J. Phys.: Condens. Matt&0 (1998) 7587—7595. Printed in the UK PIl: S0953-8984(98)94107-8

Localized anisotropic superconductors
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Abstract. We address the question of whether an anisotropic gap,of & symmetry is
compatible with localized states in the normal phase. The issue is important forThigh-
superconductors for which a superconductor-to-insulator transition is observed, together with
a number of experiments that support d-wave pairing. We prove that d-wave superconductivity
is compatible with a localized normal state. When the coherence length is of the order of the
lattice constant, the effects of localization are important. We find a re-entrant behaviour of
superconductivity in the strongly disordered phase.

There is a growing body of experimental evidence for higlsuperconductors that indicates

that the pairing state is of.d ,» symmetry [1]. For superconductors with an anisotropic
order parameter, both magnetic and non-magnetic impurities are pair breaking. For d-wave
symmetry, the effect of non-magnetic impurities is equivalent to that of magnetic impurities
in s-wave superconductors [2]. Perturbation theory for the impurity scattering introduces a
mean free patld for the extended states, and the standard treatment indicates that anisotropic
superconductivity is destroyed whég/¢ = 1/ [3], with & the coherence length. On the
other hand, the charge dynamics for oxide superconductors is basically two dimensional, and
it is known from the scaling theory of localization that in two dimensions all one-particle
states are localized [4]. This conclusion is unchanged by the presence of electron—electron
interaction [4, 5]. In fact, the experimental evidence from resistivity measurements for low
levels of doping is consistent with a divergent resistivityZas> 0 that is cut off by the
superconducting transition & = 7, [6]. The resistivity shows an upturn at a characteristic
temperaturelpy, that is apparent whef, < Tnn. Qualitatively, T, corresponds to the
temperature scale for which the inelastic scattering length is comparable to the localization
length. Conversely, if thelasticmean free path is much bigger than the coherence length,
the localization effects are not important, and the variatior.ofwith disorder will be

given by the usual pair-breaking expressions. For the regime Witk T, it is clear

that superconductivity becomes established at a temperature low enough for the effects of
localization to dominate the normal-state transport properties.

The purpose of the present work is to present a treatment of anisotropic
superconductivity that incorporates the fact that the states from which the superconducting
state is built up are localized, and reconcile two seemingly conflicting properties: the
observed insulator—-superconductor transition, and anisotropic pairing. We show that, if
&/a > 1, with a being the lattice constant, superconductivity is destroyed for small values
of the disorder, and the localization effects are not important. In this case the critical
value of the disorder is such thgg = ¢/ < A, with A the localization length. I&y/a
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is of order unity—as is the case for the oxide superconductors—when disorder increases,
localization effects play a role before superconductivity is destroyed by conventional pair-
breaking scattering. In this case, the dependence of the critical temperature on the disorder
deviates from the celebrated Abrikosov—Gor'’kov—Maki (AGM) theory [3]. We discuss the
cases of p-wave and d-wave superconductivity.

For concreteness we consider fermions on a lattice described by the following Hamil-
tonian:

H:HO—UZAIAX (1)

with Hp being a one-electron Hamiltonian that includes disorder, with eigensiatesand
eigenvalueg,. The second term in (1) corresponds to an instantaneous attractive interaction
with an implicit cut-off at a characteristic energy,. In order to model ¢t_,» symmetry,

we chooseA! to be of the form
Al = ZGS(Cm‘Hu x¢cx+aT) @)

with § = +eq, +es belng the lattice vectors, ard., = —€4., = 1. We argue below that
the effects of localization on the critical temperatdiefor d-wave pairing are qualitatively
the same as those for p-wave pairing, an example of which is the triplet pairing [7], that

we model with
ZGS X(r x+60

wheree,., = —€_, =1 ande,,, = €_., = 0.
The critical temperature is determined by the self-consistent solution of the following
linearized gap equation [8]:

A=) K@x.x)Ay 3)

where A, = (A,), and the kernek, written in terms of the exact eigenstates K, is
given by

8o, (x’ S
Kx,x)=U= ZZ ese 8/‘/’#()5)%()64- ) (X (x4 8) @

on 1088’ - |wn)(5;4 iw,)

with T the temperature and,, = (2n 4+ 1)z T the Matsubara frequencies. Also, we have
takeni = kg = 1. From now on we will take the eigenstates as real.

We next assume that the gap is uniform, = |A|, which is justified forwp > AW,
with AW the typical level spacing between states within a localization length of each other.
In that case we can integrate (4) oweandx’ and reach the condition

_T , 8¢ — &)

with N the density of states at the Fermi level, an@) is the power spectrum of the
operator

D= Zs:eg(lx + 8) (x| + |x){(x + &)

given by
g) =Y [ulDv)[?(e, — er — w) (6)
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where the line over the square of the matrix element indicates an average ovep.statds
thate, = er. For s-wave symmetryD) corresponds to the density operator

D= |x)(x]

and g(w) = 8(w), since the density response is not sensitive to scattering (iiy theO

limit, which is the case in which we are interested). This is valid even when the states
o, (x) are localized. With this frequency dependencez @b), one obtains an equation for

the critical temperature identical to that of the pure system. This is the extension of the
Anderson theorem to the case of localized states, which was discussed by Ma and Lee using
a variational approach [9]. We conclude that under the above assumptigns (AW and

a uniform gap), the effects of localization on the critical temperature are contained, through
equation (5), in the frequency dependence of the spectral function of the operator that has the
symmetry of the order parameter. The functigf) can be calculated diagrammatically,
since it is given by a two-particle bubble with bare vertices

v = cosk, — cosk,
for d-wave symmetry, and
Ye = isink,
for p-wave symmetry. From now on we ignore the lattice effects, and take

Vi = cos @)
Yo = COSH, (8)

which corresponds to a gap function
Ak) =AMy, (=p.d.

We first write equation (6) as

1 . .
8@ =55ReY yidrp@yy G =pd ©9)
T bk
with
Opp = (GR(k, K'; er) G (K, k, ef)) (10)

where now(---) denotes impurity averaging, an@® and G* indicate the retarded and
advanced one-particle Green functions. We follow the work of Vollhardt aatflgv(VW)

[10], and computeg(w) within the self-consistent theory of localization. We prove that
the frequency dependence of (9) is essentially the same as that of the conductivity. The
quantity &, - obeys the Bethe—Salpeter equation

Pp () = GrGpdpw + GrGh Y Uk pr (@) Dpopy () (11)
k//

with Uy x(w) the irreducible vertex function. In Anderson localizatiorsingle-particle
guantities (e.g. the density of states) are smoothly varying functions of the disorder. It is
then reasonable to approximate the self-enéidyy the lowest-order result in the impurity
scatteringlUp, and use the Green’s functions in the form

1

R —
Oi(e) = e—ep+i/2t

(12)
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with 1/t = 27 NpUpy, and GR = (G*)*. We have assumed é&correlated disordered
potentialu(x), such that

(U O)u(x)) = udnimpd (x) = Upd(x).

Using this expression for the Green’s functions, we can write the Bethe—Salpeter equation
as a kinetic equation in the form

i
(0) - _>q)k,k’ = —AGy |:3ka' + Z Uk,k”q>k”k’:| (13)
T 0

with AGy, = GR — G4. If we replace in (13) the irreducible vertex by the bare veitigx
we obtain

11 T
8i(@) = 27 1+ (wt)?
where the prefactor /2 comes from the angular average of the squared vertices which is
the same for the p- and d-wave cases (this prefactor would be one for s waves).

For the p-wave case, the functign(w) has the same structure of the conductivity, and
the above equation corresponds to the Drude formula. For the d-wave g&s¢, was
obtained earlier in a treatment of the Raman response ih th& channel in the presence
of impurities [11]. However, since the Raman respo®e) is given by a correlation
function, there is an additional factor af and R(w) = wg,(w). Inserting (14) in (5), we
obtain the well known expression for the critical temperature variation [12]:

—In(T:/Te0) = ¥(1/2+ 1/4n<T.) — ¥ (1/2).

To account for the effects of localization, the Bethe—Salpeter equation has to be solved
to higher order. Since in this regime there are some differences between the ptwate (
channel) and d-wavd & 2 channel) cases, we discuss them separately.

(14)

(i) The p-wave casel= 1). The low-frequency = 1 kernel is the same (except for a
prefactor) as the current relaxation kernel. The resulgfew) is identical to the expression
obtained by VW, and is given by

1 T

A7 1+ (@7)?2
with @ = w + w3 /w. The characteristic frequenay, is finite in the localized phase, and
is given by

8p (w) = (15)

wo = vr/(V2))

with A the localization length.

From this consideration, one can compute an expression for the relative change of the
critical temperature with disorder, which extends the AGM theory for the case of localized
anisotropic superconductors. Our result is then

| TCQ _ | Tco 2t T 1 1
“(f) = “(w—D>f——+f—+ [‘”(WJ “”<é)}
T 1 1
oG ) ()] (19)
1t = Jwd + (1/21)2 £ 1/2¢ o+ = 1/47T*T,.

where
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Figure 1. The relative critical temperatufg. / T.o for the p-wave case versgg/¢ for kp&o = 10
(short-dashed line), 1.0 (dashed line), 0.75 (solid line), @pd 7.0 = 0.1. The Abrikosov—
Gor’kov—Maki curve is indistinguishable from the one correspondingtéy = 10.

The above expression gives the change in critical temperature as a functioanof
wp. In contrast with the case for the AGM formula, in our case the relative changeis
dependent of the cut-off frequenay,. The self-consistent theory of localization provides
a relation between the two relevant parameteysnd r introduced by potential scattering:

y
wot = £//2) 7= (e7krt/2 — 1y1/2,

Consequently, the relative change in the critical temperature is given by the three
independent dimensionless parameters T.o, kr&o, andkr¢ (see figure 1). The effects

of localization are important wheky&o is of order one. In this regime the results deviate
from the AGM theory; in particulaf,./T., shows a re-entrant behaviour.

We now discuss briefly the mechanism underlying the re-entrant behavio@. in
The re-entrance to a normal state as temperature decreases can occur if the entropy of
the superconducting phase is higher than the entropy of the normal state at very low
temperatures. This can happen if the localization length is of the order of the mean free
path. In this regime one can estimate, for the p-wave case, the density of statesf
the quasiparticles by computing the quasiparticle enerfjjeas a correction of thparticle
energiese, in second order in the pairing interaction [8]:

). a7)
e=E

9E 9 g(w)
EY=Ny/ |—| =N 1+A%2— | d
p(E) o/‘ag‘ 0/<+ 88[w2€+w

The result is then that the density of states at the Fermi energy can be bigger than the normal-
state density of states, and the superconducting entropy is higher at low temperatures. The
behaviour ofp(E) is non-monotonic inE and one gets two transitions as the temperature
increases. Although the range in values of the disorder for which this re-entrant behaviour
is visible is small, one expects the quasiparticle density of states to have a structure with a
maximum at the chemical potential for a wider range of disorder.

(ii) The d-wave casel= 2). The correlation functiong; (w) for the p and d channels
have a similar structure. However, since the d-wave operator does not correspond to a
conserved current, there is in this case an additional singular contribution that gives rise to a
termoc 8 (w). We see from equation (6) that the diagonall tetm®|v), which are identically
zero forl = 1, are non-zero whed has d-wave symmetry. Physically, the weight of the
delta function corresponds to the fraction of Cooper pairs formed with electrons occupying
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the same localized state. A precise computation of this weight requires knowledge of the
structure of the localized wave functions, and we estimate it in the following form. The
singular contribution is of the forns;s(w), with S; the d-wave component of the wave
function:

Sy~ /r dr d9 W?cosd. (18)

If we approximatew? as a Gaussian random variable located at each site, and distributed
over the localization length, S; is of the order of the fluctuation of the sum over the
random variables. The number of sites over which the function is non-zerd%g:?, with

a the lattice constant, and we obtasp ~ 1/A2. This is only an estimate, and in general
we will show that the correlation function of equation (6) will be given by

@ =1 Syt 5
w) = —_ _—— _—
8d Vor 1+ @2 | 2

where the prefacto¢l — S;) guarantees that thg; (w) satisfies the sum rule

§(w) (19)

o 1
/ dow g4(w) = > (20)
0

which can be proven immediately by integrating equation (6).

For the computation of the finite-frequency contribution gf(w) we start from
equation (13). Following VW, we observe that sind&}, is strongly peaked at the Fermi
momentumk = kr, the dependence @by - on the magnitude of the wave vectors will be
dominated byAG,. We define

[OTRES Z q)k:,k:’ COS By,
k/

and extract the angular dependencekonsing a Legendre expansion in which we keep
terms up to thé = 2 one:
AGy

Dp = — 5
k —27INFp

Z [1+ 2 cosdy, cosy, + 2 oS By, cOS By, ] By (21)
k/

Multiplying (13) by cos 2, cos &, summing overk, k', and using (21), we obtain
—iJTNF

COS D), Py y COSYpy = ———— 22
;c; kYk.k k a)—M(a)) ( )

where M (w) is a 1 = 2 relaxation kernel’, given by

i
M) =—+ > 08 By AGy Ug ww AGy COS Dy (23)

JTNF PN

The structure oM (w) is very similar to that of the current relaxation kernel. Note that
in deriving this expression we have neglected terms that mix different angular dependences
in M(w), and that give rise to factors ca®j cos Dy, with m = 0,1,2. These terms
do not appear in the treatment of VW. Neglecting these terms is justified, since we are
anticipating the inclusion of the contribution to the irreducible vertex that is the origin of
the divergence oM (w). The infrared divergence aff comes from the maximally crossed
(MC) diagrams [13], which are irreducible, and contribute with

iUo/‘L'

w+iDo(k + k)2 (24)

MC __
Uk,k/ -
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for k>~ — k/, and with Dy the bare diffusion constant. Due to this divergence we
can takek = Kk’ for the angular integral and the ‘off-diagonal’ contributions vanish
due to orthogonality. Using the aboué,gf',g, in (23), we obtain the logarithmic low-
frequency divergencé/ (w) ~ logw that is familiar from the perturbation theory of the
conductivity [14].

The low-frequency kernel is the same (except for a prefactor) as the current relaxation
kernel, and it will still be related to the diffusion constant

D(w) = iDo[M (w)t] 2.

This allows us to go beyond perturbation theory and determifie) self-consistently
through the equation

1

i 2

Mw)=—-——— . 2

@) T T ; ® — k2Do[M (w)T] 1 (25)
Equation (25) can be solved for low frequencies, giving

i a)cz,

M) =—-—-— (26)
T w

and
NF T
gd(w > 0) = Em (27)

which implies the following equation for the critical temperature:
()=o) e o) o G
) )
D=1+ 15_"’5 Jo? + (1/21)2. (29)

d
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Figure 2. The relative critical temperatufg / T.o for the d-wave case verségg/¢ for kp&o = 10
(short-dashed line), 1.0 (dashed line), 0.75 (solid line),apdT.0 = 0.1. The plots correspond
to Sy = 0.2.

Irrespectively of the value dfr&, if k€ > 1 (small disorder), the states are essentially
extended, and the relative change %p is given by the AGM theory. The effects of
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localization can be apparent whé&, is of order one, as is the case for the oxide
superconductors. Faofo/! > 1/ the critical temperature is no longer zero as in the
case of the AGM theory, but has an exponentially small value (see figure 2). In this
regime, the superconducting condensate wave function is constructed from localized one-
particle states for which the localization length is only one order of magnitude larger than
the coherence length. For large enough disorder, our approximation breaks down, since
the order parameter is no longer uniform, and the critical temperature should go to zero.
The possibility of constructing a superconducting condensate from one-particle sates with
relatively small localization lengths has been analysed in the case of s-wave superconductors
[9], for which the Anderson theorem holds. Our results show that, in the case of p- or d-
wave symmetries, where the potential scattering is pair breaking, superconductivity and
localization can also coexist.

To conclude we comment on the following points.

(i) If disorder is too strong, the hypothesis made above of a uniform gap does not hold.
For all of the curves of figure 1, the inequalilyz1?Ao > 1 is satisfied, which guarantees
that spatial fluctuations in the gap are negligible [9].

(ii) An important effect onT, in s-wave superconductors is due to the enhancement of
the effective screened Coulomb repulsion due to disorder [15]. For d-wave symmetry the
short-range Coulomb repulsion does not affect the effective pairing, and consequently the
effects of the Coulomb interaction are not as important. In particular, our results are not
changed at all by a local Coulomb repulsion, which corresponds to Hubbard-type models
used to describe the copper oxide planes.

(iii) As regards experiments on hidhi-oxides, the superconducting—insulating transition
has been induced by various mechanisms: irradiation [16], ion substitution [17], or doping
[6]. In comparing our results with experiments, one should be able to isolate the effects of
hole doping and the effects of disorder.

In summary, we have shown that p- and d-wave superconductivity are compatible with
Anderson localization of the one-particle states. Our theory distinguishes between the two
symmetries in the localized regime, and gives essentially identical results in the extended
phase. In addition, out treatment extends previous calculations of the Raman response in
disordered systems to the localized phase.
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