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Abstract. We calculate the effects of weak disorder on a strongly colrelated electron system, 
namely a version of the infinite-U Hubbard model with general charge for which a I/N 
expvlsion can be carried out (N being the orbital degenemcy). The partition function and 
quasipanicle &ay rate are calculated to next Leading order in the I / N  expansion by summing 
all ladder type diffusive mmtions in the impurity potential. We find thal away f" the critical 
mewl-insulator filling these quantities exhibit the power law behaviour expected on the basis 
of gene& weak-interacting theories. Very close to the metal-insulator filling, however, the 
situation changes aod new, sublinear power law components are obtained. These new power 
laws are a result of the diffusion pole crossing over to a q4 behaviour, which is in hlm a 
consequence of the 'holm' l i e  propagation of the charge Ructuarions in the pure system. 

1. Introduction 

The extraordinary sensitivity of strongly correlated electron systems to small amounts of 
impurity provides a challenging new aspect to the theory of interacting disordered systems. 
Experimentally, heavy-fermion systems show huge changes in the residual resistivity 
virtually regardless of whether the dilution is taking place on the normal host or the rare 
earth sites [l]. In high-temperature superconductors a small amount of impurity can drive 
a transition directly from the superconducting to the insulating phase 121. 

From the theoretical point of view, most theoretical effort has started from the disordered 
weakly localized system, and incorporated the effects of electron interactions in the diffusive 
regime [3]. More recently scaling approaches have been applied to the problem [4], but from 
a microscopic point of view, the aim has basically been to incorporate interaction effects 
into the very thorough field theoretical treatment that describes the Anderson transition [5]. 

Most recently this idea has been applied by Z iany i  and Abrahams 161 to the t-J 
model. These authors used the now prevalent auxiliary boson representation to enforce 
the restricted hopping condition. They combined this with a mean field UnSUk for these 
boson amplitudes that reflected the strong underlying site disorder, by coupling these real 
boson amplitudes to the local disorder via the charge susceptibility. The resulting model 
then consists of a random hopping term together with an attractive interaction between the 
fermions (from the antiferromagnetic coupling term). This interaction was mted via the 
renormalization group techniques of Finkelshtein [7]. 

An alternative approach is to begin directly from the strongly correlated electron system 
and assess the effects of increasing the disorder. For heavy-fermion systems a number of 
studies have taken this approach [8-10], starting with the large-N limit of the infiniteU 
Anderson lattice (N being the orbital degeneracy), in which the infinite4 restriction is 
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handled by introducing Bose fields [I 1,121 that modulate the hybridization and enforce the 
restriction of the occupation to values between zero and unity. In the large-N limit these 
Bose fields are replaced by their saddle point values (to be determined self-consistently) 
with the result that the effective Hamiltonian at large degeneracy consists of hybridizing 
states of conduction and local electrons, the latter being located a small energy above the 
Fermi surface. The real saddle point values of the Bose fields are responsible for this 
renormalization. 

In these approaches [&IO] the disorder is then introduced by adding site disorder terms 
diagonal either in the f states or in the Wannier representation of the conduction states, or 
by adding disorder to the hybridization. Using either the self-consistent Born approximation 
[SI or the coherent potential approximation (CPA) [9] the effects of disorder are absorbed 
into self-energy corrections to the conduction and local propagators. The heavy-fermion 
states near the Fermi level are broadened by the disorder, through the self-energy acquiring 
a finite imaginary part, while the saddle point values of the Bose fields are still found to be 
real, as in the pure case. 

Of these approaches the first, by Tesanovich [XI, studied the combined effects of disorder 
among both the local and band states by calculating the Born approximation to the electrons' 
self-energy matrix, ensuring that the same self-energy appeared in the intermediate electronic 
state. The disorder average was then performed over the mean field equations for the Bose 
fields, by replacing the intermediate electronic Green functions by their disorder averaged 
Born approximation expressions. While the occupation constraint field was found to be 
largely unaffected by the disorder, the hybridization field was found to decrease slowly at 
first with disorder, and then sharply disappear as a critical value of the disorder width (of 
the order of the Kondo temperature) was approached. This disappearance was interpreted 
as the destruction of coherence, and the transition to a dense Kondo state. 

This work was followed by a cPA calculation by Xu and Li [9] who showed that diluting 
the f states did not lead to a vanishing of the hybridization field-in fact they found this 
field to be hardly affected as a function of disorder. The self-energy corrections obtained 
using the CPA did however lead to a disappearance of the hybridized band structure and 
its replacement, in the spectral function, by a form characteristic of the dilute Kondo slate. 
They also subsequently calculated the resistivity p and found it to follow a po + AT2 
law with the coefficient A changing from negative to positive as the f-state concentration 
increased. Freytag and Keller [9] used the same CPA method to calculate the dynamical 
conductivity. They again found mean field parameters unchanged from their values in the 
pure system. The dynamic conductivity was shown to have two peaks, the first being a 
Drude peak, followed by a second peak due to interband transitions. 

However, it is well known from long experience with the disordered electron problem 
that the subtle effects associated with the metal-insulator transition require going beyond 
the CPA and including the effects of quantum interference or weak-localization corrections. 
One of the present authors [I31 carried out such a calculation for the case of potential 
scattering acting on the conduction electrons in the Anderson lattice, summing up the 
maximally crossed or Langer-Neal corrections to the electrical conductivity. It was found 
that frequency dependent effects such as the AC conductivity suffered a large renormalization 
of the frequency scale consistent with the heavy-fermion mass enhancement while the static 
conductivity was described by the standard weak-localization expression 131, i.e. without 
any of the unique effects associated with the heavy-fermion state. 

All of these auxiliary boson approaches [&I31 are at the mean field level-our intention 
here is to focus on one-loop, Gaussian 1 f N corrections. It is known that for the pure 
Anderson lattice model [I21 these corrections take a form akin to the random phase 
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approximation (RPA) used standardly in weak-interacting-electron theories. It is also well 
known that even weak disorder has a profound effect on such RPA corrections in weak- 
interaction theories 131. The RPA corrections to bulk properties are affected, acquiring 
novel power law temperature dependent corrections to quantities such as the specific heat. 
These corrections arise from ladder type dressings of the RPA bubbles, which enter the 
free energy. To obtain such corrections it is necessary to include only the lowest-order 
Born approximation correction to the electron self-energy-the combination of this together 
with the ladder terms in the impurity potential lead to diffusive behaviour in the density 
correlation function. 

The difficulty with the Anderson lattice lies in the two-hand nature of the problem. It is 
difficult to include all the possible sources of disorder-n the f states, the conduction states 
or the hybridization. As a precursor to treating the Anderson model it is helpful to consider 
a simpler one-band model that can be formulated along the same lines and whose mean 
field theory embodies similar physical principles as in the Anderson lattice. Such a model 
is the infinite-U Hubbard model with finite electron charge [14-161. If the charge is scaled 
by the degeneracy then this model, at the mean field level, experiences a mass enhancement 
akin to the Gutzwiller approximation. This results from the occupation restriction imposed 
by the U = 00 constraint. The mass enhancement is proportional to the fraction of vacant 
sites. In the pure case the 1/N [15] and 1/N2 [17] corrections to the quasiparticle scattering 
amplitudes have been investigated. 

For disordered one-band models such as the Hubbard model the approach described 
above has not been carried out. In the present paper we consider the N-fold degenerate 
infinite-U Hubbard model in the presence of weak site disorder, using the 1/N expansion 
to treat the strong correlations, and including the effects of weak disorder by (i) treating the 
self-energy to the Born approximation in the impurity potential and (ii) summing up those 
ladder graphs in the impurity potential that usually yield diffusive behaviour in the density 
correlation function. We expect on the one hand to make contact with conventional ‘weakly 
interacting’ theories [3] if the electron filling in the U = 00 Hubbard model is not too close 
to 1/N, the critical value at which the insulating phase takes over. We hope in this way to 
understand the effects of Gutzwiller projection on conventional disorder ideas. 

Another reason underlying our investigation of this problem concerns the behaviour 
close to 1/N filling. In the pure system the present authors [16] found that the nature 
of the collective mode in the density fluctuation channel changes as this filling fraction 
is approached. Instead of the acoustic ‘zero-sound’ behaviour the collective mode has a 
dispersion functionally identical to that of the.bare electron motion in the model-if the 
electron bands are parabolic then so is the collective mode; if the electron band has rather a 
tight-binding form then this is also reflected in the collective mode. It is important to notice 
that the bare electron mass, not the Gutzwiller renormalized mass, enters this dispersion 
relation-the electrons can move as a whole in this way avoiding the infiniteU restriction. 
Independently Wang et ai [ 181 found such a collective mode in the t-.I model, which they 
ascribed to ‘holon’ motion. 

The present authors investigated the contribution of this mode at second order in 1/N 
to the quasiparticle interaction vertex 1171 and found a rather substantial contribution, 
considerably larger than the leading order 1 / N  results [U]. In this paper we shall investigate 
the nature of this mode when substantial disorder is present-we shall see that the usual 
diffusion pole behaviour is completely overwhelmed in the region close to 1/N filling 
by a q4 term. We shall see that this leads to a completely different behaviour in the 
low-temperature specific heat and quasiparticle decay rate to the conventional disordered 
interacting result. 
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The plan of the paper is as foUows: in the next section we present the formulation of 
the U = 03 Hubbard model in the presence of disorder, deriving the mean field equations 
and the Bose fluctuation propagators. In the following sections we discuss the results for 
the density correlation function, the specific heat corrections and the on-shell quasiparticle 
decay rate. 

2. Formulation 

Our staring point is the infinite4 Hubbard model for which the Lagrangian can be written 

= f$,(t)([a/ar -~+iAj(T)lSij +t i jpipjJf im(r)+c ih,($+C - Q) 

(1) 

where f i m  denotes a fermion operator at site i and in orbital m, p denotes the chemical 
potential, hi denotes a Lagrange multiplier, originally introduced to enforce the infinite-U 
constraint, and pi denotes the radial p a t  of the Bose field that labels the empty site at site 
i. The quantity Q is usually allowed to scale with the degeneracy N = E,, and is taken 
to be unity at the end of the calculation. The standard gauge transformation [ 191 has been 
performed so that the Lagrange multiplier is now time dependent. To the above Lagrangian 
we add the following terms in the case of site disorder: 

i.1.m j m 

where Ra denotes the set of impurity site positions each of which exert a potential u(ri - R.) 
on electron at site rj.  The partition function is written in terms of the above as 

(3) ) Z = Df+Df Dp D). exp ( - l ’ d r  [ U T )  + Limp(r)l 1 
where the sitedisorder term is absorbed into theconstraint term iAj(r) = i A j ( ~ ) + x ~ ,  u(rj- 
Rd. 

Integrating (3) over the fermion fields yields the effective action 

Following the standard 1/N expansion method we separate the effective action into a 
mean field component with mean field parameters given, after minimizing the free energy, 
by 

where the trace is over lattice sites (and the inverse imaginary time derivative can be 
transformed into a frequency sum) and a Gaussian fluctuation term 

0) 
1 

L ~ a u s s  = - c [ L b i h m S k  + %n(W)Pi(W)s$ + PmPi(~)s ip ,Pl  
zg 0 



The Gij(o,) denote the mean field propagators, whose traces enter into (5) and (6). 
So far, the impurity positions are still explicitly specified, and the configurational averages 
have yet to be carried out. Formally the next step is to perform the disorder average, which 
we carry out by performing the Gaussian integral over the Bose fields and expanding the 
resulting free energy in a power series in the RPA bubbles: 

where the nij refer to the RPA components of the Bose propagators in (11). Following the 
standard approach to calculating the free energy in an interacting disordered system [3] we 
replace the disorder average of n;, by (nij)n in order to extract the dominant low-energy 
diffusive corrections to the RPA bubbles. These are obtained in the standard manner by 
summing the ladder diagrams in the impurity potential (see figure 1). The free energy then 
becomes 

F = (1/28)Trln(no + (nij)) 

and the Bose propagators have translational invariance restored and take the form 

where G" denotes the exact quasiparticle Green function appearing at the leading order in 
1/N, averaged over the disorder. The I,, are given by 

L ( q 3  @a, mq) = c(tk + t!+r;,)"G(ki, d G ( k  +ki ,w.  +w,)  (16) 
k 
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t t 3lE I 
Figure 1. Ladder diagrams in the impurity potential 
that contribute to the RPA components of the Bose 
propagaron. The full curyes denote the mean field 
electron Green functions with self-energies given by 
the Born approximation in the impurity potential. The 
shaded ~JW denote the results of summing ladder 
d i m s  to infinite order in the impurity potential, and 
correspond to the quantiiy S(q, or, 0,) defined in  (17). 
The dots where two mean field Green functions meet 
denote a factor of unity, while d o s  joined by a broken 
line denote a hopping d i x  element. In this way dl the 
RPA components of the Bose propagators (in descending 
order) S,. S,i and SAL are obtained. A similar diagram 

into the decay rate calculation, 
M he drawn for the q U d @  Lijk!(E,O) thaf eDkrS 

and the quantity S(q,  w,. w9) is defined by 

The impurity effects are taken into account both in the ladder sum entering the above 

(18) 

where, as in the conventional weak-disorder approaches, we keep only the lowest-order 
Born approximation to the impurity self-energy correction to the Green functions that enter 
into the ladder sum. The density of states at the Fermi level is given by N"(0)  and the 
quasiparticle lifetime is given by 

expression and in the self-energy corrections to the electron Green function: 

~ ( k ,  on)-] = iw, - p2tk(i/2r)sgnw, 

1/2s = niu(o)2N*(o) (19) 

where u(0) denotes the zero-wavevector component of the impurity potential. At this stage 
it is convenient to address the effects of disorder on the mean field quantities p and ih. 
The self-energy broadening of the spectral function given by (19) allows the mean field 
equations to be transformed to a simple form in which the frequency sums can be c d e d  
out with the result that 

The only difference between these mean field equations and those in the pure case is that 
the Fermi function is broadened by the impurity scattering. The mean field values of the 
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Bose fields are still real. Since the saddle point values of the Bose fields require integrations 
over wavevector k it is clear that these saddle point values suffer corrections of the order of 
(EFT)- ' .  Such corrections are analytic in the disorder. In the weak-disorder limit we may 
neglect these and focus only on the 1 / N  fluctuation corrections, which are far more serious. 
We note that in the CPA treatments of the disordered Anderson lattice the mean field Bose 
parameters are also only weakly affected by the disorder [9]. 

Returning to the Bose propagators we find that the ladder sum term S ( q ,  U,. oq) may 
be evaluated for small wq and q to give 

(22) 

Here D denotes the diffusion constant ugrjd where d is the dimensionality and vF the 
renormalized Fermi velocity. The low-wavevector and low-energy limits of the In are also 
required: 

In(O, 0,O) = 2 i r ~ N * ( 0 ) ( 2 t o ) " .  (23) 

After some manipulation we obtain the following expressions for the Bose propagators 

S ( q , ~ , , w ~ )  = [No,)N-o, - 4 + W-oJ)e(o, + ~9)1/(1+ + Dq'r). 

at low q .  U: 

S"(q, 4 = P [ I  + 2foF(q.%)l (25) 

(26) Ai S (9. ~ q )  = F ( q ,  U S )  - N N * ( O ) D S * / ( ~ I @ ~ I  + 2Dqz) 

which defines F ( q ,  wq). Here to denotes the bare kinetic energy at the Fermi surface and 
we have used the mean field results to simplify the first two terms in S P P  in the following 
manner: we have expanded tk+q in q (assuming a parabolic dispersion) in the second term 
in (13) and made use of the first mean field equation ((5) or (20)) to cancel part of this 
tk* term with the first term on the RHS of (13). This leaves a cross term between k and q,  
which, after integrating over angle, vanishes by symmetry, and a q2 term. This q2 term (the 
first term in (24)) will later be rewritten using the second mean field equation (averaged 
over disorder) in terms of the band filling. 

3. Charge susceptibility and specific heat 

Turning to the physical consequences of the above we note that the addition of the source 
field term 

allows us to derive in standard fashion [I61 the charge susceptibility 

x ( q , 4  = p2siA(q,o)/detS(q,w) (28) 

which has a pole at the frequency w9 defined as the zero of 

detS(q,wq) = S A p ( q , ~ q ) z - S A h ( q , ~ 9 ) S P P ( q , ~ q ) .  (2% 



8884 W-N Huang and J U’ Rasul 

On using the small-o, small-q expansion for the boson propagator given in equations 
(24k(26), we obtain 

with F(wq. q )  given by (26). 
We note at this point the formal similarity between this result and standard RPA type 

expressions, bearing in mind that F(w,, q )  represents a particle-hole bubble dressed by 
ladder graphs in the impurity potential. If the impurity potential were absent then F(w,. q )  
would be equal to the Gutzwiller enhanced Lindhard function and (30) would be identical 
to the charge susceptibility of the U = 00 model obtained before 1161. For moderate fillings 
the charge susceptibility of the pure system shows a zero-sound pole with a sound velocity 
dependent on the zero-q limit of the effective interaction (the term in round brackets in the 
denominator of (30)). 

However, as is obvious from (30) this effective interaction also contains a q2 term 
with a coefficient which, on using the mean field equation (6) can be written aqz where 
a = i ( Q / N ) 2 ( m * / m ) 2  and Q is the total charge per site defined earlier. The important 
feature of this q 2  term is its strong dependence on the mass enhancement, which itself 
diverges as the metal-insulator filling is approached. This results, for fillings close to the 
critical value, in the zero-sound mode crossing over to a q2 value (for a parabolic band) 
at arbitrarily small q values. Wang er al [I81 obtained such a collective mode in the f - J  
model, which they interpreted as ‘holon’ motion-the electrons prefer to move as a whole, 
thus avoiding the infinite4 constraint. The present authors showed that for general electron 
dispersions, the collective mode had the same dispersion as the electron band. 

Returning to the disordered system, we examine the result of making these substitutions 
in the charge susceptibility, which then takes the form 

where Ao = 1 - 2toNN*(&~). 
This expression shows, after analytic continuation of wq to the complex plane, a pole 

off the real axis which, at sufficiently low q .  behaves like a diffusion pole with a modified 
diffusion constant AoD. This is in agreement with weakly interacting theories (with short- 
range interactions) where the diffusion constant is modified by an interaction parameter. 
However, as in the case of the pure system the importance of the wavevector dependent 
part of the interaction (the q2 term) grows as the metal-insulator filling is approached. 
Because of the fact that a is proportional to the square of the mass enhancement, we 
expect the q4 term in the denominator of (31) to dominate the q2 term over an increasing 
wavevector region as the metal-insulator filling is approached. Hence for fillings arbitrarily 
close to the critical value the pole in the charge susceptibility will follow a Dq4/k:  law. 

A question naturally arises at this point as to the magnitude of this 9‘ contribution 
relative to the standard q4 corrections to the diffusion pole that would normally arise in a 
non-interacting system, i.e. that we would obtain when we expand the ladder series result 
for the non-interacting charge susceptibility to next order in 4’. This is easily explored by 
expanding the denominator in (17), after which we obtain the dominant contribution to be 
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which, after convedng the wavevector integral to one over the energy, setting p = EF in the 
numerator, and rescaling the energy by I/T, is easily shown to he of the order of ( u ~ s ~ ) ~ .  
(where uF denotes the Fermi velocity). This results in corrections to the denominator of 
F(h, ,q)  of the order of D ( q 4 / k g ) ( & ~ ~ ) 2  so that the condition for this to be smaller than 
the q4 correction arising from the wavevector dependence of the interaction (which is of the 
order of Dq4/kg(m*/m)2)  is that m a / m  >> E F T .  While we naturally require EFT to be large 
for ow weak-disorder approach to be valid, we also have the filling (and hence malm)  as 
an adjustable parameter, so that this condition can be achieved. 

Thus for fillings arbitrarily close to the metal-insulator filling the q4 term arising 
from the wavevector dependence of the quasiparticle interaction will dominate over the 
usual diffusive q4 terms and also over the q2 terms for a region. of q such that q > 
kFm/m'. Asymptotically close to the metal-insulator filling the diffusion propagaior will 
be proportional to Dq2/io - D(m*/m)'(q4/k:).  

Particularly interesting consequences of the present theory concern the low-temperature 
specific heat, which in the weakly interacting disorder theories is expected to show novel 
temperature dependences, depending on the dimensionality [3]. In contrast non-interacting 
systems show localization effects only in their transport properties. 

The free energy at Gaussian 1 / N  order can then be written 

0 

x [ tad ( A Dqz + aDq4/kg  ) -tan-' ($)I (33) 

where we have replaced the sum by an integral over the Bose function n(o) and again 
used the small-o, small-q form of the Bose propagators. This form is not adequate for 
anything other than the leading non-analytic corrections to the Fermi liquid results-in 
a pure system such an approach yields the T 3  In T behaviour in the specific heat. It is 
particularly convenient to take one temperature derivative of the free energy so that 

where f ( q ,  T )  = (AD$ + a D q 4 / k E ) / T .  We next perform the q integral, ignoring the 
terms linear in temperature that require a momentum cut-off and focus instead on the non- 
analytic parts for which the remaining integrals are easily evaluated. 

For the case of moderate mass enhancements we may neglect the q4 terms and obtain 
for the total specific heat 

(35) C y  = p,(l - A-3r-)(T/0)3'2 

CV = p d l  - I / A ) ( T / D )  In(T/D) 

in three dimensions and 

(36) 
in two dimensions. Here the constants are given by pz = (1/4n2)a(2) = &, p3 = 
( l / k 3 ) a ( $ ) b ( 0 ,  4) with a(m) and b(m, n) defined by 

(37) 
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We may compare these terms with the results obtained in weakly interacting disorder theories 
[3]-the result of Altshuler and Aronov (equation (355) of their review) is that for three 
dimensions the specific heat correction may be written (using our definitions (37) and (38)) 

W-N Huang and J W Rasul 

Cv = p3(l - 3[(1 -I- F/2)3/2 - 11}(T/D)3’2 (39) 

while in two dimensions the Altshuler-Aronov result can be written 

CV =pz( l  -3F/2)T/DIn(Tr) (40) 

where F denotes the static q = 0 limit of the interaction between spin-one electron-hole 
pairs in a general interacting electron system. The extra constants in (39) and (40) (the non- 
F terms) arise from the effective interactions in the spin-zero particle-hole channel. The 
reason that the spin-zero (density fluctuation) terms do not explicitly depend on a Landau 
parameter is that in  the spin-zero channel Altshuler and Aronov [3] included the long-range 
Coulomb interaction. Since this diverges at long wavelengths it swamps the remaining 
short-range Landau parameters that are finite as q -+ 0. After including Debye screening 
effects the resulting interaction in the spin-zero channel is universal, i.e. independent of 
Landau parameters-hence the constants in (39) and (40). 

Consequently in such general weakly interacting theories only the spin-one terms (for 
which no intermediate Coulomb propagator can be included) depend on the static Landau 
parameters. In addition they obtain a factor of three from the spin multiplicity. In our 
model, being a Hubbard model with the corresponding assumption of perfect screening 
and the absence of long-range Coulomb interaction, (39) and (40) constitute the large-N 
counterpart of the spin-zero results of Altshuler and Aronov [3] (with the omission of the 
long-range term). In view of the absence of the long-range term the results do depend on 
the microscopic details of the model, which in the case of V = 00 is the electronic filling 
factor n. 

We note the absence of the spin-one terms in our result. This is a general feature of 
large-N theories at the one-loop level. Only density correlations are included at the 1/N 
level. This arises from the fact that the bosons in (1) couple to the total fermion density, not 
the spin density. A similar feature emerges at the I/N level for the Anderson lattice-the 
T3 InT component of the specific heat only includes density fluctuations [12]. 

However, as far as the overall power law dependences are concerned we find complete 
agreement between our results away from the metal-insulator transition and the earlier weak- 
interaction theories [3]. The situation changes as we approach the l /N fractional filling 
limit. This time the q2 terms in the denominator of the first term in (33) are swamped by 
the q4 terms with the result that the specific heat now acquires a contribution 

Thus the low-temperature behaviour is now controlled by the superdiffusive mode in the 
density correlation function with the result that the temperature scaling of the wavevector 
in (41) is now half of the power that appears in the normal diffusive case. Hence we obtain 
new temperature dependences in the specific heat as a result of this term. Evaluating the 
resulting integrals we obtain 
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in three dimensions where 43 = (1/21?)a($)b(6, 8) and 

CV = ~ ~ ( T / C Z D ) ‘ ”  + pZTln(T/D) (43) 

in two dimensions where q2 = (1/2n2)a($)b(5, 8). Thus at sufficiently low temperatures 
the specific heat develops a sublinear fractional power law dependence, which may even 
dominate over the normal linear specific heat term, however weak the disorder. This 
tendency towards destroying the metallic character of the system is specific to the strong- 
interaction case-it runs counter to the weak-interaction folklore. Moreover it implies that 
arbitrarily weak disorder can substantially modify the metallic ground state even in three 
dimensions as long as the system is sufficiently near the Mott transition. We note that the 
result near 1/N filling in two dimensions has the same functional dependence on temperature 
as weakly interacting theories give in one dimension, again emphasizing the destabilizing 
of the Fermi liquid that the combination of strong interaction and weak disorder can lead to. 

As regards the crossover between these two kinds of power law, we can estimate this 
temperature by studying the first term in (34). The most rapid variation in the q integral 
occurs where the argument of the inverse tangent (and hence f (q,  T)) becomes of the order 
of unity, If this happens in the crossover region then we require that the q2 and q4 terms 
in f (q,  T) are equal, and that the temperature is also of this order. From this it follows 
that the crossover temperature is of the order of &&Fr)A&/m*)2, which may be made 
arbitrarily small compared with the effective bandwidth E.R if the electron filling is taken 
to be close to its critical metal-insulator value. Below this temperature (39) and (40) take 
over from (42) and (43). 

To conclude this section, we have studied the effects of weak disorder on thermodynamic 
properties of the U = 00 Hubbard model, using the 1/N expansion to treat the strong 
correlation effects, and summing ladder graphs in the impurity potential to obtain localization 
effects. For fillings away from the critical value, the usual diffusion pole behaviour is found 
in the density correlation function, with the infinite4 effects reflected in a Gutzwiller type 
mass enhancement. The 1/N contribution to the specific heat shows the same temperature 
dependence as found in previous weak-interaction approaches. However, as the filling 
approaches its critical value, the diffusion pole behaviour IS modified, the q2 term being 
replaced by a q4 contribution. The specifc heat at the 1/N level now shows novel sublinear 
temperature dependences (T314 and T i l 2  in three dimensions and two dimensions) over an 
increasing temperature region as the critical filling is approached. 

4. The quasiparticle scattering rate in the presence of disorder 

In the previous section we examined the effects of the combination of strong electron- 
electron interactions and weak disorder on the static bulk properties of a system. From an 
experimental point of view one would prefer to be able to probe directly aspects of the 
single-particle Green function that are known to be uniquely affected by the simultaneous 
presence of interaction and disorder. 

The aspect of the one-elecuon properties that has most in common with the specific heat 
is, not surprisingly, the self-energy. From conventional Fermi liquid theory in pure systems 
one knows that a T 3  In T term in the specific heat at low temperature is related to an c3 In& 
contribution to the real part of the self-energy. This can in turn, by a Kramers-Kronig 
relation, be linked to an term in the imaginary part of the self-energy. Such a feature 
is a well known aspect of interacting translationally invariant systems. Likewise, for our 
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disordered problem, there is a connection between the behaviour found in the imaginary part 
of the self-energy and the low-temperature specific heat. For weakly interacting disordered 
systems, it was shown by Altshuler and Aronov [201 that these components can be simply 
related, much along Landau theory lines, in terms of the same set of parameters. In our 
strongly interacting problem, we hope to find a similar link between the novel power laws 
seen close to half-filling in the specific heat and the energy dependence of the quasiparticle 
decay rate. We also have the added convenience that by going to lower electron fillings, we 
should be able to make contact with the weak-interaction theories, and relate the 'Landau' 
parameters. obtained by Altshuler and Aronov to the microscopic model parameters of our 
problem (the band filling). 

Having explained our motivation for studying the quasiparticle decay rate, we encounter 
an immediate problem as to its calculation. In a pure system the lowest-order contribution 
to the decay involves the scattering of a quasiparticle off dynamic bosonic charge density 
or spin density fluctuations of the system. This gives rise to the 8' and s3 components of 
the quasiparticle lifetime. In our problem, however, we are faced with the issue that we do 
not actually know how to write down a Green function for the quasiparticle, since we do 
not know the eigenstates of the disordered electron problem. Even though we do know the 
fom of the bosonic density fluctuation spectrum, namely the diffusion pole behaviour, we 
cannot simply convolute this against the lowest-order Green function 
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G(k,  o) = ]/(io - & a  - i/2r) (44) 

since in the limit E;? >> 1, this leads to a quasiparticle lifetime of the order of (&;c)-'. 
Essentially this boils down to the fact that within the context of a Green function such as 
(1) with such a large elastic scattering rate, concepts such as self-energy and decay rate are 
meaningless. This caused serious problems for many-body approaches to the problem. In 
fact the earliest correct results [21,22] were obtained directly from the Boltzmann equation. 
The way out of this was shown by Abraham et a1 [23], who pointed out that even for a 
weak static two-body interaction potential, one had to deal with the exact eigenstates %(r)  
and creation operators a,' of the disordered one-electron problem. The interaction term then 
becomes 

N =  dr dr' qi (r') 9; ( r )  u(r - r') qp ( r )  q, (r')a,+a,+a,a, (45) S S m Z , q  

with a self-energy given to leading order by 

To obtain a meaningful scattering rate we have to average this over the electron states 

Z ( E )  = C(A(E - Em)Zm) (47) 
m 

which requires that we calculate the quantity 

CV(E - B m ) q ; * ; q m * n )  
m.n 

which is itself related to the two-particle Green function of the disordered interacting electron 
system. Thus even the lowest-order Hartree-Fcck self-energy requires a knowledge of 
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the density-density correlation function. When we allow scattering of the full diffusive 
propagator, we shall then obtain a convolution between two density-density correlation 
functions. Since our I / N  method separates out the non-interacting, disordered quasiparticles 
appearing at the mean field level from the diffusive density correlations that appear at the 
I / N  level, we shall adopt the method of Abrahams et al [23]. 

We proceed therefore to investigate the effect of diffusive density fluctuations on the 
lifetime of the exact eigenstates of the disorder problem. Our approach is to inmduce the 
exact eigenstates of the disorder U = 00 mean field problem, and calculate the scattering 
rate of these quasiparticles from the boson density fluctuations (which have the diffusion 
pole behaviour at moderate fillings and a ‘super-diffusive’ q4 behaviour at fillings close to 
l / N ) .  We introduce a one-electron set of eigenstates (which we shall define later) by 

Then the partition function is given by 

Z = DaC Do Dp DA exp ( lp d r L ( r ) )  J 
where 

where i i i ( t )  = iA,(t)+& u(ri - R J ,  as before, incorporates the effect of the random site 
disorder into the on site Lagrange multiplier. We expand, in the standard 1 / N  manner, the 
femionic part of the Lagrangian in powers of the fluctuating Bose fields; this then becomes 

(52) A,p(iw,, i d  = BAzp(iw.) + X,p(a, b) 

where 
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are the fluctuating components to first and second order in the Bose fields. The eigenstates 
q,(i) are now defined as those states that diagonalize the Gutzwiller mass enhanced 
Hamiltonian that emerges, albeit in the presence of site disorder, at leading order in 1/N. 
W i n g  now to the actual Green function w e  note that it is usual to study the gauge invariant 
correlation function 

W-N H u n g  and 3 W R a d  

( b i ( s ) ~ ~ ( r ) f j m ( r i ) b , t ( s ) )  = Gij(r - 51) (58)  

which on Fourier transforming, and using the expansion (6) in terms of exact eigenstates of 
the disorder problem, becomes to leading I/N order 

showing the presence of a quasiparticle weight factor p i  = 1 - n as well as the exact (to 
leading 1/N order) single quasiparticle Green function. Corrections at 1/N order come 
from a number of different sources, and in order to be precise about what we mean by a 
scattering rate we have to examine these in turn. Consider the most general form expected 
for an interacting Green function near its quasiparticle pole 

G.(iw) = Z,(iw)/[iw - E ,  - &(iw)l+ G'"'(io) (60) 

where, as is evident from the present calculation, E, and the incoherent term Ginc are all 
of the order of 1/N, while 2, has, in addition, a leading order term pi .  We turn therefore 
to the boson fluctuation corrections to (58). and start by performing the expansion of the 
fermion propagator A-l(w,, wb) to leading order in 1,". Firstly expanding both the Bose 
fields in (58) to Gaussian order and carrying out the functional integral over the Bose fields 
yields a term 

where Spp denotes a boson propagator of the type examined earlier. We have, in keeping 
with the rest of this paper, averaged the Bose fluctuations separately from the fermion Green 
function. This contribution leads, from our previous discussion after equation (58). to a 1/N- 
order incoherent part to the spectrum. This is straightforward to see, since in fact it has 
precisely that form of a self-energy that we discussed in the introduction. Since it gives no 
information on the quasiparticle pole that might help understand the quasiparticle lifetime, 
we ignore it. Similarly, keeping one of the boson fluctuation factors in (58), together with 
the lowest-order term in the expansion of A-' (from (54)) leads to a contribution to Gij(io) 
equal to 

with Go as defined in (59). Again, comparing this with the 1/N expression of the Green 
function discussed earier we see that (60) has the form of a spatial convolution of Go 
with a self-energy correction akin to (61). This expression therefore can be regarded as 
renormalizing the quasiparticle weight Z(iw), and therefore does not affect the quasiparticle 
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lifetime. Thus we see that the only 1/N contributions to the quasiparticle are those given 
by replacing the boson operators in (56) by their mean field values, and expanding 

~ o 2 S D p D h A ~ ~ Y ~ ( i ) ' Y ~ ( j ) e x p  (- l m d r L ( r ) )  (63) 

to Gaussian order in the Bose fields, which leads to a correction to Gij(io) equal to 

p i  Y,(i)'YE( j)A;,L'o)(ioa)XCEB(ioa)Al~(o)(io,) (64) 
B 

where the 1/N correction to the self-energy is given by 

This term is a sum of a whole set of contributions, each of which is quadratic in Bose 
fluctuation operators, and quartic in the eigenstates of the leading-order Hamiltonian. The 
remaining disorder average is performed in an analogous manner to that in [23], by 
separating out the Bose fluctuations and replacing these by their disorder averages. This 
leaves a term quartic in the eigenstates in (65). together with the leading l/N-order Green 
function given in (59). This Green function has the same eigenstate label as two of the 
four eigenstate functions in (65) and we may simply take this combination to be the site 
dependent propagator. 

Y~(i)A~-'(io)W&) = Gij(io) (66) 

which represents the leading l/N-order propagator for a particular configuration of 
scattering impurities. Another point to be noted concerns the actual definition of the 
scattering rate. Since we are unable to calculate the exact large-N Green function for 
a particular configuration, we can only hope to give a meaning to the impurity averaged 
self-energy 

U 

The delta function combines with the two remaining wavefunctions in such a way as to be 
simply related to another site dependent large-N Green function 

and performing the impurity average then requires a knowledge of the quantity 

Lijkc(E, o c )  = (1/2k)([Gi(E) - G:(E)lGkj(wc)) 
which itself can be expressed in terms of a set of diffusive ladder diagrams in the impurity 
potential. The full set of contributions to &(ioa) is then given by 

(69) 

x exp (- L'drL(r))/Z. 
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The impurity average in the exponential has been performed separately from the impurity 
average over the four eigenstates. The resulting translational invariance allows us to cany 
out the Gaussian integrals over the Bose fields, which requires knowledge of the Bose 
propagators calculated in the previous section. To calculate the average four-eigenstate 
propagator Lijkl, we also adopt the approach of summing up the diffusive low-energy and 
low-wavevector contributions. We obtain 
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Lijki(E, Of) = disczZijki(2, Wc)  (71) 

where 

and 

+ exp[i(i - k)k, + i(k - j ) k k  + i(k - [ ) k , l ~ ( k , ,  k , , k t ,  z,  me) (73) 
k d &  

where, in addition, 

P&,kc ,kk ,Z ,wd  = G(k. ,z )G(~ ,Z)nU2S(k , -kk ,Z ,w, )C(kr  -k8+kc,wc)G(kk3wc) 

(74) 

which represents the result of summing up the ladder series in the impurity potential. The 
crucial aspect of this calculation lies in this second appearance of a density correlation 
function, in addition to the density correlation mediated by the Bose fields. This arises 
from the fact that L j k l  is simply related, by analytic continuation in frequency, to the 
ensemble averaged product of tw'o large-N Green functions Gilckj. Fourier transforming 
the ensemble averaged expression for CE(iw) yields 

CE(iw.) = - x k N ' ( O ) r d i s c S ( q ,  z ,  o, - oc) 
1 

2l9 q,wq 

which, using the low-q, low-w form of the Bose propagators, becomes 



Weak-disorder effects in the intife-U Hubbard model 8893 

where C = nf ,  the electron filling, and to denotes the bare kinetic energy evaluated at the 
Fermi surface. Analytically continuing the low-wavevector, low-frequency expansion (21) 
for S leads, after some simplification, to the following expression for the self-energy: 

where 

A(q)  = 1 +2NN*(O)lfo(q)l. (80) 

Converting the sum over wq into an integral in the usual manner yields, after the analytic 
continuation of io., onto just above the real axis, 

1 coth(x/2T)Dq2(o + x + iDq2) 
X 

x2 + (A(q)Dq2)2 - [(x + E)2 + (Dq2)2](w + n + ifJA(q)q2) 

On taking the imaginary part of this expression we obtain the following expression for the 
scattering rate: 

which, at zero temperature, after carrying out the x integral, becomes, for on shell states, 
such that E = w :  

which we proceed to examine in the limits of moderate filling and close to 1,” filling. 

4.1. Moderate piling 

The low-energy behaviour is obtained by replacing to and A by their low-wavevector limits, 
by carrying out the trivial angular q integration and by rescaling the radial q variable by 
wl/* (or w112A, whichever is appropriate), leading to 
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where S, is the angular integration constant (Zrr in ZD, 4r in 3D). Comparing with the 
results of the non-disordered problem we can pick out a factor of the spin symmetric 
Landau parameter A; = 2NN*(0)ltol/[l + ZNN'(O)ltol] that naturally arises in a study at 
the charge susceptibility of the U = 03 Hubbard model in the large-N limit. The q integral 
is simply evaluated with the result that 
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Im E(@ + i6) = adD-d/2[A-d/2 - I ]OJ~/~A~/(Z - Ai) (85)  

where ad = ( 1 / 4 ~ N ) S d ( r r / d ) ( ~ ) d - 2 / ( 2 i l ) d  for d = 2 or 3. Again, this power law 
behaviour can be compared with the very general 'Fermi liquid' results of Altshuler and 
Aronov [ZO] once we make the identification of the scattering rate 

l/Zr(w) = Im'C(w+iS) = (ad/NDd/z)Awd/2 (86) 

where al = .&/8n, a1 = 1/16r, a3 = &/16nz and h =4F[[l - ( F / 2 ) d / z ]  - l}/[d(4 - 
F)], in agreement with the functional form of the j = 1 result of Altshuler and Aronov 1201 
if we take F = 2A;. Note that this agreement between the functional dependences of the 
two theories is to some extent superficial, since the present theory is concerned with density 
fluctuations rather than the j = 1 spin fluctuations for which the Altshuler and Aronov 
results [ZO] take the form of h given above. This explains a missing factor of three, which 
arises from the spin multiplicity of the j = 1 spin fluctuations 1201. The density fluctuation 
contributions in [ZO] do not take such a functional form because the long-range Coulomb 
interaction swamps the short-range Fermi liquid parameters in this channel. 

Nevertheless, the functional forms of the two types of theory are similar, with the present 
approach being able to derive the coefficients of the power laws directly in terms of the 
microscopic model parameters. The power laws in the two types of theory are the same 
away from the critical metal-insulator filling. 

4.2. Near I /N filling 

In this case the q dependence of to(q), A(q)  dominates over the residual (q = 0) constant 
values so that 

1 Im C (o + is) = -- 

and we have defined D' = [2cNNN*(O)/8mp~]D = orD/ki, where 01 = (3n2/4rr3)(m*/m)'. 
Performing the same re-scaling operations as in the moderate-filling case, we obtain 

h x(UJ t i6) = (&/4ZN)[f(d, 8)(a1/D')~/~ - f ( d ,  ~)(oJ /D)~/ ' ]  (88) 

where 

f(d. n)  = l m d q  qd-' I n ( l +  I / q " ) / ( 2 ~ ) ~ .  

Thus, in addition to the conventional O J ' / ~  behaviour we obtain a sharper odl4 correction. 
Ultimately, for finite mass enhancements, the odJ4 term will revert back to the od/l 
component in (SS), at energies of the order of the crossover scale &&Ft)2Ai(m/m')2 
discussed in the last section. 
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To conclude this section, we have extracted the on shell quasiparticle scattering rate 
for the disordered U = 00 Hubbard model with the aid of the 1/N expansion. While 
for small to moderate fillings we obtain the od12 law characteristic of weak-interaction 
theories, we obtain an additional od14 component as the filling approaches its critical value, 
and the interactions become more important. While the extraction of such power law 
behaviour in experimental situations is likely to be difficult, these power laws do indicate 
that a qualitatively different description needs to be applied in order to understand the 
low-temperature behaviour of strongly interacting disordered systems. This result supports 
the contention established in the previous section that the combination of disorder and 
interaction tends to enhance the instabilities of the metal-insulator transition. 

5. Summary and conclusious 

In conclusion, we have, in this paper, attacked the outstanding problem concerning the 
interplay between electron correlation and disorder from a standpoint that (i) treats the 
strong correlations as foremost, and (ii) studies the effects of weak disorder. The strong- 
correlation effects are studied in the context of a version of the U = 00 Hubbard model 
that allows a 1/N expansion to be carried out, using the now standard auxiliary boson 
technique, while the disorder effects are examined by summing up diffusive corrections in 
the random potential. These enter not only at the mean field level, where they slightly 
modify the large-N mean field equations, but more importantly at the Gaussian correction 
level l / N  where the diffusive ladder diagram corrections dress the RPA like graphs that 
determine the density correlation function, the specific heat corrections, and the on shell 
quasiparticle decay rate. 

At fillings away from the critical metal-insulator value n = l / N  the results are in 
qualitative agreement with earlier weak-interaction approaches. The density correlation 
function exhibits a diffusion pole, albeit with a modified diffusion constant, and this is 
reflected in power law corrections to the specific heat and decay rate of the disordered 
quasiparticle states that emerge at the mean field level. The Landau like parameters that 
enter into the earlier approaches are however, in our treatment, uniquely determined in 
terms of the microscopic model parameters, namely, for the model under study, the electron 

However, as the critical metal-insulator filling is approached the behaviour of the above 
quantities changes-as a result of the novel nature of the Gaussian fluctuations in the pure 
problem, where radial fluctuations in the Bose fields are associated with ‘holon’ motion [I& 
181, the formerly momentum independent Landau parameter that determines the physics 
away from the critical filling acquires a strong momentum dependence. This leads to a 
strong modification of the diffusion pole, and hence to sublinear power law dependences 
of the specific heat on temperature, and the on shell scattering rate on energy. While 
these corrections may be difficult to isolate in practice their existence from a theoretical 
viewpoint indicates that the strongly interacting electron problem is highly sensitive even 
to weak disorder. As the physical origin of these effects is not particularly clear, it would 
be of interest to try to understand how diffusion is affected by ‘holon’ motion from a more 
macroscopic viewpoint. 

It would be of interest to extend the present calculation to include antiferromagnetic 
coupling (the t-J model) or to the Anderson lattice. For both of these problems the present 
formalism is straightforwardly extended, either to include more fields, as in the I-J model, 
or to more bands, as in the Anderson lattice. Work on these aspects is in progress, 

filling. 
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