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Abstract. We study periodic well-to-well flopping of rubidium atoms in one-dimensional
grey optical lattices using a nondestructive, real-time measurement technique and quantum
Monte Carlo wavefunction simulations. The observed flopping rates as well as flopping rates
extracted from exact band structure calculations can largely be reproduced using adiabatic
models that employ the Born—-Oppenheimer approximation. The adiabatic model is greatly
improved by taking into account a gauge potential that is added to the usual adiabatic
light-shift potential. The validity of the adiabatic model allows us to interpret the observed
flopping phenomenon as periodic well-to-well tunnelling. At low intensities and in related

far-off-resonant optical lattices the adiabatic model fails. There, a weak-coupling model
becomes valid, which describes the well-to-well flopping as a Rabi oscillation between

weakly coupled states, but not as a tunnel effect.
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effect

1. Introduction

Optical lattices are periodic light-shift potentials of atoms,
created by the interference of multiple laser beams. Atoms
can be laser-cooled and localized in these potentials. The
rate y at which the trapped atoms scatter lattice photons
is an essential parameter for both the atomic temperature
and the lifetime of coherent atomic centre-of-mass (CM)
motion. A low value of y generally leads to lower
temperatures, larger vibrational ground state populations,
and long coherence lifetimes. A large variety of optical
lattices has been realized [1], including lattices in which
y is minimized using high-intensity, far-off-resonance laser
light (FORL) [2] and/or using laser light that is blue-detuned
with respect to the relevant atomic transition (grey lattices
[3]). CM wavepackets of atoms in optical lattices have
been produced, and their properties and decay mechanisms
have been studied [4]. Using low-intensity grey lattices
and FORLs, the coherence decay rate could be further
reduced to a level where quantum tunnelling [5—-7] and Bloch
oscillations [8] became visible. In this regime, the atoms
migrate through the lattice via well-to-well or longer-range
quantum transport, and not via quasi-classical diffusion
induced by excitations into free lattice bands and subsequent
recapture into lattice wells [9]. These two migration
mechanisms are fundamentally different: the quasi-classical
diffusion is not based on coherent quantum motion, and its
rate increases with y. In contrast, quantum transport is based
on coherent, quantized CM dynamics, and its significance
decreases with increasing y .
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As a result of the spinor nature of the atomic
wavefunction, one can distinguish between optical lattices for
which the Born—Oppenheimer approximation (BOA) applies,
and others for which the BOA fails [10,11]. If optical lattices
differ with respect to the applicability of the BOA but have
similar adiabatic potential surfaces, their quantum transport
rates can be very different. Further in the case of adiabatic
spin motion, i.e. in the regime in which the CM dynamics
is slow enough to be adiabatically separable using the BOA,
the quantum CM motion on the adiabatic potential surfaces
can be significantly altered by topological effects [12]. One
such effect, the influence of gauge potentials on the quantum
transport in certain grey optical lattices, has recently been
observed [7, 10]. In contrast to the usual adiabatic potentials
of the BOA, which are proportional to the lattice intensity,
the gauge potentials solely depend on the geometry of the
lattice, not on its intensity.

In this paper, we study well-to-well flopping—a form
of quantum transport—in optical lattices formed by pairs
of counterpropagating, linearly polarized laser beams with
orthogonal (lin _L lin case) or arbitrary (linflin case) angles
between the polarization directions. In section 2 we discuss
the BOA in optical lattices, and the conditions under which
gauge potentials are significant. In our experiments, we use
a nondestructive, real-time technique to measure periodic
tunnelling currents, described in section 3. In section 4
we then review our previous experiments and simulations
on the intensity-dependence of the well-to-well flopping
frequency in lin L lin grey optical lattices. We compare
our previous results with the results of exact band structure
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calculations and band structure calculations that are based on
the BOA. We use a weak-coupling model, which is explained
in detail in section 6, to understand the generic decrease of
the flopping frequency observed at very low intensities. We
then shift our attention to the 8-dependence of the well-to-
well flopping behaviour in linflin grey lattices. There, the
main signal we measure is generated by periodic tunnelling
between fixed pairs of neighbouring wells. In section 5
we present measurements and wavefunction simulations of
the 6-dependence of the tunnelling frequency, as well as
corresponding results obtained with adiabatic and weak-
coupling models. In sections 4 and 5 we largely find validity
of the BOA. In section 6 we apply our adiabatic and weak-
coupling models to the well-to-well flopping in a FORL that
displays periodic double-well potentials that appear similar to
the ones found in linflin grey optical lattices [11]. Section 7
concludes the paper with a discussion of the main results.

2. The Born-Oppenheimer approximation in
optical lattices

The position-dependent atom-—field coupling in optical
lattices can be written as a spatially periodic effective
potential operator V with elements V (R)m m» m denoting the
magnetic sublevels of the atomic state (angular momentum
F) and R the atomic CM position [1]. The operator 1%
acts on a (2F + 1)-component spinor wavefunction v, (R),
m = —F, ..., F. The off-diagonal terms V(R)m_,n/, m #
m’, describe magnetic-dipole couplings induced by a static
B-field, and/or stimulated Raman transitions of the atoms
between different m-states, induced by the interaction of
the atoms with two different polarization components of the
lattice laser field.

Considering R a classical parameter of V, the
eigenenergies and eigenstates of V, defined by Vie,(R)) =
E,(R)|a,(R)),n = 1,...,2F + 1, represent the periodic
adiabatic potentials E,(R) of the optical lattice and the
associated adiabatic eigenstates |a, (R)) = >, ¢u.m(R)Im).
The full Hamiltonian H = (P2 /2M) + V can be represented
in the basis of the |o,, (R)) (adiabatic basis). In the adiabatic
basis H contains kinetic terms that result from the action
of —(h?/2M)V% on the position-dependent coefficients
cn.m(R). In certain optical lattices, the CM motion of the
atoms is much slower than the internal spin dynamics, i.e. the
spin wavefunction adiabatically follows the CM motion. In
such cases, the kinetic terms of the Hamiltonian that are off-
diagonal in the |o, (R)) representation are negligible. The
BOA amounts to dropping those terms, thereby decoupling
the Schrodinger equation for a 2F + 1-component spinor
wavefunction into 2 F +1 scalar Schrodinger equations. If the
off-diagonal kinetic terms cannot be neglected, the BOA does
not apply—the motion is not adiabatically separable. Lattices
that do not satisfy the BOA include the ‘bright’ optical
lattices [1] that are red-detuned from an F' <> F+1 transition,
and the far-off-resonant lattice discussed in section 6.

In our one-dimensional grey optical lattices the lowest
adiabatic potential E;(z) is well separated from all other
adiabatic potentials. Further, it is known and we observe
in our quantum Monte Carlo wavefunction (QMCWF)
simulations [13] that laser cooling accumulates the atoms on
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E|(z). Thus, we are only interested in an accurate description
of the dynamics on the isolated adiabatic potential E,(z),
for which we can make the BOA. While we drop the off-
diagonal kinetic terms of H in the |, (R)) representation,
the diagonal terms need to be kept, including a positive scalar
potential [10],

Gu(2) = —(h*/2M) {0, (2)107 | (2)). D

In contrast to the usual Born—Oppenheimer adiabatic
potentials E,(z), which are proportional to the lattice
intensity, the gauge potentials G,(z) do not depend on
the lattice intensity. Since the atoms move on the lowest
potential, the potential the atoms experience is the sum
E(z) = G1(z) + E((z). Since the gauge potential involves
the second derivative of the adiabatic state |« (z)), its relative
importance is very sensitive on the length scale over which
|y (z)) varies. In many lattices and other physical systems
it turns out that E;(z) > G(z) for all z, in which case the
gauge potential can be dropped.

3. Experimental procedure

The measurement of the tunnelling current described in
the following is real-time and nondestructive, as it uses
tunnelling-induced coherent photon exchange and does not
introduce spontaneous emission that would destroy the
coherence of the tunnelling oscillation.

In our cycled experiment [7], ¥’Rb atoms are collected
in a magneto-optic trap, pre-cooled in an optical molasses,
and then loaded into a 1D grey optical lattice. The lattice is
blue-detuned by § = 6I'/(2x7) (I'/(27) = 6 MHz) from the
F =2 < F’ =2 hyperfine (HFS) transition of the D1 line
(A = 795 nm). The lattices are formed by linearly polarized
laser beams with orthogonal (lin L lin) or arbitrary (lin6lin)
angles between the polarization directions. After ~1 ms
of Sisyphus cooling in the lattice, most atoms are prepared
in the minima of the lowest adiabatic potential E;(z). The
wells of E;(z) are located at positions where the lattice light
field has pure o*- or o ~-polarization; at those locations the
light-shift E;(z) is zero. Since from well to well the light
polarization alternates between o* and o, there are two
types of wells, which we call c* and o~ wells. The spacing
between neighbouring wells of the same kind is 1 /2. Atoms
located in the o* (o ™) wells are predominantly in the [m = 2)
(|m = —2)) internal state.

To initiate observable tunnelling between the o* and
o~ wells of the lattice, all atoms located in one type of
well need to be removed. We can, for instance, implement
an approximation to the projection operator [m = 2)(m =
2| fz |z)(z| dz, which will mostly remove atoms from the o~
wells. Experimentally, this is done by the application of
an auxiliary o*-polarized laser pulse that is resonant on the
F = 2 < F' = 2 HFS transition of the D2 line. This
projection pulse, which is ~15 us long, optically pumps most
atoms in the o~ lattice wells into the inert 55, F = 1 state,
while it leaves the atoms in the o* wells largely untouched.
The end of the pulse marks the beginning of the tunnelling
oscillations. To prevent the removed atoms from returning
into the lattice, the repumping laser, which is needed for the



laser cooling of the atoms, is turned off shortly before the
projection pulse is turned on.

Since 3’Rb atoms in neighbouring wells have opposite
values of m with |m| = 2, a tunnelling event is associated
with an exchange of 471 angular momentum between the atom
and the lattice field, amounting to an exchange of two photon
pairs between the o+ and o ~ components of the lattice beams.
Thus, utilizing the fact that all ~10° atoms in the lattice
tunnel are in phase, we can measure the tunnelling current,
0.25n(t)%(rh)(t), by separating the lattice beams after their
interaction with the atoms into their o -polarized components,
and measuring the difference of the intensities of the o* and
o~ components. As the atoms tunnel back and forth, thereby
producing an AC tunnelling current, the number 7 (¢) of atoms
in the ' = 2 ground state decreases, since the lattice light
slowly optically pumps the F = 2 population into the F = 1
ground state. Since atoms in the F' = 1 state are inert, the
decrease of n(¢) results in an overall decay of the tunnelling
current. This reduction has been properly considered in the
simulations of the experiment shown in figure 5.

4. Intensity dependence of the tunnelling
frequency

For the lin L lin lattice described in section 3 we have
measured how the tunnelling frequency depends on the lattice
beam intensity, and we have found that the experimentally
observed tunnelling frequency quantitatively equals the
maximal separation between the lowest pair of bands (see
figure 1 and [7]). In figure 1 we present a theoretical analysis
that allows us to understand the observed dependence. In
curve (a), the tunnelling frequency, defined as the maximal
separation of the lowest pair of bands, is plotted versus the
lattice intensity using exact band structure calculations. This
curve agrees with our measurements in [7]. We compare
the exact band separations to band separations obtained with
a number of models. In curve (b), the band structure is
calculated for a scalar potential that equals the lowest light-
shift potential plus its gauge potential, E1(z) + G1(z). This
model fits the exact model well, except in the range of very
low intensities. In (c), the same calculation is repeated
for the adiabatic light-shift potential E;(z) only. Curve (c)
still fits the exact model reasonably well. Nevertheless, the
inclusion of the gauge potential significantly improves the
BOA-based model, particularly in the intensity range around
10 mW cm™2.

The physical reality of the gauge potential can be seen
best in cases where, due to the absence of a relevant F/ =
F — 1 level, there is no light-shift at all, i.e. the adiabatic
potential E(z) is identical to zero and G(z) is the only
potential that can possibly trap atoms and induce tunnelling.
Curve (d) in figure 1 is obtained from an exact band structure
calculation for such a case. The dotted line (e) shows the band
splitting of the corresponding adiabatic model, i.e. a scalar
particle moving on the intensity-independent gauge potential
G1(z). At high enough intensities, where the BOA becomes
valid, curves (d) and (e) agree pretty well. We conclude
that there exist cases where the BOA is valid, and the gauge
potential as the only nonzero potential governs the particle
dynamics.
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Figure 1. Maximum band splitting between the lowest pair of
bands in units of the recoil energy, Erecoil = h%/(2A>M), versus
the single-beam laser intensity in a lin _L lin optical lattice of ’Rb
on the D1 line. The detuning with respecttothe F =2 <> F' =2
HEFS transition is +6I". The curves are obtained from band
structure calculations for the following models: (a) exact band
structure model, () adiabatic model for a scalar potential
E(z) = E((z) + G1(2), (c) adiabatic model for E(z) = E/(z) only,
(d) exact band structure model with the F' = 1 HFS level in the
excited state removed, (e) adiabatic model for (d) with
E(z) = G(z). The data points show the flopping frequencies
obtained experimentally (®) and by QMCWF simulations (®).
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Figure 2. Maximum band splitting between the lowest pair of
bands versus the single-beam laser intensity in a linflin optical
lattice on the D1 line of a model atom that is identical to 8’Rb,

except that the nuclear spin is % instead of % The laser detuning is

+6I", 0 = 1.0 rad, and the F’ = 0 to F’ = 1 HFS splitting in the
excited state is 135I". The underlying assumptions are: (a) exact
band structure model, (b) adiabatic model for a scalar potential
E(z) = Ei(2) + G1(2), (c) aiabatic model for E(z) = E;(z) only,
(d) weak-coupling model, explained in section 6.

Below ~10 mW cm ™2 the curve (a) in figure 1 diverges
from curves (b) and (c), and curve (d) diverges from (e).
Both curves (a) and (d) go to small band separation, in
accordance with the increase of the tunnelling period at low
intensities we have measured in [7]. The curves (b), (¢) and
(e), which reflect tunnelling frequencies expected on the basis
of the BOA, do not show the slightest indication of such a
trend. We can thus conclude that the low-intensity decrease
of the tunnelling frequency is caused by the breakdown of
the BOA, as already suspected in [7] and further supported
in the following.

In cases where the BOA does not apply, the atomic
dynamics can be dominated by the motion on the diabatic
potentials, V,, ,,(z) = (le(z)lm). The nondiagonal terms
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Figure 3. Lowest adiabatic potentials (left), associated gauge potentials (middle) and band structures (right) of a linflin optical lattice of
87Rb on the D1 line with the indicated values of 6, a detuning of +6T" with respect to the F = 2 <> F’ = 2 HFS transition, and

I =10 mW cm—2

of V in the |m, z) representation cause couplings between the
quantum states supported by the diabatic potentials. If these
couplings are weak enough, the observed flopping frequency
may follow from a weak coupling modelf explained in
section 6. In figure 2 we compare band splittings obtained
with the weak-coupling model to the results of corresponding
exact calculations and adiabatic models. For simplicity, the
comparison is carried out for a grey optical lattice using a
model atom with an F = 1 <> F’ = 1 transition. The figure
shows that the adiabatic models are appropriate at higher
intensities, whereby the consideration of the gauge potential
again provides a significant improvement. —The weak-
coupling approximation is mostly bad, but it qualitatively
reproduces the drop in the band splitting observed at the
very low intensities. We thus conclude that, as we reduce
the laser intensity, we tune the system from a range where
the BOA applies into a regime where the weak-coupling
approximation applies.

A qualitative understanding of why at very low
intensities the band separation goes to zero can be obtained
as follows. In our grey optical lattices, the weak-coupling
approximation applies in the limit of very low intensity, where
plane waves with fixed m, (z|Y) = exp(ikz) ®|m), are almost
eigenstates of the lattice. The lattice beams weakly shift and
couple those states by driving recoil-induced resonances [14]
between them. The band structures of the low-intensity grey
lattices are similar to that of a free particle, each free-particle
band being split up by the weak atom-field interaction into
a set of 2F + 1 close-by bands. As the lattice intensity
approaches zero, the atom-field interaction into a set of
goes to zero, and each set of 2F + 1 bands converges into
the corresponding free-particle band. This implies that for
F > 1/2 the maximum splitting between the lowest two
bands goes to zero.

T We note that one may take the point of view that what we call the weak-
coupling approximation is also a BOA, with the spin variable being the slow
and the CM variable the fast degree of freedom. However, to avoid confusion
and to be in line with common applications of the BOA, we use the term
BOA exclusively for the case where the internal degree of freedom evolves
much faster than the CM degree of freedom.
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5. Dependence of the tunnelling frequency on the
polarization angle

For the linflin grey lattice described in section 3, we have
studied the tunnelling current as a function of the angle
0. Figure 3 displays the adiabatic potentials E;(z), the
corresponding gauge potentials G (z) and the band structure
for three values of 8. The figure shows that, as the angle is
reduced from 90°, the height of the tunnelling barrier in the
lowest adiabatic potential becomes smaller, while the depth
of the gauge potential increases by a large amount. Thus, it
is not entirely unexpected that the tunnelling rates decrease
with 6, as can be concluded from the separations between the
lowest pairs of bands (figure 3, right panel). This behaviour,
which is the opposite to what one would conclude based
on the adiabatic potential E;(z) alone, has been observed
experimentally and in QMCWEF simulations.

Figure 4 shows experimental data of the tunnelling
current for different values of 6 and two intensities. Our
simulations, shown in figure 5, are in good agreement with
the experiment. As 0 is reduced or increased from 90°, the
tunnelling frequency reduces in a symmetric fashion, i.e. the
frequency only depends on [0 — 90°|, as expected. As 0
approaches 30° or 150°, the efficiency of Sisyphus cooling,
which prepares the atoms in the wells prior to the tunnelling
oscillation, decreases. This has two effects. Firstly, a
higher-frequency tunnelling oscillation that is associated with
the population of atoms in the second pair of lattice bands
becomes more prominent at small and large values of 6.
Secondly, the population in the lowest pair of bands gets
smaller, and, as a result, the tunnelling current signal due to
the fundamental tunnelling oscillation weakens. The latter
effect is enhanced by the decrease of the tunnelling frequency
that occurs when |§ —90°| is increased: the tunnelling current
is proportional to not only the oscillation amplitude of (1),
but also to the tunnelling frequency itself. This becomes
apparent in figure 5, where at the large values of |6 — 90°|
the plots of () show a pronounced but slow fundamental
tunnelling oscillation, whereas the tunnelling current hardly
shows any signal at the fundamental tunnelling frequency.

What is the physical mechanism that explains the 6-
dependence of the tunnelling rate? As in section 4, there



116

0.02 8(° 0.02 8(°
40
4 40
56 0.015 a8
0.01 64 52
72 ] 56
8o 0.01-: 60
0 90 ]
V\_W 98 0005"' /J\\A/\/\'
b w 80

-0.01 124 0 90
132 ]
] 100
140 5 005
-0.02 148 ]
156 ]
e T -0.01 Frrrrrr SR
0 400 800 0 400 800

Time (us) Time (us)

Figure 4. Experimentally observed tunnelling currents versus
time in a linflin optical lattice of ®’Rb on the D1 line with the
indicated values of 6 and with a detuning of +6I" with respect to
the F = 2 <> F’ = 2 HFS transition. The left panel corresponds
to a single-beam intensity of 7.2 mW c¢cm™2, the right one to

12.3 mW cm™2. The crosses highlight the third maxima of the
curves. For clarity, the curves are offset from each other.

are two questions of interest: is the BOA valid, and what
is the effect of the gauge potential? In figure 6 we show
the splitting of the lowest pair of bands that corresponds
to the tunnelling frequency observed experimentally and
in the QMCWEF simulations, for various models. Curves
(a) are based on exact band structure calculations. For
both intensities, the experimental and simulated oscillation
frequencies (®, © respectively) taken from figures 4 and 5
agree well with curves (a). Apparently, the experimental
data carry a systematic error of about 5° in the polarization
angle. Curves (a) are qualitatively reproduced by curves (b),
which are based on the band structures of the adiabatic model
with E(z) = E(z) + G1(2). As expected, the qualitative
agreement between is better for the higher intensity value.
Curves (a)—(c) and (e) demonstrate that both the adiabatic and
the gauge potentials need to be taken into account to achieve
qualitative agreement between the exact and the adiabatic
models. Curves (d) and (e) show that in cases where the
lowest adiabatic state has zero light-shift, i.e. E1(z) = 0,
the band splitting of the full spinor system is qualitatively
reproduced by the band structure of the gauge potential
G1(z). The adiabatic models are less accurate at small and
large values of 6, as expected from the fact that there the
higher-lying adiabatic potentials start to approach the lowest
one (not shown). This trend is adverse to the validity of the
BOA.

We have investigated the influence of the angular
momentum F on the tunnelling, when all other parameters
of the ‘model atom’ are kept constant. Generally, a larger
F quickly destroys the approximate validity of the BOA.
This happens because, as F increases, additional adiabatic
potentials fill up the energy range closely above the lowest
adiabatic potential, and because the order of the couplings
between the internal states |m = =F') increases with F.
The adiabatic model works best foran F = 1 < F' =1
transition. To show this and to also make a quantitative
comparison with the weak-coupling model used in sections 4
and 6, in figure 7 an F = 1 < F’ = 1 model atom is
considered. The figure shows that the adiabatic models that
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lattice intensity is 7.5 mW cm™2, and the polarization angles 6 are
as indicated. The number of atoms contributing to the signal is
denoted n(t). For clarity, the curves are offset from each other.
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Figure 6. Maximum band splittings between the lowest pair of
bands in a linflin optical lattice versus 6 for conditions as in
figure 4. The underlying assumptions are (a) exact band structure
model, (b) adiabatic model for E(z) = E|(z) + G(z),

(c) adiabatic model for E(z) = E;(z) only, (d) exact model for
zero light shift (F" = 1 excited HFS level set very far
off-resonance), (¢) adiabatic model for (d) with E(z) = G;(z).
(@) Experimental values, mostly deduced from figure 4. (©)
values deduced from the QMCWF shown in figure 5.

include the gauge potential approximate the behaviour of the
full spinor system better than in the F' = 2 case (see figure 6),
and that the weak-coupling model clearly fails.
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Figure 7. Maximum band splitting between the lowest pair of
bands in a linflin optical lattice versus 6 for the D1 line of the
same model atom as in figure 2. The intensity is / = 10 mW cm™
and laser detuning +6I". The underlying assumptions are (a) exact
band structure model, (b) adiabatic model for

E(z) = E|(2) + G1(2), (c) adiabatic model for E(z) = E;(z) only,
(d) exact model for zero light shift (F’ = 0 excited HFS level set
very far off-resonance), (e) adiabatic model for (d) with

E(z) = G1(2), (f) weak-coupling model of the lattice used for (a).

2

6. Coherent well-to-well oscillations in FORLs

At first glance, the situation we have studied in section 5
resembles the case of a far-off-resonant optical lattice in
linAlin configuration. Such lattices have been studied in [11]
and also display a double well on the lowest adiabatic
potential, resembling the double wells shown in figure 3.
The question arises, how far the results we have obtained
may apply to those lattices. We have studied the adiabatic
model and a weak-coupling model for far-off-resonant linflin
optical lattices, and conclude that the BOA is a very bad
model for this FORL, while the weak-coupling model works
reasonably well.

The upper panel of figure 8 shows the lowest adiabatic
potential of a far-off-resonant linflin optical lattice for an
F =1« F' = 0,1,2 model transition that is identical
to the 8’Rb D2 transition with its HFS splittings, except
that the nuclear spin is % and not % The single-beam
intensity is I = 400 mW cm™2, the detuning with respect
tothe F = 1 < F’ = 1 transition is §;; = —200I", and
6 = 103°. The figure also shows the spatial probability
distributions of two quantum states that are localized in only
one of the two wells. These two states are not eigenstates of
the system, because in their overlap region they are coupled
via stimulated Raman transitions.

Two models corresponding to strong and to weak
coupling can be readily tested. In the case of strong enough
coupling, the above-discussed BOA can be applied, and
the dynamics become effectively restricted to the lowest
adiabatic potential. In that case, the fast spin degree of
freedom adiabatically follows the CM dynamics, and the
atoms, described by a scalar wavefunction, periodically
tunnel on the potential E1(z) + G{(z). In sections 4 and 5
this picture has been found largely appropriate.
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Figure 8. Upper panel: lowest adiabatic potential £;(z) (solid,
thick, left scale), gauge potential G(z) (dotted, right scale) and
ground state wavefunctions in the two potential wells (solid, thin)
for a linflin FORL of the model atom described in the text. Lower
panel: maximum band splitting A E between the lowest pair of
bands versus the lattice intensity for (a) exact band structure
model, (b) weak-coupling model, (c¢) adiabatic model for
E(z) = E((z) + G1(2), (d) adiabatic model for E(z) = E(z) only.
Note the logarithmic scale for AE.

In the case of weak-enough coupling, the coupling terms
V_1,1(z) and V; _;(2) in the Hamiltonian

_(PP2M+V_ 1 (2)
i = ( Vi-1(2)

V_o11(2)
P2M + Vl,l(z)> @

are small, and the system approximately separates into
two sets of wavefunctions associated with the diabatic [1]
potentials V; ;(z) and V_; _;(z). The Hamiltonian restricted
to the subspace of the lowest pair of quantum states of the
diabatic potentials, which are the states shown in figure 8,

reads as
_ ([ Eo(q) c(q)
H’“”‘(c*(q) Eo(cn)'

There, ¢ is the quasimomentum, which, in cases where
the weak-coupling model applies, does not have a large
significance and is therefore dropped from now. The coupling
¢ in terms of the ground states ¥_;(z) and ¥ (z) is

3

C:/1/fi1(Z)V71,1(Z)1/f1(Z)dZ. 4)

The energy difference between the eigenvalues of H,
is 2|c|. Thus, the weak-coupling model predicts a coherent
oscillation of the trapped atoms between ¥_;(z) and v (2)
at the frequency 2|c|.

For the above-discussed FORL, we have calculated the
coupling frequencies using exact band structure calculations,



the BOA-based model, and the weak-coupling model. The
results, displayed in the lower panel of figure 8, clearly show
that in the FORL the weak-coupling model fits much better
than the BOA model. This conclusion is opposite to what
we found in sections 4 and 5 for grey lattices. The failure of
the BOA means that the well-to-well flopping in the FORL
cannot be expressed in a picture equivalent to a scalar particle
tunnelling on a potential surface. Nevertheless, the form of
the weak-coupling Hamiltonian, equation (3), shows that in
the validity range of the weak-coupling model the well-to-
well flopping can still be understood as a Rabi oscillation.
An increase of the F quantum number will reduce
the coupling strength between the degenerate CM quantum
states associated with the diabatic potentials V_r _r(z) and
Vr.r(z), because the couplings between the internal magnetic
states [m = = F) will be of higher order and weaker. Thus, a
larger F will generally shift the picture we have obtained for
the FORL even more in favour of the weak-coupling model.

7. Conclusions and discussion

We have used two approximations—the BOA and a weak-
coupling approximation—to model the coherent well-to-well
flopping of atoms we have observed in grey optical lattices.
We have compared our results with coherent well-to-well
flopping in a FORL. While the well-to-well flopping in our
grey lattices can mostly be well described using the BOA; in
the FORL the weak-coupling approximation applies.

The existence of different types of optical lattices
with qualitatively different quantum transport behaviour can
already be guessed from the appearance of the respective sets
of adiabatic potentials. Considering the two representative
cases depicted in figure 9, one is tempted to believe that the
Born—-Oppenheimer (weak-coupling) approximation applies
in cases where the ratio between the separation W of
the relevant adiabatic potentials and the depth U, of the
adiabatic potential on which the atoms mostly move is large
(small). Such a comparison would, however, not reproduce
the fact that for M — oo and a fixed CM energy of
order Uy the behaviour always has to become adiabatic.
A reasonable criterion can be obtained by comparing the
harmonic CM oscillation frequency in the wells with W:
the BOA would then be valid if W > oh/Uy/M/A,
with a numerical factor ¢ =~ 10 (depending on the lattice
geometry). However, this condition is questionable because
of the anharmonicity of the potential wells (see figure 9),
the sometimes low number of localized quantum states in
the wells, and the fact that the recoil frequency 27 Vrecoii =
hk?/(2M) sets a natural scale for CM coherence frequencies.
It appears reasonable to also consider the Landau—Zener
crossing criterion, according to which the crossing behaviour
is adiabatic if the atomic velocity v = dz/dt at the crossing
fulfils v « W?2?/(hAEp(z)/dz), where AEp(z) is the
position-dependent energy difference between the relevant
diabatic potentials (dotted in figure 9). However, itis not clear
what velocity to use, as the atomic wavefunction has a number
of different momentum components, and the crossing may be
found in the classically forbidden region of the wavefunction.

Since the mentioned criteria have some weaknesses and
since they rarely predict the applicability of the BOA with
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Figure 9. Left: adiabatic (solid) and diabatic (dotted) potentials
of a grey optical lattice, for which the BOA is valid. Right:
adiabatic and diabatic potentials of a FORL, for which the
weak-coupling approximation applies. The significance of the
energies W and U, is discussed in the text.

overwhelming clarity, a detailed case-to-case analysis seems
required to make qualified statements about the validity of
the BOA. This is what we have done in this paper.

The signatures of coherent well-to-well oscillations in
the distinct validity ranges of the BOA and of the weak-
coupling approximation are the same, namely observable os-
cillations of the magnetic quantum number of the trapped
atoms. The difference lies in the interpretation of the oscilla-
tions. It appears reasonable to call the oscillation a tunnelling
phenomenon only if it can be identified with the tunnelling of
a scalar wavefunction on a suitable scalar potential E (z); this
notion links the term ‘tunnelling’ with the applicability of the
BOA. We have shown that the BOA applies to many grey op-
tical lattices, with E(z) being the sum of the lowest adiabatic
potential, E(z), and its gauge potential, G1(z). In the FORL
which we have considered, the BOA does not apply, but the
weak-coupling model does. We cannot understand the well-
to-well flopping in this FORL as a tunnelling phenomenon, as
we cannot map the system onto an approximately valid model
that basically describes a tunnelling situation. Nevertheless,
the well-to-well flopping in the FORL can still be considered
as a Rabi oscillation between weakly coupled quantum states
with orthogonal spin wavefunctions.
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