cumulant approximation as 

couplings (relative to K ; )  
a function of the nearest- 

neighbour coupling K1 and projection parameter U ( w  = 1). ( a )  ‘Triangular lattice. ( b )  
Square lattice. ( c )  Hexagonal lattice. 

t The ‘mean-field’ case of figure 3 ( c )  shows optimisation comparable with the periodic case of figure 3(b) .  
Indeed, these two transformations are so similar in all respects that they can hardly be considered as 
in’dependent. 
$ That exponents should be insensitive to the renormalisation parameters (as at the extrema] point) was 
suggested by Bell and Wilson (1975). 



454 T A  Witten Jr and J J Prentis 

an exact renormalisation were done with our optimal projection. To check this idea, we 
made a separate study of these further couplings in the cumulant approximation 
(Niemeijer and van Leeuwen 1974). This study confirmed the idea that the further 
couplings are small at the optimum point. 

In the second-order cumulant expansion one obtains second- and third-neighbour 
couplings K i  and K ;  in addition to the Ising coupling K ; ,  if the unprimed coupling is 
purely Ising. The formulae for these are given in the Appendix. We studied the 
behaviour of K i  and K ;  as a function of K1 and U, Figure 4 shows the results for 
triangular, square, and hexagonal lattices. For each lattice there is a small range of v 
values that makes Kh and K ;  both small for 0 < K1 =s K,. Within this range one may 
find a KT by neglecting Kh and K;.  If one adjusts v so that K? = K,, then Kh and K ;  
are small and of opposite sign (figure 5 ) .  The results for the hexagonal lattice are 
particularly striking. Here only Kh is non-zero in our second-order treatment. By 
examining the expressions for K ;  and Kh one readily shows tha t lny  w and v which 
make K i  = 0 at K? also make KT equal to the exact K, = t ln(2 +J3). There is a rough 
agreement between the best v values found in this cumulant study and those found on 
the truncated lattices, as table 1 shows. 
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Figure 5. The nearest-neighbour fixed point coupling KT (neglecting K; and K ; )  
calculated in the second-order cumulant approximation as a function of the projection 
parameter U ( w  = 1). Also shown are the values of the further couplings K; and K; at this 
fixed point. ( a )  Triangular lattice. (6) Square lattice. ( c )  Hexagonal lattice. 

Table 1. The values of the projection parameter U which make K* = K, in our two-cell 
cluster and the cumulant approximations. 

Lattice U (Two-cell cluster) v (Cumulant) 

Triangular 0.8197 (figure 3(6)) 0.8502 (figure 5(a))  
Square 1.0645 (figure 3(f)) 1.1642 (figure 5(b)) 
Hexagonal 1,1854 (figure 3 ( h ) )  1,2685 (figure 5(c)) 
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4. Discussion 

We wish to explain the striking agreement between the true critical behaviour and that 
of our optimal RSRT’S. One possible explanation is that a specific choice of RSRT 

happens to produce compensating errors in an intrinsically bad approximation, so that, 
for instance K* comes out correctly. But then one must explain the gratuitous 
agreement of the two other quantities-the two critical exponents-for the same choice 
of transformation. The same phenomenon of ‘automatic agreement’ has been a 
common occurrence in other RSRT studies (Kadanoff and Houghton 1975, Kadanoff 
1975). 

A second explanation appears more plausible; that the optimal RSRT’S have 
especially small errors. That is, the approximate fixed-point behaviour we have found 
with our optimal transformations is especially close to the behaviour under these same 
transformations with no approximations. The most obvious approximation we have 
made is our neglect of all couplings beyond nearest-neighbour king coupling in the 
fixed-point Hamiltonian. Thus we would expect the exact RSRT to yield a ‘local’ fixed 
point close to the Ising critical point, with only small couplings beyond nearest- 
neighbour. Our study of these further couplings in the cumulant approximation 
confirms this idea. It shows that for the optimal RSRT, the further couplings studied are 
especially small. This suggests a method of finding optimal RSRT’S in future work: that is 
to choose the RSRT so as to minimise the further couplings. 

Again, several features of the optimum RSRT’S remain to be explained. It is not clear 
why a single choice of transformation tends to make more than one further coupling 
small at the same time. These findings suggest that there is some important feature of 
real-space renormalisation waiting to be discovered. We believe that the technique of 
varying the transformation as applied here can lead to an understanding of this 
undiscovered feature. Then one may replace trial-and-error searching by predictions 
of when a given transformation will be successful for a particular problem. 
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.Appendix. Renormalisation transformations in the cumulant approximation (with 
general projection) 

In order to compute the transformation, we require the distribution function for the p’  
spins for a given nearest-neighbour coupling K between the unprimed spins p. We 
treat the intracell couplings exactly and the intercell couplings to second order in K 
using the cells of figure 1. The primed couplings thus generated may be expressed in 
terms of a ‘susceptibility’ and a correlation function for the isolated cell. We define the 
susceptibility ,yl by E ,yip’, and the correlation I?[, by ( p  = Ti+ Here 

and Ho is the Hamiltonian of the isolated cell. 
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For the triangular lattice the unperturbed cell partition function z o  is given by 
zo = exp(3K) + 3 exp(-K). The correlations rl, are all equal and independent of the 
projection parameters v and w : 

T I ,  = r = (exp(3K) - exp(-K))/zo. 

The susceptibility xI has the form 

,yI = x  = [(2w - 1) exp(3K) + (20 - 1) exp(-K)]/zo. 

To second order in K, only nearest-, second- and third-neighbour couplings K '1, K ;  and 
K $  are induced: 

K ;  ( K )  = 2 x 2 ~  +4x2(i  + r - 2 X 2 ) ~ 2 ,  

K ;  ( K )  = x2(i + 71- - 8 X 2 ) ~ 2 ,  

K ;  ( K )  = 4x2(r  - X 2 ) ~ 2 .  

For the square lattice 20 = exp(4K) + exp(-4K) + 6. Two correlations enter: 

r12 = (exp(4K) - exp(-4K))/zo 

for adjacent sites, and 

rI3 = (exp(4K) +exp(-4K) - 2)/z0 

for opposite sites. The susceptibility ,y is 

x = [(2 w - 1) exp(4K) + 40 - 2]/z0. 

The nearest-neighbour coupling is found to have no second-order part: 

IT; ( K )  = 2X2K 

K ; ( K ) =  2 X 2 ( 1 + 2 r 1 2 + r 1 3 - 4 X 2 ) ~ 2 ,  

K ;  ( K )  = 2x2(r12 + r13 - 2 X 2 ) ~ 2 .  

The others are 

In the hexagonal lattice to = exp(3K) +exp(-3K) + 3 exp(K) + 3 exp(-K). The 
correlations r12 of the outer spins are 

r 1 2  = (exp(3K) + exp(-3K) - exp(K) - exp(-K))/zo. 

Their susceptibilities are 

X I =  [(2w - 1) exp(3K) + ( 2 0  - l)(exp(-3K) +exp(K)]/zo. 

Only nearest and secorid couplings are induced: 

K i  ( K )  = 2x:K 

~ ; ( ~ ) = ~ : ( i + 3 r ~ ~ - 4 ~ : ) ~ ~ .  
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