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Abstract. The method of Greenwood and Williamson is extended to give a general
solution for the coupled nonlinear problem of steady-state electrical and thermal
conduction across an interface between two conductors of dissimilar materials, for
both of which the electrical resistivity and thermal conductivity are functions of
temperature. The method presented is sufficiently general to cover all combinations
of conductor geometry, material properties and boundary values provided that

(i) the current enters and leaves the conductor through two equipotential
isothermal surfaces, (ii) the remaining boundaries of the conductor are thermally
and electrically insulated and (iii) the interface(s) between different materials would
be equipotential surfaces in the corresponding linear problem. Under these
restrictions, the problem can be decomposed into the solution of a pair of nonlinear
algebraic equations involving the boundary values and the material properties,
followed by a linear mapping of the resulting one-dimensional solution into the
actual conductor geometry. Examples are given involving single and multiple
contact areas between dissimilar half spaces.

1. Introduction the conductor are thermally and electrically insulated.
Greenwood and Williamson (1958) applied Kohlrausch’s
Electrical conduction across an interface between two results and additional results due to Diesselhorst (1900)
conductors is a problem of considerable technical to the problem in which an electric current is conducted
importance, with applications in resistance welding through a single circular contact area between two large
(Thornton et al 1996), electrical connectors (Bryant conductors of similar materials with temperature-dependent
1994) and electrical machinery (Yune and Bryant 1988). properties. However, they considered only the case where
Conditions at the interface can be extremely complex the temperatures of the two bodies distant from the interface
because of the roughness of the surfaces and the presencare equal and hence where the maximum temperature, by
of insulating surface films and layers (Holm 1967, Runde symmetry, occurs at the interfacial plane. The more general
1987). In addition, electrical resistivity of the material leads case where the boundary temperatures are dissimilar was
to the generation of heat, causing high local temperatures atrecently treated by Fournet (1997), including the situation
or near areas of actual electrical contact. Furthermore, thein which the temperature varies monotonically through the
electrical resistivity generally increases quite significantly bodies, so that the maximum temperature isotherm does not
with temperature, causing nonlinear coupling between the occur within the bodies.
electrical and thermal problems and in some cases leading  In many practical applications, the materials of the two
to localization instabilities. conductors will be different—for example carbon brushes
Electrical flow problems in which the resistivities vary contacting a copper commutator or copper electrodes
with temperature are in general intractable. However, contacting a steel workpiece in welding. Timisit (1988)
Kohlrausch (1900) has shown that the equipotential surfaceshas given an approximate solution for a problem of this
and the isothermal surfaces in a conductor will coincide class, but it is based on the restrictive assumption that the
in the steady state, leading to a one-to-one relation maximum temperature will coincide with the surface whose
between temperature and potential, as long as the currenpotential is midway between those of the equipotential
enters and leaves the conductor through two equipotentialboundaries. However, this assumption is not even a good
isothermal surfaces and the remaining boundaries of approximation for the general case where the conductors
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may have arbitrary shape and the temperatures at thewhere6 = 6,,. With this convention, the isotherth= 6,

boundaries may be unequal. separatex? into two parts, in one of which the positive
In the present paper, we shall extend the methods sign is taken in equation (4), the negative sign being taken

of Greenwood and Williamson to the problem of steady- in the other part.

state electrical and thermal conduction across an interface  Circumstances can arise in which the temperature varies

between two conductors of dissimilar materials, for both monotonically through the body and hence in which the

of which the electrical resistivity and thermal conductivity maximum of temperature does not occur within the body.

can be fairly general functions of temperature. We shall Problems of this class can be treated by considefing

demonstrate that the same methods can be rigorouslybe part of some larger fictitious body in whiél occurs.

applied provided that the interface is an equipotential To determine which of these cases obtains, we first define

surface in the corresponding linear problem. We also the quantity

show that the problem can be decomposed into the solution ,

of a pair of nonlinear algebraic equations involving the (7 2 2

boundary values and the material properties, followed X = /91 Apdo = @1 — ¢5 = U(d1+ ¢2) (%)

by a linear mapping of the resulting one-dimensional

solution into the actual conductor geometry. The method WhereU = (¢1 — ¢2) is the potential difference. We can

presented is sufficiently general to cover all combinations then write

of conductor geometry, material properties and boundary X

values. Finally, some examples are given concerning single 201 = (P1+ ¢2) + ($1— P2) = T +U (6)

and multiple contact areas between dissimilar half spaces.

X
202 = (¢1+ ¢2) — (1 — ¢2) = T -U (7)

and multiplying these expressions, we have

2. General considerations

Ohm'’s law of electrical conduction requires that the current

density 1 192 = % - U2 (8)
J=-V¢ 1)

. . g . . . It follows that if U* > X2, ¢1¢» < O and hence
wh_ere_¢_> IS the ele,ctncal potential _ang:l is the electrical that the maximum temperature isotherm lies within
resistivity. Kirchoff's law then requires that whereas ifU4 < X2, ¢y > 0 and the temperature varies

1 monotonically througtf.
divJ = div (*qu) =0. (2) In a practical problem the temperaturés 6, and the
p potential differenceU/ will be known, We can choose to
The resistive losses in the material lead to the generationlabel the boundariess;, S, such thatd, > 6; without
of heatqg = |J|?p per unit volume in the medium and the loss of generality. It then follows from equation (4) that
steady-state heat conduction equation then requires that theg:1| > |¢,| and it can be shown that the appropriate signs
heat generated per unit volume to take in equation (4) are then

— diva— —di _ 1o [ e,
0 = —divg = —div(AV0) = 5 V| (3) 1 = sgnU) 2/ 2o do ©)
01

whereq is the heat flux vector§ is temperature and is

the thermal conductivity. Botlp andA are assumed to be ) . O

functions of temperature. $2 = sgnU)sgnX* — U") 2/ Apde  (10)
02

where sgix) is the sigmum function which equals 1 for
x > 0and-1 forx < 0.

Consider a bodys2, of a single material, such that current Substituting these results into the equatidr= ¢1 — ¢,
enters and leaves through two equipotential and isothermaland simplifying, we obtain the nonlinear equation
surfaces S;, S, at (¢1,61) and (¢, 62) respectively,

the remaining surfaces being thermally and electrically O ) . O
insulated. Greenwood and Williamson (1958) have shown Ul = 2/0 Ao df —sgnX® — U") 2/9 Apdo (11)
that in this case there is a unique relation between ! :

temperature and potential throughof® which can be for the maximum temperatur, .
written in the simple form

2.1. The relation between temperature and potential

2.2. Determination of the spatial distribution of

O :
¢==% ]2 / Ap do (4) temperature and potential
’ Following Greenwood and Williamson (1958), we define
whereg,, is the maximum temperature and we have adopted the function ¢ such thatJ = V¢. It follows that

the convention that the zero of potential is taken at the point pVy = V¢ and V2 = divJ = 0.
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Squaring both sides of equation (4) and then

differentiating with respect té, we obtain

¢?TZ = —Ap. (12)
We can then write
1 1d¢ A
Vy = ;vq) = @ Vo = —$V9 (13)
and hence
AVO = -V (14)
or
q=9¢J. (15)

We can also integrate equation (13) along a flux line,
using equation (4) to eliminatg, with the result

O O -
w=wwv‘@/xmﬁ
2] 9

Notice that with this definition, the zero af is set to
correspond with the isothergh = 6,, and the sign ofy is
set to be the same as that@fwhich is determined by the
procedure of the section 2.1. In particular, the valueg of
on S1, S are

(NI

ade. (16

O O -3
Y1 = sgnl) <2/ Ap d9> Ado a7
01 0
O Om -3
Vo = sgnU)sgn X2 — U%) (2[ 2o de) »do
6o 6
(18)

respectively, from equations (9) and (10).

These results reduce the problem to the determination

of a harmonic function) to satisfy the boundary conditions

(17) and (18) onS;, S, and the insulation condition

3y /dn = 0 on the remaining surfaces 6f. Oncey (r)

is known as a function of positiom, the corresponding

temperatur@ can be recovered by inverting equation (16).
The boundary value problem faf is linear and it is

convenient to make this explicit by defining

Y1+ Y2 Wz—lﬁlg

2 + 2
whereg(r) is of the corresponding boundary value problem
with V2¢g =0 andg; = —1, go = 1.

This terminology has the effect of decomposing the
problem into two totally independent problems. The
function g(r) depends only upon the geometry of the

v(r) = (r) (19)

problem and is independent of the material and the

inhomogeneous boundary valués, 6, U, whereas the
relation betweerd, ¢ and iy depends upon the material
properties andfy, 6,, U, but it is independent of the
geometry of the problem.

This decomposition has some important consequences.

For example,

(i) All conductors made of the same material and
subjected to the same boundary values 6., U will
experience the same maximum temperatiyfaegardless
of the shape and size of the conductor.

Electrical conductance between conductors

The maximum temperature in the body is uniquely
determined by the procedure of the section 2.1, which
makes no reference to the specific geometry of the body. In
particular, the maximum temperature will bgif U* > X?
(recall that we have labelled the surfaces so that 61)
and will be 6,, as determined by equation (11) if* <
X2,

(i) If two conductorsC, D of a given material transmit
total currents I€, 1P for particular values of6y, 6,, U,
the ratio 71€/1° will be the same for all values of these
guantities.

To prove this, we first note that the current density
(20)
from equation (19). The total current transmitted can
therefore be written

szhwpqw—mm (21)
S1

from equation (19), where the dimensionlessrent factor

1 g
L=>] Zds
g 2/31311 !

is the current that would flow through a conductor of the
same shape with a unit potential difference between the
surfacesS;, S, and a temperature-independent electrical
resistivity of unity.

It follows immediately that for given values of
61,62, U, and hence ofy1, y2, 1€/1P = I{/I? and this is
the same for all values af, v».

(22)

(iii) The temperature field in a body with boundary
values#y, 6, U can be mapped into a body of different
geometry but the same boundary values using conformal
mapping.

This follows because the only dependence on the
geometry of the body is introduced through the function
g(r) and this function is harmonic with unit or zero gradient
boundary values. These properties are presented under
conformal transformation.

A major advantage of this result is that we can discuss
the nonlinear aspects of the problem in the context of a
simple one-dimensional geometry consisting of one or more
bars with unidirectional conduction. This is particularly
useful for the complex case where two or more conductors
of different materials are involved.

3. Conduction through composite bodies

We now turn our attention to the case in which the

conductor consists of two or more connected components of
dissimilar materials, as shown in figure 1. The equipotential
surface §, in Q4 is maintained at temperatu®, and

Sp in Qp is maintained avp. The two components are

in intimate thermal and electrical contact at the interface
S;.  All other surfaces of the bodies are assumed to
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3.1. Conditions at the interface

If S; is the equipotential surface = g; in Q4 U Qp, we
can construct the functiong,, gz for the domains2,, Q3
respectively through the linear mapping

2e+A—-g) 22— (1+g)

) = 23
1+ g 8B 1—g (23)

8a =

The current density is required to be continuous
throughout the interfac§; and hence

Iy B

()~ () &
on J; on J;

where the superscripte, 8 refer to the potentials in

materialse, g respectively. Using equation (19) and (23),
this condition reduces to

() -
1+ g on /, 1-—g; on /, (25)

which will be satisfied throughouf; as long as

a o B B
S (0 wl_wAZI/fB_l/fl (26)
5 (B) 1+g; 1-g
Figure 1. Configuration of dissimilar conductors in contact. This relation can also be expressed in terms of the current

factor I, of equation (22) in the form

be insulated. Componen®,, Q5 are of materialsy, =7 -yl = W — lﬁf)IgB (27)
respectively, which have thermal conductivitieg 14 and

electrical resistivitiesp,, pg, all of which are functions  where/ is the total current flowing through the composite
of temperature. A potential differenc& is applied conductor.

betweenS, and Sz and we wish to determine the current We also require continuity of heat flux at the interface
that will flow and the resulting temperature and potential and hence
fields. 5
i i i a0 a0
The z_anaIyS|s of _sectlo_n 2 can be_ applied ;epara_tely to A (60)) (7) = A5(00) (7) (28)
Q4, Qp, if and only if the interfaceS; is an equipotential, on J, on /,

isothermal surface. This in turn will be the case as long _
as S; is a surface of constang = g; in the domain  Whered, is the temperature of;.

Q4 U Qp with g4 = —1, g = 1. This places important Using the result (14), this condition can be written
restrictions on the applicability of the method developed Y 5
in this section and therefore deserves some preliminary o (Y _ (Y

: . , o ¢ =¢; (29)
discussion. An important general class satisfying the on J, on J,

condition is that in which the interface is a plane of
symmetry between two geometrically identical conductors. @nd hence, using equation (24)
The special case where the conductors are half spaces in

. : . . B
contact at a number of regions in their common plane is b7 =9 (30)
discussed in more detail in section 4 below, but the method . ]
is equally applicable to finite conductors, provided they It should be emphasized that the separate potentials

are geometrically symmetrical. Numerous other special ¢*: ¢’ have been conventionally chosen such that they are
cases can be identified by appealing to classical solutionsZ€r0 at the points (inside or outside the body) witete 6,7,

of Laplace’s equation in two and three dimensions and 65 respectively. Thus, there is no independent physical
locating the interface on a known isopotential surface. Such reason to expect continuity gf at the interface. However,
cases include, for example, two curved bars of constantthe above argument shows that this continuity is required
radius and similar but arbitrary cross section contacting on as a consequence of the continuity of heat flux and current
a common transverse plane, or the contact of two annulardensity. The condition is necessary and sufficient in the
wedge-shaped regions contacting on a common circularsense that any two of equations (24), (28) and (30) imply
boundary. the third.
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Figure 2. Forms of temperature field that can evolve with
increasing potential difference when 6g > 6,4.

3.2. Location of the maximum temperature

If we label the components such tlggt > 6,4, there are four
possible scenarios, illustrated schematically for the one-
dimensional problem in figure 2 (curvea){(d)). These
are defined by the conditions:

(a) The temperature increases monotonically through
both components angh < 6; < 6p.

(b) The temperature increases monotonically through
Q4, the maximum temperatuﬂeﬁ occurs inQ2p andd, <
191 < 93.

(c) As in case [f), the temperature increases
monotonically through2, and the maximum temperature
62 occurs inQp, but, < 0z < 6;.

(d) The maximum temperatur€’ occurs in2y, the
temperature falls monotonically througty and6, <6z <
0;.

Electrical conductance between conductors

in Qp befored; reachesd)y and a local maximuntannot
occur inQ,4 until 6; > 0.

3.3. Solution for 62, 67

The most natural statement of the problem of figure 1 is
to prescribe the geometry of the conductors, the boundary
values6,, 0 and the potential differenc&. However,

in view of the sign differences that occur in certain
guantities between the cases){(d) above, it is more
convenient to regard,, 65 and the interface temperature
0, as independent variables and solve for the potential
difference|U| required to produce it. An increase /|
causes an increase in temperature at all points, including
0;, so the relation betweefU| and 6; is monotonic and
hence easily inverted numerically if required.

If 64,0p,60; are prescribed, two nonlinear equations
for 62,65 can be written down from the continuity
conditions (27) and (30), using equations (9) and (10) and
equations (17) and (18). The appropriate signs to use in
these definitions depend on which of cas#s-(d) is under
consideration. FoK2,, 0; > 64 for all cases; therefore
we identify 6; with 64, and 6, with ;. The maximum
temperature occurs if24 only for case ) and hence for
this case the term sghi? — U*) = —1 in equations (10)
and (18), whereas for casem){(c) it is +1. We therefore
conclude that

o
¢X:Sgr(U) 2/ ha 0o 0O (31)
04
o
o7 = sgnU)ju, 2 / hau 0 (32)
0r
2 op _%
V% = sgnU) <2 / Aa,oad9> dd (33
64 6
02 o2 -3
v =sgn0)js | (2 / Aapade) Jadd  (34)
0 %

where j; = +1 for casesd)—(c) and—1 for case d).
ForQpg, 65 > 0, for casesd) and p), wherea®p < 6,

for cases €) and @d). In the latter case, we therefore have

to identify 61 with 65 and 8, with 6;, with the result that

sgnUp) = —sgnU), sincelUp = ¢1 — ¢2 = ¢p — ¢; in

There are also three special transitional states between:ases ¢) and (). Using this result and proceeding as in

cases. For example, betwee) &nd @) there is the special
cased; = 6% =65 =6} > 05 > 6.

It is easily verified that all other scenarios lead to a
violation of the continuity condition (28). For example, if
62 occurred in2, and 6,5 occurred inQp, the gradient
06/0n would be of different sign on the two sides of the
interface.

There is a natural progression from cdsg¢ — (b) —

(¢) — (d) as the potential differenc@/| is increased.

At very low potential differences, the Joule heating will
be very small and the temperature will vary linearly
through the one-dimensional conductors as shown in curve
(0). Increased current leads to increase in temperature
everywhere and in particular to an increase in the interface
temperatured;. However, a local maximum must occur

the case of2, above, we conclude that

o
oy =sanv)jy 2 [ Agopc
Op
0h
2/ kf;pf; d@
0,
9/3

1
'm 2
(2/ )\5/)5 d9> )»ﬁ do (37)
0

B 9/2 _1,21
(2/ )\ﬁpﬁ d9>
0

O
¥l = sgnu)js f hy 00

0;
where j, = +1 for case &) and —1 for casesf)—(d).

(35)

¢F =sgnU) i (36)
B

Om
Wl = sgr) j2 f

Op

(38)
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Table 1.

@ () () (d)
+1  +1 41 -1
+1 -1 -1 -1
+1 -1 -1 +1

i
I
Ji]

Substituting these results into equation (30), we find
that for all four cases

/ 0% o
2/ )»apa do = 2/ Aﬁpﬁ do (39)
0; 0

and hence

b Om
/ )\ouoa o = / Aﬂpf; do. (40)
0 01

1

Corresponding results for equation (27) can be written in
the form

o o -3
1;[/1 (2/1 Lﬁhde> Ao 0O
0; [4
o o -3
—j1/ <2/ A Pa de) Aa de]
04 0
oh on -
= IgB |:j3/ <2f A.fjpfj d9> kﬁ do
o ” o ’ -3
—/ (2/ )\/3,0/3 d9> )\ﬁ d9:| (41)
6 6

where j; = +1 for casesq) and @) and—1 for caseslf)
and €). The values ofj;, j» and j3 are summarized in
table 1.

Before solving equations (40) and (41) fe,ﬁ,eﬁ, it
is convenient to determine the range of valuesppffor
each of the four cases)—(d). The transition between
cases ) and b) is obtained by substituting’, = 65
into equations (40) and (41) and solving #f, 6;, whilst
that between cased)(and €) corresponds t@; = 6.
The transition between cases) (and @) occurs when
6, = 6% = 6}, With these values, equation (40) is satisfied
identically and equation (41) yields the equation
w2 [} rpppdo)iagde 12 42)
J@f] hapudO) gl 1]
for the critical value off, at the transition. Notice that
for any given materials and values &f, 65, R will have a
maximum valuer,, in the domaip < 6; < co. It follows
that there will be no transition to casé)(if 1.'/I” > R,,.
Instead, casec] will persist for all valuesy; > 6. This
argument also shows that cash (s more likely to occur
if the ratio I:/If is small. This is intuitively reasonable,
since in the limit where/? — co. We must recover the
case of a single conductor of materiglin which the max-
imum temperature will occur sufficiently high potentidl

Onced?, 65 have been found, the total potentialcan

then be recovered from the relatidh = ¢ — ¢<, which
with equations (31) and (35) gives

/ 0 o
|U| = 2/ )Lapa do — j2 2/ )\./3,0/3 do. (43)
Oa Op
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3.4. A one-dimensional example

To illustrate the use of the method, we consider the one-
dimensional example of two cylinders of unit length and
unit cross-sectional area occupying the regieris< x <

0, 0 < x < 1 respectively. The cylinders make contact
at the common interface = 0 and the surfaces$y, Sp
correspond tor = —1, 1 respectively. With this geometry,
we haveg(x) = x and the current factof, = %

We first consider the case where the cylindgx is
aluminium ¢ = 240 W nT! K1, p = 25 x 1081 +
0.004)Q2 m) and Qp is brass { = 119 W nTt K1,

p =5.9x 10781+ 0.0034%)Q m).

Figure 3@) shows the temperature distribution in the
cylinders for6, = 0, 85 = 100 and various values @
or |U|. The corresponding relation betweé¢ti| and 6,
is shown in figure 3f), which also shows the maximum
temperaturd,,. As anticipatedg, increases monotonically
with |U| and there is a natural progression from casp (
to (b) to (c). However, for this configuration, casd)(is
never achieved becauge, = 0.493< 1 andIgA = IgB.

At large 6;, R is relatively insensitive to the boundary
temperatures),, 63 and we generally have®, < 1 for
Appp < Aepe @Nd R, > 1 for Agpg < Aypy. Thus,
by interchanging the materials but retaining the values of
04, 6, we obtain a system that exhibits the full sequence of
cases &), (b), (c), (d), as shown in figures 4} and 4p).

Timisit (1988) gives an approximate solution of the
two-material problem, based on the assumption that the
maximum temperature will always coincide with the mid-
potential point|U|/2. The present exact method was used
to assess the accuracy of this approximation in a variety
of examples. When the conductors are of equal size and
have equal boundary temperatures, Timisit's approximation
predicts the maximum temperature with an accuracy that is
generally better than 6%. However, the error increases
when there is a significant difference betweghand 1
or betweerv, and6y. For example, witto, = 0°C, 65 =
100°C and/? = I}, his method gives errors of up to 25%.

4. Constriction resistance

We now examine the consequences of these results for
the problem of conduction of electricity between two large
conductors across the constriction resistance associated with
the roughness of the contacting surfaces. For this purpose,
we assume that the conductors can be represented by half-
spaces, with contact occurring at one or more circular
‘actual contact areas’ at the interface.

The conductors will generally be assumed to be of
different materials and/or to have different temperatures
at infinity, but the geometry of the system is symmetrical
about the interfacial plane and it follows that the conditions
imposed in section 3.1 are satisfied. In fact, the interface
will be the surface = g, = 0 in the full geometry, leading
to g4 = 2¢+ 1 andgpg = 2¢g — 1 in equation (23). The
symmetry also guarantees that

I} =1} =2, (44)
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Figure 3. Electrical conduction through equal contacting
cylinders of aluminium and brass: (a) temperature field,;
(b) relation between |U|, 6, and 6,,.
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Figure 4. Electrical conduction through equal contacting
cylinders of brass and aluminium: (a) temperature field;
(b) relation between |U|, 6, and 6,,.

0.08

Using these results, the temperatures and potentials of

single isothermal, equipotential surface for all actual the example of the section 3.4 can be used to predict the
contact configurations, and hence that the temperature anctorresponding fields for the contact of two half-spaces at

potential fields can be mapped into the corresponding one-a single circular area.

dimensional solution for two conductors of equal length.

4.1. Single contact area

For the case of a single circular contact of radiysthe
function g can be expressed in ellipsoidal coordinaies
as

2
g=——tanlg (45)
s

(Greenwood and Williamson 1958) whefen are related
to the cylindrical polar coordinates z through

r=ay(1+£2)A—-n?),z=aén.

(46)

Figure 5 shows the temperature
distribution @) along the z-axis and ) in the plane

z = 0 for the two conductors, for the case wheeg is
aluminium, Q3 is brass and)y, = 0°C, 8z = 100°C and

|U| = 0.1V. The maximum temperature in this case occurs
on an ellipsoidal surface ifp.

4.2. Multiple contact areas

In the contact of rough conforming surfaces, there will
generally be a statistical distribution of actual contact areas
of various shapes and sizes. Many authors (Greenwood and
Williamson 1966, Coopeet al 1969, Onions and Archard
1973, Majumdar and Tien 1991) have discussed methods
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value ofg at theith contact area as

T " N
180} I 8i = _1+ZAijIgj (47)
160} | =
140} \ where
) 1
__120¢ ! aluminum Ajj = J=i
e 100 E A
> i = j#i (48)
80y i 2msi;
]
601 | a; is the radius of théth contact area and
401 i Sij = |ri — ’I"j| (49)
20t E
‘ ; is the distance between the centres ofitheand;th contact
0

2 4 6 8 10 areas. _
Symmetry requires that; = O for all i and hence

0 I L i
-0 8 6 -4 -2

@
Iy = Z Cji (50)

N
i=1

where the symmetric matri€ = A~1. The total current

00— 1 factor can also be written
180[ i N N N
160 i Iy :Z[gj :chji' (51)
j=1 j=1i=1
140 : 1
i . Oncel,; is known, the potential at a general point can
51201 i aluminum 1 be written by superposition. Suppose we take the origin of
< 100} : coordinates to be at the centre of thle contact area. Then
@ | the potential at points relatively near to tith contact area
80y i can be written
60y contact area | I; (2 1 T
i —_1_ 8 [ Ztanle — SN e
a0} \ | g =-1-2- <ntan § 1)+2n;|r—r,-|'
20f : (52)
T Since the origin can be chosen arbitrarily, such an
%% 8 6 4 2 0 2 4 6 8 10 expression can be written for all points in the domain.
These results completely define the functignfor
(b) the domain consisting of two half-spaces in contact at a
Figure 5. Temperature field within two dissimilar ;et of _sparsely dlstrlbu_ted C|rcular_ contact areas on the
conductors making contact at a circular area: (a) along the interfacial plane. As in the section 4.1, it is then a
axis of symmetry; (b) in the plane of the interface. routine process to map the temperature fields from the

corresponding linear problem of the section 3.4 into the
new domain. The decoupling of the linear and nonlinear
to determine the thermal and electrical contact resistance inproblems guarantees that the maximum temperature and the
such cases, using properties of the surfaces obtained frominterfacial temperature for multispot contact will depend
profilometry. These papers deal exclusively with the linear only on the boundary condition8,, 65, |U| and will be
problem in which the material properties are independent independent of the size and spatial distribution of contact
of temperature. areas. The total current flowvill depend upon these
One of the simplest approaches, introduced by distributions through equations (27), (44) and (51).
Greenwood (1966) is to superpose the single contact
area solution defined by equation (45), but use the points. conclusions
source solution to approximate the effect of current flow
through any one contact area on the potential at the otherswe have demonstrated how the method of Greenwood
We proceed directly to a solution for the potential and Williamson can be used to determine the steady-
by requiring a potential difference of unity between the state temperature and potential fields in a system of
interface and the extremity of body 1. two contacting conductors with temperature-dependent
In this case, Greenwood’s approximation gives the electrical resistivity and thermal conductivity. The
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