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Abstract. A Carnot-like irreversible refrigeration cycle is modelled with two
isothermal and two non-adiabatic, irreversible processes. The generic source of
internal irreversibility, measured by the Clausius inequality, is a general
irreversibility term which could include any heat leaks into the Joule–Thompson
expansion valve, the evaporator and compressor cold boxes. This cycle is
optimized first for maximum refrigeration power and maximum refrigeration load,
then for maximum coefficient of performance. Its performances are compared with
those of the endoreversible refrigeration cycle, based on a propane stage of a
classical cascade liquefaction cycle example. Both cycle models achieve optimum
power and maximum refrigeration load at nearly the same refrigeration
temperature, but only the coefficient of performance of the irreversible refrigeration
cycle reaches a maximum. Moreover, its prediction of heat conductance allocation
between evaporator and condenser appears to be not only more conservative, but
also more realistic for actual design considerations of refrigeration cycles.

Nomenclature

A Heat transfer area
Amc Arithmetic mean temperature difference

in the condenser
Ame Arithmetic mean temperature difference

in the evaporator
Ce Heat conductance in the evaporator
Ch Heat conductance in the condenser
Ct Overall cycle heat conductance
COP Coefficient of performance
F Irreversibility coefficient
Qc Evaporator heat rate
Qh Condenser heat rate
Qlc Heat leak into the compressor
Qlv Heat leak into the expansion valve
P Refrigeration power
s Entropy
Tc Refrigerant arithmetic mean temperature

in the condenser
Te Refrigerant arithmetic mean temperature

in the evaporator
Tce Refrigeration temperature
Thc Refrigerant higher isotherm
U Overall heat transfer coefficient
1 Refrigerant operating temperature range
σ Cycle internal rate of entropy production

Subscripts

c for Carnot
e for endoreversible
i for irreversible.

1. Introduction

The endoreversible refrigeration cycle model, with a
specified overall heat transfer conductance and a refrigerant
temperature range, has been shown [1] to predict very close
maxima for refrigeration load and refrigeration power, as
well as for heat rejection load (in the heat pump case).
However, its coefficient of performance (COPe) is predicted
to have relatively high values and a simply monotonic
increase with respect to the refrigeration temperature. From
basic thermodynamics considerations, one would expect
the coefficient of performance of irreversible refrigeration
cycles (COPi) to decrease towards zero for very low
refrigeration temperatures, but also when refrigeration
temperatures approach the heat sink temperature since the
compression power has to be at least large enough to
overcome internal irreversibilities. Another investigation
[2] of endoreversible refrigeration cycles with several
heat transfer laws showed the existence of an optimum
coefficient of performance with the rate of refrigeration.
However simple or complex, endoreversible cycle models
do not incorporate enough of the essential physics of actual
cycles in order to produce realistic predictions.

Furthermore, it is not known how the predicted
average mean temperature differences in the evaporator
and condenser heat exchangers, and therefore heat transfer
areas, are affected by internal irreversibilities. In a recent
[3] evaluation of a Carnot-like irreversible power cycle
model, optimized for maximum power and maximum
thermal efficiency, it was found that the model predictions
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of these maxima are very sensitive to the heat transfer
conductance allocation to the boiler and condenser; the
relative size of these heat exchangers actually determines
the optimality either of maximum power or of maximum
efficiency.

Consequently, and for all practical purposes, the
predicted heat rates and heat transfer conductances, and
therefore heat transfer areas as well as refrigeration power
figures, are expected to be significantly different for
irreversible refrigeration cycles. It thus appears that a
more realistic, and yet still simple, irreversible refrigeration
model cycle is needed to predict the coefficient of
performance with refrigeration temperature better, as well
as to provide a more accurate heat transfer conductance
allocation for the evaporator and condenser. Improved
predictions of performance and equipment size are needed
in order to obtain more reliable estimates of investment and
operating costs before a detailed project evaluation.

In this paper, it is proposed to investigate the influence
of internal irreversibilities in general on a Carnot-like
refrigeration cycle performance, in terms of maximum
power and refrigeration load, as well as maximum
coefficient of performance. These irreversibilities could be
produced by mechanical or fluid friction, fluid expansion
in the Joule–Thompson valve and other orifices, and heat
leaks into the evaporator and compressor cold boxes.

The problem objectives consist of maximizing with
respect to the refrigeration temperature first the compression
power and refrigeration load and then the coefficient of
performance, subject to a specified overall heat conductance
and an overall internal rate of entropy production. Since
the problem has been found to be unbounded [1, 4] when
considering the two refrigerant isotherms as degrees of
freedom, a refrigerant boiling temperature range is specified
as a necessary bounding constraint. As was argued earlier
for the case of the endoreversible refrigeration cycle, this
temperature range is defined as the difference between
the refrigerant mean condensing temperature and its mean
evaporation temperature, as would be considered when
selecting any candidate refrigerant.

The overall heat conductance equality constraint
imposes a finite size for the condenser and evaporator, and
therefore defines a certain heat exchanger investment to
be made for which the optimum values of the objective
functions are to be found. A Clausius equality constraint
specifies the overall internal entropy rate of production for
which the objectives are considered. This entropy rate
of production is taken to be proportional to the overall
heat conductance, as well as to the ratio of the refrigerant
temperature range and the upper isotherm. Since the heat
transfer conductance and entropy rate of production are
both expressed in power units per kelvin, their ratio is
conveniently dimensionless.

The remainder of this paper is organized as follows.
After a qualitative discussion of the cycleT –s diagram,
the two equality constraint equations are solved as a linear
system for the heat rates in the evaporator and condenser.
Then, the maximum power and maximum coefficient of
performance objectives are formulated as unconstrained
optimization problems with respect to the refrigeration

Figure 1. The irreversible refrigeration cycle T –s diagram.

temperature as the unique free variable. Because the
optimum refrigeration temperature is obtained as an implicit
relation of the design parameters, the optimum values of the
objective functions are described and analysed by means of
a numerical example related to a classical cascade cycle
natural gas liquefaction cycle as simulated in [5].

2. Formulation of the problem

In refrigeration cycle analysis, it is convenient to assume
that the compressor suction operates at a fixed, near
saturation vapour state and that the Joule–Thompson valve
inlet is in a nearly liquid saturated state. Fluid friction
and uncompensated fluid expansion can be regarded as
irreversibilities which add up to heat leaks into the Joule–
Thompson valve and evaporator cold box; their effect
is to decrease the useful refrigeration load. Internal
irreversibilities in the compressor and heat leaks into
its suction line increase the compressor power and,
consequently, the condenser heat load. Clearly, heat
leaks and power dissipation irreversibilities can be lumped
together and measured with the same yard stick for the
purpose of analysing internal irreversibility effects on
refrigeration cycle performance. The problem is now
formulated from basic thermodynamics considerations of
irreversibilities and heat leaks as accounted for in the
Clausius inequality.

The problem formulation is based on the cycleT –s

diagram of figure 1, in which the heat source supplies the
time-averaged heat rateQci at a temperature varying from
T1 to T4, for which the arithmetic mean value isTe, in a
counterflow boiler heat exchanger and the heat sink receives
the time-averaged heat rateQhi , while its temperature
increases fromT3 to T2, for which the arithmetic mean
value isTc, in a counterflow condenser heat exchanger.

This refrigeration cycle is composed of the following
four processes.

(i) From d to c: a non-adiabatic irreversible
compression process, withQlc as the time-averaged heat
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leak into the compressor, for which the net entropy
production term is equal tosc − sd .

(ii) From c to b: an isothermal heat transfer process
for which the entropy decreases fromsc to sb as a result of
heat transfer from the condensing fluid into the heat sink.

(iii) From b to a: a non-adiabatic irreversible expansion
process, withQlv as the time-averaged heat leak into the
expansion valve and evaporator, for which the net entropy
production term is equal tosa − sb.

(iv) From a to d: an isothermal process for which the
entropy increases fromsa to sd as a result of heat transfer
into the evaporating fluid.

Note that, in actual refrigeration cycles, condensation of
the refrigerant occurs after some de-superheating, whereas
evaporation is followed by some superheating prior to
compression; the real heat transfer processes are therefore
neither isotherms nor isobars; the isotherms considered here
are averaged values to be obtained as ratios of heat load to
entropy change for each heat transfer process.

If one were to compare this irreversible cycle with the
endoreversible cycle represented by processes a′–d′–c–b–
a′, one would notice that the heat rateQhi , rejected to the
heat sink, is proportional to the rectangular area b–b′′–c′′–
c, and common to both cycles. However, the heat rate
Qci , which is the useful refrigeration load received from
the heat source, is always less for the irreversible cycle.
Consequently, although the refrigeration power supplied to
the irreversible cycle is less than that of the endoreversible
cycle for the sameQhi , the useful refrigeration load will
be even less and the coefficient of performance will be
smaller than that for the corresponding endoreversible
cycle. This means that the endoreversible refrigeration
cycle model overestimates coefficients of performance of
actual refrigeration cycles.

The irreversible refrigeration cycle to be investigated is
constrained to have finite heat transfer ratesQhi and Qci ,
subject to the following specification of the overall heat
conductanceCt

Qhi

Thc − Tc

+ Qci

Te − Tce

= Ct (1)

where Tc and Te are the respective arithmetic mean
temperatures of the heat sink and the heat source, defined
by

Tc = T2 + T3

2
(2)

Te = T1 + T4

2
. (3)

The irreversible cycle must also satisfy the Clausius
inequality, written here as an equality, whereTce is the
refrigeration temperature andThc the refrigerant condensing
temperature

−Qhi

Thc

+ Qci

Tce

= −σ (4)

where the internal entropy production termσ is now defined
by the following equality, using geometric considerations
from theT –s diagram of figure 1:

σ = (sc − sd) + (sa − sb). (5)

The heat ratesQhi andQci used here are integrated mean
values obtained over the cycle period of time in order to
be consistent with the Carnot cycle reversibility definition.
Equations (1) and (4) are solved as a linear system for
Qhi/Ct andQci/Ct ; they yield

Qhi

Ct

= 1

D

(
1

Tce

+ σ

CtAme

)
(6)

Qci

Ct

= 1

D

(
1

Thc

− σ

CtAmc

)
(7)

where the common denominatorD is the linear system
determinant expressed by

D = 1

TceAmc

+ 1

ThcAme

(8)

and the arithmetic mean temperature differences in the
boiler and condenser, respectively, are expressed by

Amc = Thc − Tc (9)

Ame = Te − Tce. (10)

Note that use of arithmetic mean temperature differences,
instead of logarithmic mean temperature differences
(LMTDs), in actual heat transfer calculations will somewhat
underestimate the heat transfer area, depending on how
much the temperature profiles diverge; they are used here as
a convenience to simplify the algebra and yield analytical
closed form solutions.

The irreversible cycle refrigeration powerPi and
coefficient of performance COPi are now expressed using
the first law:

Pi

Ct

= 1

D

[
1

Tce

+ 1

Thc

+ F
1

Thc

(
1

Amc

+ 1

Ame

)]
(11)

COPi = Amc − F1

1Amc/Tce + F1(1 + Amc/Ame)
. (12)

The following model for the internal production rate of
entropyσ is adopted:

σ/Ct = F(1/Thc) (13)

where F is a dimensionless numerical coefficient. In
the numerical example to be considered in section 7, an
arbitrary value ofF = 0.02 will be retained in order to
compare the refrigeration power loss to be estimated here
with the power loss obtained in a previous study [3] on
internally irreversible power cycles; but, ultimately, some
relationship between isentropic coefficients of the turbine
and compressors and internal rates of entropy production
σ could be developed to fit observed data from actual
refrigeration cycles whenever available.

The refrigerant operating temperature range1 is
defined by

1 = Thc − Tce. (14)

This temperature range is equal to the difference
between the mean condensing temperature retained for the
refrigerant considered and its evaporation temperature, as
would be done when selecting any candidate refrigerant for
a particular application.
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3. The maximum refrigeration power objective

Although a minimum refrigeration power objective would
be more appropriate for refrigeration cycles, a maximum
power objective will be sought instead, because it is already
known [1] that the refrigeration power of an endoreversible
cycle achieves a maximum, and not a minimum; moreover,
this maximum is reached at nearly the same refrigeration
temperature as that at which a maximum refrigeration load
is also achieved.

The unconstrained maximization of this objective as
defined by equations (11) and (8), with respect toTce,
requires that its first derivative with respect to this free
variable be zero. The resulting necessary (and sufficient)
condition is

A2
mc(Te − FThc) + A2

me(−Tc + FTce)

= F1AmcAme

[
1 + Tce

(
1

Amc

+ 1

Ame

)]
. (15)

When F = 0, this optimality condition reduces to that of
the endoreversible refrigeration cycle, that is

(Amc/Ame)
2 = Tc/Te. (16)

When the irreversibility coefficient is different from
zero, equation (15) can only be solved numerically; but it
can be seen that this ratio of arithmetic mean temperature
differences, or equivalently the ratio of heat transfer
conductances, will be larger for irreversible cycles. This
will be shown in the numerical example to be considered
in section 7.

4. The maximum refrigeration load objective

The unconstrained maximization of this objective as defined
by equations (7) and (8), with respect toTce, requires
that its first derivative with respect to this free variable
be zero. The resulting necessary (and sufficient) condition
for a maximum is

A2
mc

A2
me

= T
1/2
hc

T
1/2
ce

(
Amc

Tce

+ Tc

Thc

)
+F1

[
1

T 2
ce

−
(

Ame + Ame

A2
me

)]
.

(17)
When F = 0, this optimality condition reduces to that of
the endoreversible refrigeration cycle, that is

A2
mc

A2
me

= T
1/2
hc

T
1/2
ce

(
Amc

Tce

+ Tc

Thc

)
. (18)

When the irreversibility coefficientF is different from zero,
equation (17) can only be solved numerically; but it can be
seen that this ratio of mean temperature differences will be
larger for irreversible cycles than for endoreversible cycles;
this will be shown in the numerical example.

5. The maximum coefficient of performance
objective

The unconstrained maximization of this objective as defined
by equation (12), with respect toTce, requires that its
first derivative with respect to this free variable be zero.

The resulting necessary (and sufficient) condition for a
maximum is

A2
mc

T 2
ce

= F

(
1 + 1

Tce

) (
Amc

Ame

− 1

)
− F 2 1

Ame

(
1 + Amc

Ame

)
.

(19)
For an endoreversible cycle,F = 0 and this optimality
condition reduces toAmc = 0, that is, Thc = Tc; this
solution corresponds to the Carnot cycle coefficient of
performance, since the endoreversible cycle COPe has no
maximum.

Like the optimality expressions derived above, this
optimality relation cannot be solved analytically; but it
can be observed that feasibility requires that the arithmetic
mean temperature difference in the condenser should be at
least as large as that in the evaporator according to this
model; furthermore, since the first right-hand side term of
equation (19) should be larger than the second, feasible
values of the mean temperature differences should be such
that

F <
Ame

1

Thc

Tce

Amc − Ame

Amc + Ame

. (20)

This relation requires some knowledge of the feasible upper
bound of the irreversibility factorF .

6. Feasible limits of the irreversibility coefficient
F

The lower bound of the irreversibility factorF is zero,
which corresponds to an endoreversible cycle. At the
feasible upper bound of the irreversibility factorF , the
refrigeration heat rateQci becomes zero, as can be observed
from figure 1. Using this condition in equation (7) gives
the following double inequality:

0 ≤ F ≤ Amc

1
= Amc

Tce

COPe. (21)

As expressed, the feasible lower and upper bounds of
the irreversibility factorF are respectively zero and some
fraction of the endoreversible coefficient of performance for
which an irreversible cycle version is considered.

Alternatively, the feasible upper boundFmax can
be expressed in terms of the Carnot COPc and the
endoreversible cycle COPe as

Fmax = (1 + COPe) − δ

1
(1 + COPc) (22)

whereδ is the temperature potential differenceTc−Te given
in any problem and1 is a specified optimization parameter
of the problem.Fmax can thus be specified by this linear
combination of the coefficients of performance of the heat
pump case. It is seen that the irreversibility factorF is
identically equal to zero for the Carnot refrigeration cycle,
because the ratioδ/1 is equal to unity and COPe = COPc.
To summarize this point, the value of the irreversibility
factor F that can be considered in a cycle design must lie
between zero andFmax , as given by equation (21).

However, knowledge of the limits of the factorF does
not determine how the value ofF varies between them. By
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drawing a parallel with the isentropic efficiency coefficient
used in power cycles, we could relate the value ofF for
which a given refrigeration cycle is to be optimized to its
maximum feasible value. From equation (22),Fmax is seen
to be a function of the parameter1 to be specified and the
free variableTce:

Fmax = 1 + Tce

1
− δ

1
(1 + COPc) = 1 − Tc − Tce

1
. (23)

This function increases monotonically with1 andTce. Its
maximum is attained with the largest feasible value of
Tce < Te. Its upper bound is given by

Fmax ≤ 1 − δ

1
. (24)

The ratioF/Fmax is now defined byρ and expressed as

ρ = F

Fmax

= 1F

1 − δ
(25)

or equivalently, if the value ofρ for which to optimize
is fixed, the corresponding value of the irreversibility
coefficientF is expressed by

F = ρ

(
1 − δ

1

)
. (26)

For instance, in the example to follow, a value ofF = 0.02
corresponds to aboutρ = 0.05.

The goal of this irreversible refrigeration cycle model
is to predict optimum power requirements of actual
refrigeration cycles better for a given heat transfer
conductance. If a parallel is again drawn with power cycles,
in which the turbine inlet and condensation temperatures
are usually specified parameters, then the turbine power is
calculated simply by using its isentropic coefficient given
by the constructor.

The ratio of isentropic to actual power requirements is
equal to the ratio of the irreversible cycle COPe and the
Carnot cycle COPc. This ratio is expressed here as the
product of a temperature effectiveness and a compressor
isentropic efficiency:

COPi

COPc

= ηc

Thc

Tc

δ

1
= ηc

1 − Te/Tc

1 − Tce/Thc

. (27)

Alternatively, this ratio is a function of the condensation
temperatureTce when considering equation (14). In the
following example, it can be seen that the temperature
effectiveness varies from 0.775 to 0.800, whereas the
corresponding compressor efficiency varies from 61 to
63%.

7. A numerical example

This numerical example will illustrate the variations of the
objective functions considered, with respect to the free
variable Tce, for the propane low-pressure refrigeration
stage of a classical cascade liquefaction cycle described
by Kao et al [5]. In this refrigeration stage, natural gas
is cooled from 260 to 241 K; the problem parameters are

Figure 2. Refrigeration power and coefficient of
performance versus refrigeration temperature.

Figure 3. Power and heat rates versus refrigeration
temperature.

Figure 4. Endoreversible refrigeration cycle power and
heat rates versus COPe.

taken asTe = 250 K, Tc = 300 K, and1 = 80 K. The
results of these calculations are shown in figures 2–6; the
internal irreversibilities are calculated withF = 0.02.

Figure 2 shows the variations of the refrigeration
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Figure 5. Irreversible refrigeration cycle power and heat
rates versus COPi .

Figure 6. Heat transfer conductance versus refrigeration
temperature.

power and coefficient of performance with respect to
the refrigeration temperatureTce. The maximum of the
refrigeration power occurs at 236.4 K for the irreversible
cycle model and at 235.6 K for the endoreversible model;
the respective maxima per unit overall heat conductance are
3.569 and 2.186 K, in kW/(kW K−1). The entropy rate of
production per unit overall heat conductanceσ/Ct at this
maximum is only 0.005 06; but it increases the refrigeration
power by as much as 63.3% relative to the endoreversible
cycle refrigeration power.

The coefficient of performance COPi of the irreversible
cycle reaches its maximum value, 1.6335, at 237.4 K; the
corresponding value of COPe, for the endoreversible cycle
is 2.9675. At this temperature of−35.8 ◦C, the ratio of
COPi to the Carnot cycle coefficient of performance COPc

is only 0.523. This is a useful parameter to consider when
comparing actual versus Carnot refrigeration cycles.

Figure 3 compares refrigeration power and heat rates
for the irreversible and endoreversible cycles. The maxima
of power and heat rates occur at near the same temperature
for each cycle, although at some 0.8 K higher for the
irreversible cycle. The maximum refrigeration load occurs
at 236.8 K for the irreversible cycle and at 236.2 for the
endoreversible cycle. Internal irreversibility thus increases
the optimum refrigeration temperature only slightly both
for refrigeration power and for refrigeration load.

Figure 4 shows the variations in refrigeration power,
refrigeration load and rejection heat load for the
endoreversible cycle with respect to the coefficient of

performance; power is seen to vary more sharply than do
refrigeration load and rejection heat load. The purpose
of figure 4 is to contrast with the behaviour displayed
in figure 5 by the variation of power and heat rates of
the irreversible cycle; these are shaped like ‘canes’ and
double-valued, near the maximum value of the coefficient
of performance.

Figure 6 compares the distribution of the overall heat
conductanceCt between the evaporator and condenser
conductances, both for the endoreversible and for the
irreversible cycles. It clearly shows that internal
irreversibilities increase the condenser size relative to the
evaporator size. At maximum refrigeration load, their ratio
is 0.861.

As would be expected, it was found in this investigation
that the choice of the refrigerant operating temperature
range1 strongly influences the optimum solution of the
problem. The larger the value of1, the larger the
refrigeration power per unit overall heat conductance.
For 1 = 100 K, for instance, only the coefficient of
performance COPi achieves a maximum at a refrigeration
temperature of 230.1 K; the optimum temperature for
maximum refrigeration load will be below 230 K, which
would not be feasible because it would correspond to a
normal boiling pressure below 1 bar for propane. At 230 K,
for this case, the refrigeration power is increased by 72.3%.
Hence, designing for a large temperature range1 means
that the optimum solution will be biased towards lower
refrigeration temperatures and larger refrigeration power
per unit overall heat conductance. Consequently, several
feasible alternatives with different values of1 will have to
be compared for power-related cost and heat exchanger cost
before recommending a particular solution for any given
project.

8. Conclusion

A Carnot-like, internally irreversible refrigeration cycle
has been modelled using the Clausius entropy inequality.
It has been optimized with respect to the refrigeration
temperature, first for maximum power and maximum
refrigeration load, then for maximum coefficient of
performance. The results obtained for a specified
refrigerant temperature range show that this irreversible
cycle has flat and very close maxima for power and
refrigeration load, just as the endoreversible cycle does,
but at a slightly higher refrigeration temperature. It
also achieves a maximum value for its coefficient of
performance, which the endoreversible cycle does not. This
is the distinguishing feature of this internally irreversible
refrigeration cycle.

The particular value specified for the refrigerant
temperature range, as a necessary bounding constraint,
actually determines whether the objective functions
considered achieve a feasible maximum. Moreover, a large
value of this parameter specifies a correspondingly large
temperature difference for the sum of the condenser and
evaporator mean temperature differences. Consequently,
the resulting optimum solution is biased not only towards
a larger refrigeration power, but also towards a larger
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refrigeration load per unit overall heat conductance. The
maximum potential temperature difference to overcome for
a single-stage refrigeration cycle being typically 60 K and
the maximum operating temperature range for a refrigerant
being typically 80 K, these two parameters strongly
influence the actual cycle coefficient of performance.
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