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Abstract. A renormalisation theory is developed to study the critical behaviour of self- 
avoiding random walks on multifractals. Critical exponents and connectivity constants are 
calculated for walks on a class of square multifractal lattices using a finite lattice renormali- 
sation. The effect of the multifractal disorder is considered for both annealed and quenched 
disorder . 

1. Introduction 

A self-avoiding random walk (SARW) is a random walk that contains no self-intersec- 
tions. The properties of SARW have been intensively investigated in the last two decades 
among the disciplines of mathematics, physics, chemistry and biology. A fundamental 
statistical property of the SARW is the root-mean-square distance between its endpoints, 
denoted R. It is well known (de Gennes 1979) that this distance scales with the number 
of steps N in the walk for N >> 1 according to the power law behaviour 

R - N u .  (1) 
The critical exponent U is a universal exponent that characterises the scaling behaviour 
of the SARW. A large amount of research has focused on the theoretical, numerical 
and experimental determination of U for SARW in ordered media or on regular 
(Euclidean) lattices. In two dimensions, it is conjectured that the exact value of U is a (Nienhuis 1982). This value agrees with numerical simulations (Guttman 1987). In 
three dimensions, the most accurate estimate of v is 0.588 (Le Guillou and Zinn Justin 
1980, Majid et a1 1983). 

The study of disorder and its effect on the critical behaviour of the SARW has 
attracted considerable attention in recent years. The phenomena studied include SARW 

on percolation clusters (Sahimi 1984, Roy and Chakrabarti 1987, Kim 1987, Meir and 
Aharony 1988), deterministic fractals (Ben-Avraham and Havlin 1984, Bradley 1987), 
crumpled fractals (Chen and Guy 1986) and random networks (Kardar and Zhang 
1987, Thirumalai 1988). The effect of disorder on the critical exponent U, whether 
relevant or irrelevant, is not conclusive and there exist contradictions (Thirumalai 1988). 

Recently, there has been much interest in multifractal phenomena. Multifractals 
are objects that can be partitioned into fractal subsets, each with a different fractal 
dimension (Mandelbrot 1982). Multifractality was discovered in the context of fluid 
turbulence (Mandelbrot 1974, Benzi et a1 1984). A formalism for characterising 
multifractals in terms of a spectrum of scaling exponents or fractal dimensions has 
recently been developed (Halsey et a1 1986). In the last three years, multifractals have 

030S-4470/89/081109+ 09$02.50 @ 1989 IOP Publishing Ltd 1101 



1102 B S Elenbogen and J J Prentis 

received much attention and have been applied to a diverse set of phenomena, including 
fluid turbulence, percolation, non-linear dynamical systems, growth processes and 
localisation (Meir and Aharony 1988 and references therein). 

Random (not self-avoiding) walks on a two-dimensional multifractal lattice have 
been investigated using computer simulation (Meakin 1987a). The critical exponent 
U assumes values that are less than its non-disordered value of 1. This indicates that 
this class of multifractal disorder is relevant for random walk phenomena. Another 
study (Meir and Aharony 1988) focuses on the averaging process itself over the 
multifractal disorder in percolation phenomena. This study indicates that such averag- 
ing is a non-trivial process in which the multifractal correlations can induce anomalous 
behaviour. 

In this paper, we study the effect of multifractal disorder on SARW in two dimensions. 
The multifractal disorder is characterised by the multifractal lattices illustrated in figure 
1 and defined below. Multifractals of this type were introduced to model scaling 
phenomena in fluid turbulence (Mandelbrot 1974, Benzi et a1 1984). They were recently 
used as substrates for random walks (Meakin 1987a) and Eden clusters (Meakin 1987b). 
These multifractal lattices are generated from an iterative construction process. The 
first stage of the construction consists of the random assignment of four numbers 
(weights) pl, p 2 ,  p 3  and p4 to the four quadrants of a square lattice (figure l (a)) .  These 
four numbers (0 < p i  G 1) can be considered as (proportional to) probability weights 
representing a probability disorder or as Boltzmann weights representing an energy 
disorder. In the second stage of the construction, each quadrant is subdivided into 
four subquadrants. The weight associated with each subquadrant is determined by 
multiplying the quadrant weight by pl, p 2 ,  p 3  and p4 in random order (figure l(b)).  
This process is continued until the smallest length scale (one lattice unit) is reached. 
The asymptotic limit of this process defines a fractal measure on a two-dimensional 
space. The multifractality of the lattice can be described by a spectrum of scaling 
exponents, each characterising a fractal subset embedded in the lattice (Meakin 1987a). 

( 0 )  (6) 

Figure 1. Generation of the multifractal lattice; ( a )  first stage, ( b )  second stage. 

2. Renormalisation 

To study the properties of SARW on these multifractal lattices, we develop a real space 
renormalisation scheme. A scheme must be developed for both the renormalisation 
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of the multifractal lattice and that of the SARW. This application of the renormalisation 
group theory to geometrical critical phenomena on multifractals is new. Thus far, 
renormalisation group ideas have only been applied to pure multifractal spaces without 
any geometrical critical structure embedded in them. A scaling theory has been 
developed in the context of multifractal growth processes (Coniglio 1986). A real-space 
renormalisation scheme has been applied to diffusion-limited aggregation (Nagatani 
1987). Our goal will be to calculate the critical exponent U describing the average size 
of the SARW on the multifractal substrate. The renormalisation theory will also allow 
us to calculate the connectivity constant of the SARW. Our study of v for self-avoiding 
random walks represents a natural extension of Meakin’s numerical study (Meakin 
1987a) of the same exponent for purely random walks on the same multifractal lattices. 
A comparision of the two results will provide insights into the multifractal effects on 
geometrical critical phenomena. 

We first define the renormalisation of the multifractal lattice. Consider a change 
in length scale by a scale factor b. Focus on a quadrant of the lattice that was generated 
from the weight pi .  A quadrant containing b2 sites is renormalised (projected) into a 
single site whose weight is determined by the simple average over the b2 site weights. 
This projection rule can be phrased in the formal mathematical language of multifrac- 
tals. It corresponds to the partition function of the multifractal lattice (Halsey et a1 
1986). If w, denotes the weight associated with site s, then a quadrant containing b2 
sites that was generated from the weight pi renormalises into a single site whose weight 
is 

where 

n =In blln 2. 

The term p i  ( p I + p 2 + p P 3 + p 4 ) ”  is the partition function (or first moment function) of 
the multifractal quadrant generated from the weight p i  after n iterations. This projection 
preserves the multifractality of the lattice. The projection has built into it the multiplica- 
tive trademark (Coniglio 1986) that characterises this class of multifractals. The 
renormalisation of the multifractal lattice for b = 2 and b = 4 is illustrated in figure 2. 

The renormalisation of the SARW is defined by the well known ‘connectivity rule’ 
for geometrical critical phenomena (Stanley er a1 1982). According to this rule, all the 
SARW configurations that span a quadrant starting from the bottom left site and exiting 
at any top site map onto a single vertical renormalised step. The renormalisation of 
a SARW configuration for b = 4 is illustrated in figure 3. A fugacity weight K is associated 
with each step of the walk. The renormalised fugacity weight is denoted K’. Each 
vertex of the walk is assigned the corresponding site weight w,. 

The renormalisation transformation is a mapping between K and K’ that preserves 
the physics (partition function) of the SARW on the multifractal lattice. A particular 
multifractal lattice is defined by a particular set of values for the weights pl, p z ,  p 3  and 
p4.  A condensed notation representing this set of values will be denoted by the 
parameter p .  The renormalisation transformation for a multifractal lattice (labelled p )  
will be denoted by the mapping KL ( K ) .  This transformation is defined by the 
invariance of the (grand) partition function under the renormalisation: 

Z,(K) = ZL(K’) .  (3) 
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Figure 2. Renormalisation of the multifractal lattice. The renormalisation of the quadrant 
generated from the weight p ,  is shown for the scale factors ( a )  b = 2 and ( b )  b = 4. The 
renormalised site weight is defined by the partition function of the multifractal quadrant. 

Figure 3. Renormalisation of a self-avoiding random walk configuration on a multifractal 
quadrant for the scale factor b = 4. 

The partition function is defined by the weighted sum over all SARW configurations 
and over all the multifractal disorder configurations. The disorder configurations are 
the set of all geometric realisations of the site weights resulting from the random 
assignment of the basic weights ( p , ,  p 2 ,  p 3 ,  p4) according to the definition of the 
multifractal lattice. This sum over both the SARW and the disorder configurations is 
equivalent to treating the multifractal disorder degrees of freedom as being in equili- 
brium with the SARW degrees of freedom. Alternatively, this partition function rep- 
resents an averaged SARW partition function over the multifractal disorder. This method 
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of averaging corresponds to treating the multifractal disorder as annealed disorder. 
Later, we will discuss treating the disorder as quenched. 

To illustrate the structure of the renormalisation transformation, we exhibit the 
transformation explicitly for b = 2. Implementing the program defined above on the 
multifractal quadrant in figure 2( a ) ,  the b = 2 renormalisation transformation assumes 
the following form: 

+ p2 ip3 +p4 ) 2  Kb 

= & (P: +P: + P: +P:) (pip2 +pip3 + ~ 1 ~ 4 + ~ 2 p 3  +p2p4+p3p4)K2 

+ %( P: + P: +Pi +P:) (P lP2P3  +Plp2P4+ PIP3P4 +P2P3P4)K3 

+~(P:+P:+P::+P~)P1P2P3P4K4. (4) 

For p1 = p2 = p 3  = p4 = 1, this transformation reduces to the b = 2 transformation charac- 
terising the SARW problem on a regular (Euclidean) square lattice (Stanley et a1 1982). 

The critical exponent up and the connectivity constant p p  for a SARW on a multifrac- 
tal lattice labelled p are calculated from the renormalisation transformation Kb( K) .  
If Kp” is the non-trivial fixed point of KL(K), and A, is the eigenvalue of the linearised 
K b ( K ) ,  then 

Pp = 1IKp” where Kp” = Kb(K:) 

dKb(KF) 
d K  * 

up =In blln A, where A, = 

(5) 

0 I P 1 

Figure 4. The critical exponent vp and the connectivity constant F~ for SARW on multifractal 
lattices labelled p .  The results were obtained from a renormalisation theory which treats 
the multifractal disorder as annealed. Results are shown for disorder of type I ( p ,  = p 2  = 1, 
p 3  = p4 = p )  (full curve) and type I1 ( p ,  = 1, p 2  = p ,  p3  = p 2 ,  p4 = p 3 )  (broken curve). 
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Figure 5. The critical exponent Gp and the connectivity constant &, for SARW on multifrac- 
tal lattices labelled p .  The results were obtained from a renormalisation theory which treats 
the multifractal disorder as quenched. Results are shown for disorder of type I (pl = p 2  = 1, 
p , = p 4 = p )  (full curve) and type I1 (p l  = 1, p 2 = p ,  p 3 = p 2 ,  p4=p3) (broken curve). 

We calculate the critical exponent vp and the connectivity constant p p  using a b = 2 
renormalisation for two classes of disorder, denoted type I and type I1 (Meakin 1987a). 
For type I, p1 = p 2  = 1 and p 3  = p4 = p .  For type 11, p ,  = 1, p 2  = p ,  p 3  = p 2 ,  p4 = p 3 .  The 
parameter p is a real number between 0 and 1. The results for the b = 2 renormalisation 
are displayed in figure 4. 

We next consider treating the multifractal disorder as quenched disorder. Instead 
of averaging the SARW partition function over the multifractal disorder, we calculate 
the partition function for a fixed disorder configuration. For each disorder configur- 
ation, the corresponding renormalisation transformation is used to calculate a critical 
exponent and a connectivity constant. These properties are then averaged over the 
disorder configurations, treating each configuration as equally probable. The quenched 
critical descriptors will be denoted Pp and pP’ The results obtained from a b = 2 
renormalisation are displayed in figure 5. More detail characterising this quenched 
behaviour is contained in the probability distribution P( vp) for the critical exponent 
vp These distributions are displayed in figure 6 .  

3. Discussion 

The results in figures 4, 5, and 6 indicate that the annealed multifractal disorder has 
a much larger effect on the critical exponent than the quenched disorder. This disorder 
is most relevant for multifractal lattices with p < 4. The connectivity constant is sensitive 
to the multifractal disorder for both the annealed and the quenched cases. 
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Figure 6. The probability distribution P( v,) for the critical exponent vp of SARW on lattices 
with quenched multifractal disorder of ( a )  type I ( p ,  = p z  = 1,  p 3  = p4 = p )  and ( b )  type I1 
(P, = 1 ,  p 2 =  P. P3 = P2, p4=p3). 

Our results, as represented in figures 4, 5, and 6, can be interpreted in terms of a 
qualitative picture of walking on a dilute lattice in which the multifractal dilution is 
a function of p .  For p = 1, we recover the well known results ( Y = 0.7153 and p = 2.148) 
for the ordered SARW problem on a regular square lattice. The other limit as the weight 
p approaches zero represents a new domain and is especially interesting. In this limit, 
the multifractal lattice is ultra-dilute in the sense that only a small fraction of the total 
number of sites have a significant weight. A SARW on this ultra-dilute lattice will tend 
to escape the small-weight regions and seek out this sparse array of maximum weight 
sites. Thus, the extended (rather than compact) SARW configurations will dominate 
the ensemble. Such an extended SARW is characterised by a critical exponent that 
approaches a value of one. In addition, the connectivity constant (effective lattice 
coordination number) of such a walk approaches a value of zero. Furthermore, because 
the type-I1 lattices are more dilute than the type-I lattices (for the same value of p ) ,  



1108 B S Elenbogen and J J Prentis 

this small-p critical behaviour should be approached more rapidly for the type-I1 
disorder. The small-p results in figure 4 corroborate this qualitative interpretation. It 
should be noted that this small-p behaviour can be derived analytically from the 
renormalisation transformation for all scale factors and thus represents an exact result. 
This small-p behaviour does not occur for the quenched exponent (figure 5 )  because 
of the nature of the averaging process. In the quenched average over the exponents, 
all walk sizes contribute more equally for small p (figure 6 ) .  The extended walks, 
although more probable for small p ,  do not dominate the quenched average. A primary 
objective for performing the quenched calculation was to provide more detailed 
information regarding the effect of the multifractal disorder (both quenched and 
annealed) on the critical behaviour. Such information is contained in the exponent 
probability distributions displayed in figure 6 .  In particular, note the emergence of 
the extended walks ( vp = 1) as p decreases. 

It is interesting to contrast this small-p behaviour of the self-avoiding random walk 
with that of an ordinary (not self-avoiding) random walk on the same multifractal 
lattice. A random walk on such an ultra-dilute lattice will not be extended. On the 
contrary, it will be compact as it remains localised in a small region around one of 
the large-weight sites. The most probable random walk configuration is the one which 
maximises the number of visits to such a site. Such a compact walk is characterised 
by a critical exponent that approaches a value of zero. This small-p behaviour of 
random walks has been observed in a recent numerical simulation (Meakin 1987a). 

This limiting (small-p) behaviour of the SARW with annealed disorder provides a 
concrete example of what appears to be a general trademark of geometrical critical 
phenomena on multifractals. This trademark is due to the nature of the averaging 
process over the multifractal disorder. Indeed, a recent study (Meir and Aharony 
1988) of percolation phenomena with multifractal disorder indicates that the averaging 
over the multifractal structures may be dominated by a rare subset of the structures. 

In summary, we have developed a real-space renormalisation scheme to understand 
the critical behaviour of self-avoiding random walks on multifractals. Such a scheme 
could also be applied to other geometrical critical phenomena with multifractal 
disorder. For future work, it would be useful to study the connection between the 
fractal dimension (or spectrum of dimensions) of the SARW and the spectrum of 
dimensions that characterise the substrate multifractality. In particular, for small p ,  
there should exist a connection between the fractal dimension of the SARW and the 
fractal dimension of the subset of maximum-weight lattice sites. Such a study may 
provide insight into the spatial correlations within the multifractal substrate itself. 
Multifractal correlations, although not well understood, are crucial for characterising 
the geometrical structure of multifractals (Cates and Deutsch 1987). The SARW could 
provide a useful probe with which to understand the correlations within any multifractal 
space. 
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